This article was downloaded by: [University of Illinois Chicago]
On: 02 J une 2012, At: 19:59
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK

Synthetic Communications: An International J ournal for Rapid Communication of Synthetic Organic Chemistry
 Publication details, including instructions for authors and subscription information:
 http:// www.tandfonline.com/ loi/ Isyc20

Total Synthesis of (\pm)-Armepavines and (\pm)-Nuciferines From (2Nitroethenyl)benzene Derivatives

Chia-Fu Chang ${ }^{\text {a }}$, Chu-Yun Huang ${ }^{\text {a }}$, Yu-Chao Huang ${ }^{\text {a }}$, Kuan-Yu Lin ${ }^{\text {a }}$, Yean-J ang Lee ${ }^{\text {a }}$ \& Chau-J ong Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
${ }^{\text {b }}$ Institute of Biochemistry, Chung Shan Medical University, Taichung, Taiwan

Available online: 05 Nov 2010

To cite this article: Chia-Fu Chang, Chu-Yun Huang, Yu-Chao Huang, Kuan-Yu Lin, Yean-J ang Lee \& Chau-J ong Wang (2010): Total Synthesis of (\pm)-Armepavines and (\pm)-Nuciferines From (2Nitroethenyl)benzene Derivatives, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 40:23, 3452-3466

To link to this article: http:// dx. doi.org/ 10.1080/00397910903435411

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,

TOTAL SYNTHESIS OF (\pm)-ARMEPAVINES AND (\pm)-NUCIFERINES FROM (2-NITROETHENYL)BENZENE DERIVATIVES

Chia-Fu Chang, ${ }^{1}$ Chu-Yun Huang, ${ }^{1}$ Yu-Chao Huang, ${ }^{1}$ Kuan-Yu Lin, ${ }^{1}$ Yean-Jang Lee, ${ }^{1}$ and Chau-Jong Wang ${ }^{2}$
${ }^{1}$ Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
${ }^{2}$ Institute of Biochemistry, Chung Shan Medical University, Taichung, Taiwan

A concise route to armepavine 1 and nuciferine 2 and 3, which can be isolated from the leaves of Nelumbo nucifera (Nymphaceae), has been achieved in which the longest linear sequence is only six steps from commercially available benzaldehyde in $28 \%, 21 \%$, and 20% overall yield, respectively. The key transformations in the synthesis are the radical cyclization of aryl bromide with $\mathrm{Bu}_{3} \mathrm{SnH}$ and the Pictet-Spengler reaction of N -substituted amine with aldehyde.

Keywords: Armepavine; Nef; nuciferines; Pictet-Spengler

INTRODUCTION

As part of our research aiming to uncover new natural products with improved biological activities, including antioxidant, anti-human immunodeficiency virus (HIV), and tumor growth inhibition activities, we attended to the flavonoid, coumestan, and maleimide family. ${ }^{[1]}$ Recently, several structurally interesting alkaloids with substituted isoquinoline ${ }^{[2]}$ have been isolated from the leaves of Nelumbo nucifera (Nymphaceae) and show significant anti-HIV activity (EC_{50} value of $0.8 \mu \mathrm{~g} / \mathrm{mL}$, $\mathrm{TI}>125)^{[3]}$ and also inhibit platelet aggregation ${ }^{[3]}$ (Fig. 1). Although armepavine (1) and nuciferine (2) have been synthesized by several groups, ${ }^{[2 c, 4]}$ they were achieved with very time-consuming and complicated synthetic approaches. To overcome these technical difficulties, we report our studies on the synthesis of nuciferine analogs from the readily available (2-nitroethenyl)benzene derivatives by sequential Pictet-Spengler and radical cyclization.

Retrosynthetic analysis (Scheme 1) suggested that $\mathbf{2}$ and $\mathbf{3}$ can be secured by Heck coupling or radical cyclization ${ }^{[4]]}$ of 4. The latter should be accessible from 5 and 6 with Pictet-Spengler ${ }^{[5]}$ or Bischler-Napieralski ${ }^{[6]}$ reactions. In addition, commercially

[^0]

1 R=Me Armepavine

2 R=Me Nuciferine $3 \mathrm{R}=\mathrm{H} \mathrm{N}$-Nornuciferine

Figure 1. Armepavine and nuciferines from the leaves of Nelumbo nucifera (Nymphaceae).

Scheme 1. Retrosynthesis of (\pm)-nuciferines.
available ketones and aldehydes would allow facile introduction of a wide range of different substituents of $\mathbf{5}$ and $\mathbf{6}$ by $\mathrm{Nef}^{[7]}$ or Willgerodt-Kindler ${ }^{[8]}$ reactions.

RESULTS AND DISCUSSION

With the aim of developing a concise route to synthesize aryl acetaldehyde and amine with diverse substituents, the commercially available $7 \mathbf{a}-\mathbf{c}$ were used to prepare the corresponding aldehydes 10a-c and amines 11a-c from this compound (Scheme 2). In the beginning of our synthesis, aldehydes $7 \mathbf{a}-\mathbf{c}$ were transformed by aldol condensation with $\mathrm{CH}_{3} \mathrm{NO}_{2} / \mathrm{NH}_{4} \mathrm{OAc}$ under acetic acid to obtain the corresponding nitro compounds $\mathbf{8 a - c}$ in excellent yield. Subsequently, selective 1,4-reduction of conjugated $\mathbf{8 a - c}$ proceeded with NaBH_{4} to provide the saturated nitro product $\mathbf{9 a - c}$. According to the Nef-type reaction, the nitro group of $\mathbf{9 a - c}$ was readily changed to the carbonyl group under acidic conditions to give the desired 10a and 10b in quantitative yield, respectively, as well as 10c in 96% yield. At the same time, compounds 11a-c were prepared by direct reduction of $\mathbf{8 a - c}$ with LiAlH_{4} in tetrahydrofuran (THF) at $0^{\circ} \mathrm{C}$. With 10a and $\mathbf{1 1 b}$ in hand, we tried to synthesize tetrahydroisoquinoline $\mathbf{1 3}$ through the coupling of $\mathbf{1 0 a}$ and $\mathbf{1 1 b}$ using the PictetSpengler reaction. However, the acid-catalyzed reaction using different Lewis acids, such as trifluoroacetic acid (TFA), HCl, p-toluenesulfonic acid (p-TSA), and $\mathrm{BF}_{3}-$ OEt_{2}, to give $\mathbf{1 3}$ was unsuccessful. The major product was the recovered starting material or amine hydrochloride salt. This problem could be due to the need for anhydrous conditions, because the iminium salt is readily hydrolyzed under

Scheme 2. Synthesis of aryl amines and aryl aldehydes.
acid-catalyzed reactions. Therefore, we sought to overcome this problem by converting the primary amine into the secondary amine. Amine 11b was protected with the electron-withdrawing groups $\mathrm{CO}_{2} \mathrm{Me}$ and Boc to provide 12a, b, respectively (Scheme 2). Subsequently, the N-methoxycarbonyl hydroisoquinoline obtained under $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ catalysis by condensation-cyclization of N-methoxycarbonyl amine 12a with aldehyde 10a may be used without further purification, and then the process proceeded smoothly using the reductive reaction with LiAlH_{4} to provide the desired product $\mathbf{1 3}(67 \%)$ in three steps (Scheme 3). Finally, the isopropyl group in $\mathbf{1 3}$ was removed with BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ to afford armepavine 1 in 69% yield. The structure of 1 was confirmed by x-ray crystallography. ${ }^{[9]}$ With the success of achieving 12a, b, we employed the same Lewis acid $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$-catalyzed Pictet-Spengler reaction in nuciferines $\mathbf{2}$ and $\mathbf{3}$ syntheses. Coupling of 12a, \mathbf{b} respectively with aldehyde 10c proceeded readily in mixed solvent $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CHCl}_{3} 1: 1\right)$ under $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$ catalysis to give the bromoarmepavine $\mathbf{1 4 a}, \mathbf{b}$, which can then undergo the radical cyclization with azobisisobutyronitrile (AIBN) $/ \mathrm{Bu}_{3} \mathrm{SnH}$ to accomplish 15a, b in 52% and 56% yield, respectively. Trying to obtain 15a, b via palladium-catalyzed coupling ${ }^{[2 c, 4 \mathrm{~g}]}$ proved unsuccessful. With precursor 15a, \mathbf{b} in hand, completion of the final steps in the nuciferine syntheses was straightforward, requiring either reduction or deprotection. Previous reduction of the methoxycarbonyl group in compound 15a with LiAlH_{4} provided the N-methyl nuciferine 2 in 66% yield. Also, direct acid-catalyzed deprotection of the t-butoxycarbonyl group in compound $\mathbf{1 5 b}$ with $\mathrm{AcCl} / \mathrm{MeOH}$ furnished the expected product $\mathbf{3}$ in 59% yield. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the synthetic products are in agreement with those of reported natural product derivatives.

It is worth noting that an alternative construction ${ }^{[4 \mathrm{~g}]}$ of armepavine $\mathbf{1}$ was created by Willgerodt-Kindler and Bischler-Napieralski reactions (Scheme 4). Using the Willgerodt-Kindler and hydrolysis procedures, the phenylacetic acid $\mathbf{1 7}$ can be readily prepared from the commercially available hydroxyacetophenone in excellent

Scheme 3. Synthesis of $(+/-)$-armepavines and $(+/-)$-nuciferines.
yield (three steps, 67%). First, the protection of hydroxyacetophenone was employed with $i-\mathrm{PrBr}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ to obtain $\mathbf{1 6}$ in 95% yield, and then the acetophenone $\mathbf{1 6}$ was readily transformed by sulfur and morpholine with catalyst p-TSA under refluxing conditions to afford the expected thioacetomorpholide, which could directly be used by hydrolysis with $20 \% \mathrm{NaOH}$ and catalyst tetrabutylammonium bromide (TBAB) to provide the desired acid 17 . The acetic acid $\mathbf{1 7}$ was treated with oxalyl chloride, followed by reaction with the readily available phenylethamine 11b to obtain the

Scheme 4. Synthesis of isoquinoline 13.
desired amide $\mathbf{1 8}$ in 82% yield. With the required amide $\mathbf{1 8}$ in hand, the BischlerNapieralski cyclization with POCl_{3} in acetonitrile gave the isoquinimium ion, which can undergo the reduction with NaBH_{4} to afford isoquinoline 19 in 60% yield (two steps). Sequential condensation and reduction of 19 with formaldehyde and NaBH_{4}, respectively, provided the isopropyl armepavine $\mathbf{1 3}$ in 83% yield.

CONCLUSION

In summary, a concise route to armepavine $\mathbf{1}$ and nuciferine $\mathbf{2}$ and $\mathbf{3}$ has been achieved in which the longest linear sequence is only six steps from commercially available benzaldehyde in 28%, 21%, and 20% overall yield, respectively. Alternatively, $\mathbf{1}$ was also accomplished in 19% overall yield from commercially available 4-hydroxyacetophenone by a route in which the longest linear sequence is only eight steps. Thus, it is demonstrated that using the Lewis acid $\mathrm{BF}_{3}-\mathrm{OEt}_{2}$-catalyzed PictetSpengler reaction gives a good yield and is easily modified to give access to a variety of different armepavine and nuciferine analogs. The preparation of these compounds is currently under way, and their biological activities will be investigated to evaluate the efficacy of these compounds as antitumor agents.

EXPERIMENTAL

Melting points were determined on a Mel Temp II melting-point apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured with a Bruker 300 spectrometer. Chemical shifts are reported in parts per million (δ, ppm) using CHCl_{3} ($\delta_{\mathrm{H}} 7.26$) as an internal standard. Low-resolution mass spectra (MS) and high-resolution mass spectra (HRMS) were determined on a Jeol JMS-HX 110 mass spectrometer from National Chung-Tsing University, Taichung. Elemental analyses were performed on a Heracus CHN-OS Rapid spectrometer in the Taichung Instrumentation Center, National Science Council, Taiwan. Solvents were freshly distilled prior to use from phosphorus pentoxide or CaH_{2}. THF was distilled from sodium diphenyl ketyl. All reactions were carried out under a nitrogen atmosphere unless otherwise stated. Silica gel (silica gel 60, 230-400 mesh, Merck) was used for chromatography. Organic extracts were dried over anhydrous MgSO_{4}.

1-Isopropoxy-4-(2-nitrovinyl)benzene (8a) ${ }^{[10]}$

A solution of 4-isopropoxy benzaldehyde (7a) $(1.51 \mathrm{~g}, 9.2 \mathrm{mmol})$ in $\mathrm{NH}_{4} \mathrm{OAC}$ $(1.40 \mathrm{~g}) / \mathrm{AcOH}(20.0 \mathrm{~mL})$ was stirred for 10 min at $25^{\circ} \mathrm{C}$, followed by slow addition of $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.0 \mathrm{~mL}, 36.9 \mathrm{mmol})$ with stirring for 5 min . The resulting mixture was heated to reflux at $120^{\circ} \mathrm{C}$ for 4 h , then quenched by addition of ice water $(10.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)$ to obtain the desired $\mathbf{8 a}(1.62 \mathrm{~g}, 85 \%)$ as an orange solid: $\mathrm{mp} 50-51^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta: 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 4.48$ (hept, $\left.J=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.77$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.80$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR : $\delta 21.7,70.1,116.1,121.9,131.1,134.6,139.0,161.4$.

1,2-Dimethoxy-4-(2-nitrovinyl)benzene (8b)

According to previous procedures, 3,4-dimethoxy benzaldehyde (7b) (1.73 g , $10.4 \mathrm{mmol})$ in $\mathrm{NH}_{4} \mathrm{OAC}(1.58 \mathrm{~g}) / \mathrm{AcOH}(20.0 \mathrm{~mL})$ was stirred for 10 min at $25^{\circ} \mathrm{C}$, followed by slow addition of $\mathrm{CH}_{3} \mathrm{NO}_{2}(2.3 \mathrm{~mL}, 41.7 \mathrm{mmol})$ with stirring for 5 min . The resulting mixture was heated to reflux at $120^{\circ} \mathrm{C}$ for 4 h , then quenched by addition of ice water $(10.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $\left.-\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)$ to provide the expected $\mathbf{8 b}$ $(1.70 \mathrm{~g}, 78 \%)$ as an orange solid: $\mathrm{mp} 131-132{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[11]} \mathrm{mp} 140-142{ }^{\circ} \mathrm{C}$), ${ }^{1} \mathrm{H}$ NMR $\delta: 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR : $\delta 55.8,55.9,110.2,111.2,122.7,124.5,135.0,139.2,149.4,152.7$.

1-Bromo-2-(2-nitrovinyl)benzene (8c)

Compound $8 \mathbf{c}$ was prepared, using the previous procedure, from 2-bromo benzaldehyde (7 c) $\left(1.00 \mathrm{~g}, 5.4 \mathrm{mmol}\right.$) in $\mathrm{NH}_{4} \mathrm{OAC}(0.73 \mathrm{~g}) / \mathrm{AcOH}(15.0 \mathrm{~mL})$, followed by slow addition of $\mathrm{CH}_{3} \mathrm{NO}_{2}(1.0 \mathrm{~mL}, 19.2 \mathrm{mmol})$ with stirring for 5 min . The resulting mixture was heated to reflux at $120^{\circ} \mathrm{C}$ for 4 h , then quenched by addition of ice water $(10.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 1\right)$ to provide the expected 8c $(0.94 \mathrm{~g}, 76 \%)$ as a light yellow solid: $\mathrm{mp} 87-88^{\circ} \mathrm{C}$ (lit. ${ }^{[11]} \mathrm{mp} 86-87{ }^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta 7.21-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58$ (dd, $J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : $\delta 126.2,128.0$, 128.4, 130.1, 132.9, 133.8, 137.4, 138.7.

1-Isopropoxy-4-(2-nitroethyl)benzene (9a)

To a solution of $8 \mathbf{8 a}(0.71 \mathrm{~g}, 3.4 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 / 15.0 \mathrm{~mL})$ was cooled for 10 min at $0^{\circ} \mathrm{C}$. One portion of $\mathrm{NaBH}_{4}(0.19 \mathrm{~g}, 5.1 \mathrm{mmol})$ the solution was added to and stirred for 20 min , followed by the other portion of NaBH_{4} $(0.19 \mathrm{~g}, 5.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir for 30 min and then quenched with distilled $\mathrm{H}_{2} \mathrm{O}$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20.0 \mathrm{~mL})$. After removal of solvent, the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $8: 1$) to provide $9 \mathrm{a}(0.54 \mathrm{~g}, 75 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.24$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), $3.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.46 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : δ 21.9, 32.6, 69.8, 76.5, 116.1, 127.3, 129.5, 157.1; HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{3}$ $\left(\mathrm{M}^{+}\right)$209.1052; found 209.1048.

1,2-Dimethoxy-4-(2-nitroethyl)benzene (9b)

Compound $9 \mathbf{b}$ was prepared, using the previous procedure, from $\mathbf{8 b}(0.59 \mathrm{~g}$, $2.9 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 / 10.0 \mathrm{~mL})$, cooled for 10 min at $0^{\circ} \mathrm{C}$. One portion of $\mathrm{NaBH}_{4}(0.16 \mathrm{~g}, 4.3 \mathrm{mmol})$ was added, followed by the other portion of NaBH_{4}
$(0.16 \mathrm{~g}, 4.3 \mathrm{mmol})$ with stirring for 30 min at $0^{\circ} \mathrm{C}$. The resulting mixture was then quenched by addition of distilled $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers were concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate 8:1) to give the expected $9 \mathrm{~b}(0.42 \mathrm{~g}, 70 \%)$ as a yellow oil (lit. $\left.{ }^{[12]} \mathrm{mp} 53-54{ }^{\circ} \mathrm{C}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta: 3.19(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : $\delta 33.1,55.9$, 55.9, 76.5, 111.5, 111.7, 120.6, 128.0, 148.3, 149.2 .

1-Bromo-2-(2-nitroethyl)benzene (9c)

According to previous procedures, $8 \mathrm{c}(0.45 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10.0 / 10.0 \mathrm{~mL})$ was cooled down to $0^{\circ} \mathrm{C}$, and one portion of $\mathrm{NaBH}_{4}(0.19 \mathrm{~g}$, 5.1 mmol) was added with stirring for 10 min , followed by the other portion of $\mathrm{NaBH}_{4}(0.19 \mathrm{~g}, 5.1 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The mixture was allowed to stir for 20 min and then quenched with distilled $\mathrm{H}_{2} \mathrm{O}$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15.0 \mathrm{~mL})$. After removal of solvent, the residue was subjected to column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.8: 1\right)$ to obtain $9 \mathrm{c}(0.30 \mathrm{~g}, 67 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR δ $3.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.46$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 33.7,74.2,124.2,127.9,129.2,131.0,133.1,134.9$.

4-Isopropoxyphenylacetaldehyde (10a)

A mixture of $9 \mathbf{a}(0.51 \mathrm{~g}, 2.4 \mathrm{mmol})$ and $\mathrm{NaOH}(0.39 \mathrm{~g}, 9.8 \mathrm{mmol})$ in ethanol $(5.0 \mathrm{~mL})$ was stirred for 10 min at $25^{\circ} \mathrm{C}$, and then the solvent was evaporated in vacuo to give the desired sodium nitronate, which was dissolved in distilled $\mathrm{H}_{2} \mathrm{O}$ $(5.0 \mathrm{~mL})$. The solution was added into the two-layer mixture of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}(2.5 / 5.0 \mathrm{~mL})$ and pentane $(20.0 \mathrm{~mL})$ for 1 h at $0^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$. After stirring for 4 h , the resulting suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacou, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate 5:1) to provide the expected $10 \mathrm{a}(0.43 \mathrm{~g}, 100 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.31(\mathrm{~d}, J=6.3 \mathrm{~Hz}$, 6 H), 3.57 (d, $J=2.4 \mathrm{~Hz}, 2 \mathrm{H}$), 4.51 (hept, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.67(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : $\delta 22.0,49.7,69.9$, 116.3, 123.4, 130.6, 157.2, 199.8, HRMS (EI) calcd. for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$178.0994; found 178.0988.

3,4-Dimethoxyphenylacetaldehyde (10b) ${ }^{[13]}$

A solution of $9 \mathbf{b}(0.49 \mathrm{~g}, 2.3 \mathrm{mmol})$ and $\mathrm{NaOH}(0.37 \mathrm{~g}, 9.2 \mathrm{mmol})$ in ethanol $(5.0 \mathrm{~mL})$ was stirred for 10 min at $25^{\circ} \mathrm{C}$, and then the removal of solvent in vacuo gave the intermediate sodium nitronate, which was dissolved in distilled $\mathrm{H}_{2} \mathrm{O}$ $(5.0 \mathrm{~mL})$. The solution was introduced into the two-layer mixture of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}(2.5 / 5.0 \mathrm{~mL})$ and pentane $(20.0 \mathrm{~mL})$ for 1 h at $0^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$. After stirring for 5 h , the resulting suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 20.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1) to provide
the expected $\mathbf{1 0 b}(0.42 \mathrm{~g}, 100 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta 3.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, $6 \mathrm{H}), 6.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $9.66(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 50.1,55.8,55.9,111.6,112.6,121.8,124.1,148.4$, 149.3, 199.5.

2-Bromophenylacetaldehyde (10c) ${ }^{[14]}$

Compound 10c was prepared, using the previous procedure, from $9 \mathrm{c}(0.30 \mathrm{~g}$, $1.3 \mathrm{mmol})$ and $\mathrm{NaOH}(0.21 \mathrm{~g}, 5.2 \mathrm{mmol})$ in ethanol $(5.0 \mathrm{~mL})$ and stirred for 10 min at $25^{\circ} \mathrm{C}$, and then the solvent was evaporated in vacuo to give the desired sodium nitronate, which was dissolved in distilled $\mathrm{H}_{2} \mathrm{O}(3.0 \mathrm{~mL})$. The solution was added into the two-layer mixture of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{O}(2.0 / 4.0 \mathrm{~mL})$ and pentane $(15.0 \mathrm{~mL})$ for 1 h at $0^{\circ} \mathrm{C}$ and then warmed to $25^{\circ} \mathrm{C}$. After stirring for 3 h , the resulting suspension was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15.0 \mathrm{~mL})$. The combined organic layers were concentrated in vacuo, and the residue was subjected to flash chromatography (SiO_{2}, hexane-ethyl acetate $10: 1$) to obtain the aldehyde $\mathbf{1 0 c}(0.25 \mathrm{~g}, 96 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta: 3.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.62$ $(\mathrm{d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 9.74(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 50.0,124.6$, 127.8, 129.1, 132.2, 132.6, 133.6, 197.6.

2-(4-Isopropoxyphenyl)ethylamine (11a) ${ }^{[15]}$

$\mathrm{LiAlH}_{4}(0.22 \mathrm{~g}, 5.8 \mathrm{mmol})$ was added to a solution of $\mathbf{8 a}(0.40 \mathrm{~g}, 1.9 \mathrm{mmol})$ in dried THF $(10.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and then stirred under N_{2} overnight at room temperature. The reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl-acetate- $\left.\mathrm{MeOH} 8: 2: 1\right)$ to provide the desired 11a ($0.25 \mathrm{~g}, 73 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.66$ (brs, 2H), 2.61 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 2.85 (t, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.43 (hept, $J=6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : $\delta 22.0,38.9$, 43.5, 69.9, 115.9, 129.7, 131.5, 156.3.

2-(3,4-Dimethoxyphenyl)ethylamine (11b) ${ }^{[16]}$

A mixture of $\mathbf{8 b}(0.30 \mathrm{~g}, 1.4 \mathrm{mmol})$ and $\mathrm{LiAlH}_{4}(0.16 \mathrm{~g}, 4.3 \mathrm{mmol})$ in dried THF (10.0 mL) was stirred at $25^{\circ} \mathrm{C}$ and then heated to reflux under N_{2} for 3 h . The reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, ethyl acetate- $\left.\mathrm{MeOH} 19: 1\right)$ to provide the desired 11b $(0.21 \mathrm{~g}, 83 \%)$ as an oil (lit. $\left.{ }^{[17]} \mathrm{mp} 155-156^{\circ} \mathrm{C}\right),{ }^{1} \mathrm{H}$ NMR $\delta: 1.30$ (brs, 2 H), 2.58 $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.60-6.66$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 39.2,43.2,55.4,55.5,111.0,111.7,120.3,132.0,147.1,148.5$.

2-(2-Bromophenyl)ethylamine (11c) ${ }^{[18]}$

$\mathrm{LiAlH}_{4}(0.22 \mathrm{~g}, 5.8 \mathrm{mmol})$ was added to a solution of $\mathbf{8 c}(0.44 \mathrm{~g}, 1.9 \mathrm{mmol})$ in dried THF $(10.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and then stirred under N_{2} overnight at room
temperature. The reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. The combined organic layers was concentrated in vacuo, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl-acetate- MeOH 8:2:1) to provide the expected $11 \mathrm{c}(0.20 \mathrm{~g}, 56 \%)$ as a oil. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.55$ (brs, 2H), 2.80-2.93 (m, 4H), 6.99-7.03 (m, 1H), 7.16-7.20 (m, 2H), 7.47 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 40.1,42.0,124.6,127.4,128.0,130.9,132.9$, 139.0.

Methyl N-[2-(3,4-Dimethoxyphenyl)ethyl]carbamate (12a) ${ }^{[19]}$

A solution of $\mathbf{1 1 b}(1.00 \mathrm{~g}, 5.5 \mathrm{mmol})$ in dried THF (30.0 mL) was dissolved, followed by dropwise addition of methyl chloroformate ($0.5 \mathrm{~mL}, 6.6 \mathrm{mmol}$) under N_{2} at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at room temperature, and the reaction was monitored by thin-layer chromatography (TLC). The reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(20.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl-acetate $1: 1$) to provide the desired 12a ($1.25 \mathrm{~g}, 95 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta 2.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.80($ brs, 1 H$), 6.65-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 35.6,42.3,52.0,55.7,55.8,111.3,111.9,120.6,131.2,147.6,148.9,157.0$.

tert-Butyl N-[2-(3,4-Dimethoxyphenyl)ethyl]carbamate (12b)

According to the procedure of Toste and Still, ${ }^{[20]}$ a mixture of $\mathbf{1 1 b}(1.40 \mathrm{~g}$, 7.7 mmol), dimethylaminopyradine (DMAP; $0.05 \mathrm{~g}, 0.4 \mathrm{mmol}$), and N, N-diisopropylethylamine (DIEA; $2.00 \mathrm{~g}, 15.5 \mathrm{mmol}$) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30.0 \mathrm{~mL})$ was added to $\mathrm{Boc}_{2} \mathrm{O}(2.00 \mathrm{~g}, 9.2 \mathrm{mmol})$ with dropwise at $0^{\circ} \mathrm{C}$. Stirring continued at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for 2 h . The reaction was quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30.0 \mathrm{~mL})$. Evaporation and chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl-acetate$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ 1:1:1) gave 12b ($2.02 \mathrm{~g}, 93 \%$) as a white solid: mp $61-62^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR δ $1.21(\mathrm{~s}, 9 \mathrm{H}), 2.50(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.10(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}$, $3 \mathrm{H}), 4.60($ brs, 1 H$), 6.49-6.60(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.3,35.7,42.0,55.6,55.7$, $78.9,111.3,111.9,120.6,131.5,147.5,148.8,155.8$.

1-(4-Isopropoxybenzyl)-6,7-dimethoxy-2-methyl-1,2,3,4-tetrahydroisoquinoline (13)

A mixture of $\mathbf{1 2 a}(0.51 \mathrm{~g}, 2.1 \mathrm{mmol})$ and $\mathbf{1 0 a}(0.75 \mathrm{~g}, 4.2 \mathrm{mmol})$ in mixed solvents of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}(20.0 / 20.0 \mathrm{~mL})$ was introduced by dropwise addition of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.5 \mathrm{~mL}, 3.9 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ for 1 h . The resulting solution was stirred at room temperature, and the reaction was monitored by TLC. The reaction was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the crude product was directly used with no further purification. To a solution of the crude product in dried THF $(40.0 \mathrm{~mL}), \mathrm{LiAlH}_{4}(0.24 \mathrm{~g}, 6.3 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ under N_{2}. The reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL})$, which was extracted with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-ethyl acetate- MeOH 10:2:1) to provide the desired $13(0.50 \mathrm{~g}, 67 \%)$ as an oil. ${ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta: 1.45(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $6 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.99-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}$, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.52$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 6.57$ (s, $1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]: \delta$ $21.4,25.3,39.9,42.1,47.0,54.9,55.0,64.7,69.1,111.5,111.7,115.1,126.4,129.6$, 130.7, 132.0, 147.0, 147.6, 156.1; HRMS (EI) calcd. for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}_{3}\left(\mathrm{M}^{+}\right)$ 355.2147 ; found 355.2142 .

1,2-Dimethoxy-4,5,6a,7-tetrahydrodibenzo[de,g] quinoline-6-carboxylic Acid Methyl Ester (15a) ${ }^{[2 c]}$

Compound 15a was prepared, using the previous procedure, from 12a (0.30 g , $1.3 \mathrm{mmol})$ and $\mathbf{1 0 c}(0.50 \mathrm{~g}, 2.5 \mathrm{mmol})$ in mixed solvents of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}(20.0 /$ 20.0 mL), followed by dropwise addition of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.3 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ for 1 h by TLC monitoring. The reaction was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(10.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the crude 14a was directly used no further purification. A mixture of $14 \mathrm{a}(0.53 \mathrm{~g}, 1.3 \mathrm{mmol})$, $\operatorname{AIBN}(0.01 \mathrm{~g}, 63.2 \mu \mathrm{~mol})$, and $\mathrm{Bu}_{3} \mathrm{SnH}(0.37 \mathrm{~g}$, 1.3 mmol) in dried toluene (35.0 mL) was heated to reflux under N_{2}. The reaction was monitored by TLC and quenched with addition of cyclohexane (10.0 mL), which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 35.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate 5:1) to obtain the desired 15a ($0.22 \mathrm{~g}, 52 \%$) as an oil. ${ }^{1} \mathrm{H}$ NMR $\delta 2.51(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $2.66-2.89(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.31(\mathrm{~d}, J=10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.61$ (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 7.10-7.20(\mathrm{~m}, 3 \mathrm{H}), 8.31$ (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 30.2,35.2,38.9,51.6,52.6,55.9,59.9,111.5,126.0,127.0,127.5$, 127.6, 128.3, 128.4, 129.6, 131.7, 136.7, 145.6, 152.0, 155.9.

1,2-Dimethoxy-4,5,6a,7-tetrahydrodibenzo[de,g] quinoline-6-carboxylic Acid tert-Butyl Ester (15b) ${ }^{[2 c]}$

A mixture of $\mathbf{1 2 b}(0.28 \mathrm{~g}, 1.0 \mathrm{mmol})$ and $\mathbf{1 0 c}(0.39 \mathrm{~g}, 2.0 \mathrm{mmol})$ in mixed solvents of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}(20.0 / 20.0 \mathrm{~mL})$ was stirred and followed by dropwise addition of $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(0.3 \mathrm{~mL}, 2.5 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$ for 1 h by TLC monitoring. The reaction was quenched with saturated aqueous solution of NaHCO_{3} $(10.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the crude $\mathbf{1 4 b}$ was directly used no further purification. A mixture of $\mathbf{1 4 b}$ $(0.46 \mathrm{~g}, 1.0 \mathrm{mmol}), \operatorname{AIBN}(0.01 \mathrm{~g}, 63.2 \mu \mathrm{~mol})$, and $\mathrm{Bu}_{3} \operatorname{SnH}(0.29 \mathrm{~g}, 1.0 \mathrm{mmol})$ in dried toluene (30.0 mL) was heated to reflux under N_{2}. The reaction was monitored by TLC and quenched with addition of cyclohexane (10.0 mL), which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.4: 1\right)$ to obtain the desired $\mathbf{1 5 b}$ $(0.21 \mathrm{~g}, 56 \%)$ as a white solid: $\mathrm{mp} 184-185^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\delta 1.41(\mathrm{~s}, 9 \mathrm{H}),: 2.56(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.90(\mathrm{~m}, 4 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.34(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 3 \mathrm{H}), 8.35(\mathrm{~d}, J=7.8 \mathrm{~Hz}$,
$1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 28.5,30.4,35.4,38.4,51.6,55.9,60.0,79.8,111.4,126.5,126.9$, 127.5, 127.6, 128.1, 128.4, 129.8, 131.7, 137.0, 145.5, 151.9, 154.6; HRMS (EI) calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right)$381.1940; found 381.1943.

4-(6,7-Dimethoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-1-ylmethyl)phenol (1)

$\mathrm{BCl}_{3}(1.6 \mathrm{~mL}, 1 \mathrm{M})$ was added dropwise to a solution of $\mathbf{1 3}(0.58 \mathrm{~g}, 1.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50.0 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature and monitored by TLC. The resulting reaction was quenched by treatment with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.7: 1\right)$ to afford $1(0.35 \mathrm{~g}, 69 \%)$ as a white solid: mp $155-156{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[4 \mathrm{~b}]} \mathrm{mp} 166^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta: 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.96(\mathrm{~m}$, 4H), 3.13-3.28 (m, 2H), 3.53 (s, 3H), 3.71 (s, 1H), 3.74 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (s, $3 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 24.3,40.3,41.9,45.8,55.4,55.7,64.8,111.1,111.2,115.5,124.9$, 128.3, 130.4, 130.7, 146.2, 147.3, 155.0; HRMS (FAB+H) calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{3}$ $\left[(\mathrm{M}+\mathrm{H})^{+}\right]$314.1756; found 314.1766.

1,2-Dimethoxy-6-methyl-5,6,6a,7-tetrahydro-4Hdibenzo[de,g]quinoline (2)

A solution of $\mathbf{1 5 a}(0.14 \mathrm{~g}, 0.4 \mathrm{mmol})$ in THF $(10.0 \mathrm{~mL})$ was treated by dropwise addition of $\mathrm{LiAlH}_{4}(1.6 \mathrm{~mL}$ of 1 M in THF, 1.6 mmol$)$ at $0^{\circ} \mathrm{C}$ for 1 h . The resulting reaction was quenched with distilled $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and allowed to warm to room temperature. When a gelatinous mixture formed, it was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20.0 \mathrm{~mL})$. The mixture was filtered, washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH . The solvent was evaporated, and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hex-ane-ethyl acetate $1: 6$) to afford $2(80 \mathrm{mg}, 66 \%)$ as a colorless oil (lit. ${ }^{[21]} \mathrm{mp}$ $\left.165^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\delta: 2.38-2.62(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.93-3.15(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 7.12-7.25(\mathrm{~m}, 3 \mathrm{H}), 8.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 29.1,35.0,43.9,53.2,55.8,60.2,62.3,111.2,126.8,127.0,127.3,127.7$, $127.8,128.3,128.6,132.1,136.4,145.1,152.0$; HRMS (EI) calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2}$ $\left(\mathrm{M}^{+}\right)$295.1572; found 295.1568 .

1,2-Dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinoline (3)

Compound 15b ($0.10 \mathrm{~g}, 0.3 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(5.0 \mathrm{~mL})$ and followed by dropwise addition of $\mathrm{AcCl}(30.0 \mu \mathrm{~L}, 0.4 \mathrm{mmol})$ at room temperature. The reaction was stirred at room temperature and monitored by TLC for 3 h . The resulting reaction was quenched by treatment with saturated aqueous solution of $\mathrm{NaHCO}_{3}(3.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate- $\mathrm{MeOH} 8: 4: 1$) to provide the desired $\mathbf{3}(44 \mathrm{mg}, 59 \%)$ as a yellow solid: mp 208-209 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{[4 \mathrm{a}]} \mathrm{mp} 136-137^{\circ} \mathrm{C}$); ${ }^{1} \mathrm{H}$ NMR $\delta: 2.56-2.79$ (m, 3H), 2.89-2.96 (m, 2H), 3.28-3.30 (m, 1H), 3.54 (s, 3H), 3.72-3.78 (m, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H})$,
$6.52(\mathrm{~s}, 1 \mathrm{H}), 7.09-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $28.6,37.0,42.9,53.4,55.9,60.2,111.7,126.6,127.1,127.4,127.7,127.8,128.3$, 128.4, 132.0, 135.7, 145.3, 152.3; HRMS (EI) calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}\left(\mathrm{M}^{+}\right)$ 281.1416; found 281.1410.

(4-Isopropoxyphenyl)acetic Acid (17)

$i-\operatorname{PrBr}(3.3 \mathrm{~mL}, 35.1 \mathrm{mmol})$ was added to a mixture of 4-hydroxyacetophenone $(3.31 \mathrm{~g}, 24.3 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(4.15 \mathrm{~g}, 30.1 \mathrm{mmol})$ in acetone $(50.0 \mathrm{~mL})$ at $50^{\circ} \mathrm{C}$ and then refluxed at $70^{\circ} \mathrm{C}$ for 8 h by TLC monitoring. After cooling, the solution was evaporated in vacuo, and the brown residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} 10: 1\right)$ to give $16(4.12 \mathrm{~g}, 95 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR δ : $1.30(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}), 4.58$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $\mathrm{Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR : $\delta 21.8,26.2,70.0,115.0,129.7,130.6$, $162.0,198.0$. A mixture of $16(3.01 \mathrm{~g}, 16.9 \mathrm{mmol})$, sulfur ($1.08 \mathrm{~g}, 33.8 \mathrm{mmol}$), morpholine ($4.4 \mathrm{~mL}, 50.3 \mathrm{mmol}$), and p-toluenesulfonic acid ($97 \mathrm{mg}, 0.5 \mathrm{mmol}$) was refluxed at $120^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction, the mixture was allowed to cool, and $20 \% \mathrm{NaOH}(20.0 \mathrm{~mL})$ and tetrabutylammonium bromide ($27 \mathrm{mg}, 85.0 \mu \mathrm{~mol}$) were added. Hydrolysis continued for further 8 h at $100^{\circ} \mathrm{C}$. The cooled reaction mixture was filtered and the filtrate was acidified with HCl to pH 2 , which was extracted with ethyl acetate $(3 \times 50.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-ethyl acetate $\left.10: 1\right)$ to afford $\mathbf{1 7}$ $(2.33 \mathrm{~g}, 71 \%)$ as a white solid: mp $56-57{ }^{\circ} \mathrm{C}$ (lit. ${ }^{[22]} \mathrm{mp} 57-61^{\circ} \mathrm{C}$), ${ }^{1} \mathrm{H}$ NMR $\delta: 1.32$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}$), $3.56(\mathrm{~s}, 2 \mathrm{H}), 4.51$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2 H), 7.17 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), 11.98 (brs, 1 H); ${ }^{13} \mathrm{C}$ NMR $\delta 22.0,40.1,69.9,115.9$, 125.1, 130.4, 157.1, 178.3.

N-[2-(3,4-Dimethoxyphenyl)-ethyl]-2-(4-isopropoxyphenyl)acetamide (18)

Oxalyl chloride $(0.2 \mathrm{~mL}, 2.4 \mathrm{mmol})$ was added to a solution of $\mathbf{1 7}(0.39 \mathrm{~g}$, 2.0 mmol) in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15.0 \mathrm{~mL})$ dropwise at room temperature with stirring for 30 min , followed by evaporation to give the residue, which was directly used with no further purification. A solution of the crude product in dried $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20.0 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$, followed by dropwise addition of $\mathbf{1 1 b}(0.36 \mathrm{~g}, 2.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ for 1 h . The resulting reaction was quenched by treatment with saturated aqueous solution of $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30.0 \mathrm{~mL})$. After the removal of solvent, the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-ethyl acetate $\left.5: 1: 1\right)$ to provide the desired $\mathbf{1 8}$ $(0.59 \mathrm{~g}, 82 \%)$ as a white solid: mp $80-81{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right] \delta 1.26$ (d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 2.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{hept}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.81(\mathrm{~m}$, $4 \mathrm{H}), 7.01($ brs, 1 H$), 7.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left[\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right]: \delta 21.4,35.0$, 40.7, 42.1, 55.0, 55.2, 69.2, 111.9, 112.6, 115.5, 120.6, 128.1, 130.1, 132.1, 147.9, 149.3, 156.7, 170.3; HRMS (EI) calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{4}\left(\mathrm{M}^{+}\right) 357.1940$; found 357.1939.

1-(4-Isopropoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (19)

$\mathrm{POCl}_{3}(0.1 \mathrm{~mL}, 1.1 \mathrm{mmol})$ was added to a solution of $\mathbf{1 8}(0.26 \mathrm{~g}, 0.7 \mathrm{mmol})$ in dried acetonitrile $(10.0 \mathrm{~mL})$ at room temperature, and the resulting solution was refluxed for 2 h . The reaction was quenched with saturated aqueous solution of $\mathrm{NaHCO}_{3}(3.0 \mathrm{~mL})$, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10.0 \mathrm{~mL})$. After the removal of solvent, the crude product was directly used no further purification. The crude reaction mixture was dissolved in $\mathrm{MeOH}(10.0 \mathrm{~mL})$ at room temperature for $5 \mathrm{~min} . \mathrm{NaBH}_{4}(0.11 \mathrm{~g}, 2.9 \mathrm{mmol})$ was added at room temperature, and the solution was stirred and monitored by TLC for 1 h . The solvent was evaporated and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-ethyl acetate 1:15) to obtain $19(0.15 \mathrm{~g}, 60 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\delta: 1.33(\mathrm{~d}, J=6.0 \mathrm{~Hz}$, $6 \mathrm{H}), 2.18(\mathrm{brs}, 1 \mathrm{H}), 2.70-2.95(\mathrm{~m}, 4 \mathrm{H}), 3.11-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}$, $3 \mathrm{H}), 4.08-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.52$ (hept, $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.85$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.1,29.4,40.6,41.7$, $55.8,55.9,56.8,69.8,109.4,111.7,116.0,127.2,130.3,130.4,130.7,146.9,147.3$, 156.5.

Compound 13 from 19

To a solution of $19(0.14 \mathrm{~g}, 0.4 \mathrm{mmol})$ in $\mathrm{MeOH}(5.0 \mathrm{~mL}), 37 \%$ aqueous solution of formaldehyde $(0.06 \mathrm{~mL}, 0.8 \mathrm{mmol})$ was added at room temperature with stirring for $1 \mathrm{~h} . \mathrm{NaBH}_{4}(23 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added at room temperature, and the solution was stirred and monitored by TLC for 1 h . The solvent was evaporated and the residue was subjected to flash chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-ethyl acetate 1:7) to obtain $13(0.12 \mathrm{~g}, 83 \%)$ as a yellow oil.

ACKNOWLEDGMENTS

We thank the National Science Council (NSC) of the Republic of China for financial support (Research Grant NSC 96-2113-M-018-001-MY2). We also acknowledge with appreciation the NSC-supported HRMS spectrometry facility for providing HRMS.

REFERENCES

1. (a) Tseng, T. H.; Lee, Y. J. Evaluation of natural and synthetic compounds from east Asiatic folk medicinal plants on the mediation of cancer. Anti-Cancer Agents Med. Chem. 2006, 6, 347-365, and references therein; (b) Chang, C. F.; Yang, L. Y.; Chang, S. W.; Fang, Y. T.; Lee, Y. J. Total synthesis of demethylwedelolactone and wedelolactone by Cu -mediated $/ \operatorname{Pd}(0)$ catalysis and oxidation-cyclization. Tetrahedron 2008, 64, 36613666;(c) Cheng, C. F.; Lai, Z. C.; Lee, Y. J. Total synthesis of (\pm)-camphorataimides and (\pm)-himanimides by $\mathrm{NaBH}_{4} / \mathrm{Ni}(\mathrm{OAc})_{2}$ or $\mathrm{Zn} / \mathrm{AcOH}$ stereoselective reduction. Tetrahedron 2008, 64, 4347-4353.
2. (a) Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274-302, and references therein;
(b) Wright, C. W.; Marshall, S. J.; Russell, P. F.; Anderson, M. M.; Phillipson, J. D.; Kirby, G. C.; Warhurst, D. C.; Schiff Jr, P. L. In vitro antiplasmodial, antiamoebic, and cytotoxic activities of some monomeric isoquinoline alkaloids. J. Nat. Prod. 2000, 63, 1638-1640; (c) Lafrance, M.; Blaquiere, N.; Fagnou, K. Aporphine alkaloid synthesis and diversification via direct arylation. Eur. J. Org. Chem. 2007, 811-825, and references therein; (d) Woo, S. H.; Sun, N. J.; Cassady, J. M.; Snapka, R. M. Topoisomerase II inhibition by aporphine alkaloids. Biochem. Pharmacol. 1999, 57, 1141-1145.
3. (a) Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y. P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L. M.; Morris-Natschke, S. L.; Lee, K. H. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 2005, 13, 443-448;(b) Chia, Y. C.; Chen, K. S.; Chang, Y. L.; Teng, C. M.; Wu, Y. C. Antiplatelet actions of aporphinoids from Formosan plants. Bioorg. Med. Chem. Lett. 1999, 9, 3295-3300.
4. (a) Gulland, J. M.; Haworth, R. D. Synthetical experiments on the aporphine alkaloids, I: Synthesis of 5,6-dimethoxyaporphine. J. Chem. Soc. 1928, 581-591;(b) Marion, L.; Lemay, L.; Portelance, V. The synthesis of dl-armepavine. J. Org. Chem. 1950, 15, 216-220;(c) Weisbach, J. A.; Douglas, B. An improved synthesis of noraporphines. J. Org. Chem. 1962, 27, 3738-3740;(d) Cava, M. P.; Dalton, D. R. An improved synthesis of dl-anonaine. J. Org. Chem. 1966, 31, 1281-1283;(e) Cava, M. P.; Mitchell, M. J.; Havlicek, S. C.; Lindert, A.; Spangler, R. J. Photochemical routes to aporphines: New syntheses of nuciferine and glaucine. J. Org. Chem. 1970, 35, 175-179;(f) Costanza, C.; Lenz, G. R.; Lessor, R. A. The synthesis of oxoaporphines and phenanthrenediones from 7-hydroxydehydronoraporphines. Heterocycles 1992, 34, 465-478;(g) Cuny, G. D. Intramolecular ortho-arylation of phenols utilized in the synthesis of the aporphine alkaloids (\pm)-lirinidine and (\pm)-nuciferine. Tetrahedron Lett. 2003, 44, 8149-8152;(h) Zhang, Y. N.; Zhong, X. G.; Zheng, Z. P.; Hu, X. D.; Zuo, J. P.; Hu, L. H. Discovery and synthesis of new immunosuppressive alkaloids from the stem of Fissistigma oldhamii (Hemsl) Merr. Bioorg. Med. Chem. 2007, 15, 988-996;(i) Nimgirawath, S.; Lorpitthaya, R.; Wanbanjob, A.; Taechowisan, T.; Shen, Y. M. Total synthesis and the biological activities of (\pm)-norannuradhapurine. Molecules 2009, 14, 89-101.
5. Cox, E. D.; Cook, J. M. The Pictet-Spengler condensation: A new direction for an old reaction. Chem. Rev. 1995, 95, 1797-1842, and references therein.
6. (a) Buu-Hoï, N. P.; Long, C. T.; Xuong, N. D. α, α-Dimethyl- β-arylethylamines and their behavior in the Bischler-Napieralski reaction. J. Org. Chem. 1958, 23, 42-45; (b) Jude, Z. M.A.; Ching, C. B.; Bu, J.; McCluskey, A. The first Bischler-Napieralski cyclization in a room temperature ionic liquid. Tetrahedron Lett. 2002, 43, 5089-5091.
7. (a) Noland, W. E. The Nef reaction. Chem. Rev. 1955, 55, 137-155, and references therein;(b) Ballini, R.; Petrini, M. Recent synthetic developments in the nitro to carbonyl conversion (Nef reaction). Tetrahedron 2004, 60, 1017-1047, and references therein.
8. (a) Ott, A. C.; Mattano, L. A.; Coleman, G. H. Preparation of hydroxyphenylalkanoic acids by the Willgerodt reaction. J. Am. Chem. Soc. 1946, 68, 2633-2634;(b) Alam, M. M.; Adapa, S. R. Bi(OTf) 3_{3}-catalyzed Baeyer-Villiger oxidation of carbonyl compounds with m-CPBA. Synth. Commun. 2003, 33, 59-63.
9. The x-ray data for $\mathbf{1}$ is deposited at Cambridge Chrystallographic Data Centre as number CCDC708759.
10. Gusakova, L. A.; Smirnov, B. P.; Chistyakov, I. G. Synthesis of certain liquid crystal substances. Khim. 1968, 22B744.
11. Cochran, T. G.; Huitric, A. C. Nuclear magnetic resonance as a monitor in optical resolution, II: Synthesis and resolution of cis- and trans-2-(o-bromophenyl)cyclohexylamines. J. Org. Chem. 1971, 36, 3046-3048.
12. Bhattacharjya, A.; Mukhopadhyay, R.; Pakrashi, S. C. Sodium borohydride reduction of nitrostyrenes by reverse addition: A simple and efficient method for the large-scale preparation of phenylnitroethanes. Synthesis 1985, 886-887.
13. Barash, M.; Osbond, J. M. Chemical constitution and amebicidal action, III: Synthesis of an analog of emetine and two stereoisomers of de-ethylemetine. J. Chem. Soc. 1959, 21572168.
14. Hartman, G. D.; Philips, B. T.; Halczenko, W. Iminium ion-mediated cyclizations of 4-aryl-1,4-dihydropyridines: Bridging with acetals, carbonyls, and thiocarbonyls. J. Org. Chem. 1985, 50, 2423-2427.
15. Mndzhoyan, A. L.; Aroyan, A. A.; Ovsepyan, T. R. Amines and derivatives, XI: The preparation of some chloroacetamides and urethans. Khim. Nauki 1961, 14, 157-163.
16. Kubo, A.; Saito, N.; Kawakami, N.; Matsuyama, Y.; Miwa, T. A facile synthesis of 1,2,3,4-tetrahydroisoquinolines through cyclization of O, N-acetals. Synthesis 1987, 824-827.
17. Nordlander, J. E.; Payne, M. J.; Njoroge, F. G.; Balk, M. A.; Laikos, G. D.; Vishwanath, V. M. Friedel-Crafts acylation with N -(trifluoroacetyl)- α-amino acid chlorides: Application to the preparation of β-arylalkylamines and 3-substituted 1,2,3,4-tetrahydroisoquinolines. J. Org. Chem. 1984, 49, 4107-4111.
18. Mori, M.; Chiba, K.; Ban, Y. Reactions and syntheses with organometallic compounds, 7: Synthesis of benzolactams by palladium-catalyzed amidation. J. Org. Chem. 1978, 43, 1684-1687.
19. (a) Kaim, L. E.; Grimaud, L.; Lee, A.; Perroux, Y.; Tirla, C. First carbamates conversion to amides by simple alkyl group transfer from trialkylalanes. Org. Lett. 2004, 6, 381-383;(b) Ito, Y.; Ushitora, H. Trapping of carbamic acid species with (trimethylsilyl)diazomethane. Tetrahedron 2006, 62, 226-235.
20. Toste, F. D.; Still, I. W. J. A new route to the synthesis of the naturally occurring benzopentathiepin varacin. J. Am. Chem. Soc. 1995, 117, 7261-7262.
21. Lu, S. T.; Wu, Y. C. Studies on the alkaloids of Formosan lauraceous plants, XXIX: Transformation from aporphine N-oxides to 1-(N-methyl- N-hydroxylaminoethyl)phenanthrene derivatives. Heterocycles 1985, 23, 3085-3094.
22. Solladie, G.; Pasturel-Jacopé, Y.; Maignan, J. A re-investigation of resveratrol synthesis by the Perkins reaction: Application to the synthesis of aryl cinnamic acids. Tetrahedron 2003, 59, 3315-3321.

[^0]: Received August 25, 2009.
 Address correspondence to Yean-Jang Lee, Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan. E-mail: leeyj@cc.ncue.edu.tw

