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Abstract: Coordination polymers (CPs) with infinite metal–S bond 
networks have unique electrical conductivities and optical properties, 
thus drawing attention. However, the development of new (−M−S−)n-
structured CPs is hindered by their crystallization difficulty. Herein, 
we use machine learning to optimize the synthesis of trithiocyanuric 
acid (H3ttc)-based semiconductive CPs with infinite Ag–S bond 
networks, report three CP crystal structures, and reveal that isomer 
selectivity is mainly determined by proton concentration in the 
reaction medium. One of the CPs, [Ag2Httc]n, features a 3D 
extended infinite Ag–S bond network with 1D columns of stacked 
triazine rings, which, according to first-principle calculations, provide 
separate paths for holes and electrons. Time-resolved microwave 
conductivity experiments show that [Ag2Httc]n is highly 
photoconductive (φΣμmax = 1.6 × 10−4 cm2 V−1 s−1). Thus, our method 
promotes the discovery of novel CPs difficult to crystallize with 
selective topologies. 

Introduction 

Coordination polymers (CPs) and metal–organic frameworks 
(MOFs) exhibit the features of both inorganic and organic 
compounds are therefore of particular interest.[1] Various CPs 
and MOFs with coordinated S have been recently reported,[2] 
including those featuring infinite metal–S (–M–S–)n bonds 
arranged in one-dimensional chains,[3] two-dimensional layers,[4] 
and three-dimensionally extended structures.[5] Such materials 
exhibit high electrical conductivities and structural stabilities, 
thus finding numerous applications in electronic devices.[6] 
However, CPs and MOFs with metal–thiolate bonds often exhibit 
poor crystallinities, mainly because of the strong M–S bonds and 
the rapid precipitation of low-crystalline solids, and are therefore 

difficult to obtain as single crystals.[2f] Furthermore, the large 
ionic radius of S allows this element to adopt different bridging 
(μ) modes, which results in the broad structural diversity of the 
corresponding CPs and MOFs.[7] Moreover, the flexibility of the S 
coordination geometry makes the control of the topological 
isomers of M–S CPs and MOFs important for their crystal 
structure design.[8] Therefore, facile and versatile methods for 
optimizing the syntheses of highly crystalline CPs and MOFs 
with metal–thiolate bonds are highly sought after.[2f] 
Recently, machine learning applications have rapidly expanded 
in the area of materials science[9] and have been used to 
optimize syntheses.[10] However, reports on the application of 
machine learning to the preparation of novel CPs and MOFs are 
few because of the complicated compositions of the solids 
obtained in failure experiments. The products obtained during 
such optimization procedures are often complex mixtures, and a 
facile approach for the assessment of such crude products is yet 
to be established. 
We have recently reported a method allowing one to explore the 
synthetic conditions of novel MOFs based on two machine 
learning techniques, namely (i) the cluster analysis of powder X-
ray diffraction (PXRD) patterns and (ii) random forest and 
decision tree analysis.[11] Cluster analysis is an unsupervised 
learning technique automatically grouping the PXRD patterns of 
crystals obtained under various synthetic conditions based on 
the degree of similarity (correlation) between these patterns. 
Random forest and decision tree analysis are supervised 
learning techniques that create a prediction model using the 
experimental conditions as explanatory variables and the PXRD 
patterns classified by clustering analysis as objective variables. 
The above approach allowed us to extract chemical insights 
from failure experiments and optimize the conditions for the 
synthesis of novel MOFs. Herein, this method is applied to the 
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syntheses of novel Ag–S CPs (Figure 1), which have attracted 
much attention because of their unique optical properties and 
semiconducting nature.[4b, 12] Specifically, we describe the 
syntheses and crystal structures of three novel topological 
isomers of CPs comprising Ag+ and trithiocyanuric acid (H3ttc). 
The dominant reaction parameters for selective isomer 
syntheses are determined through the machine-learning-based 
analysis of failure experiments, and the optimal isomer is shown 
to exhibit favorable photoconductivity. 
 

 

Figure 1. Schematic application of machine learning to the selective 
syntheses of novel Ag–S coordination polymers. 

Results and Discussion 

First exploratory synthesis and machine-learning-based 
analysis for 114 synthetic conditions 
Initially, we searched for conditions under which Ag+ and H3ttc 
form crystalline CPs. Specifically, the CPs were synthesized 
using different temperatures (45–130 °C), solvents (acetone, 
water, dimethylformamide, dimethyl sulfoxide, acetonitrile, and 
their mixtures), metal ion/ligand ratios (0.25–4 mol/mol), reaction 
times (48–108 h), metal ion and ligand concentrations (1.6–300 
mM), and reaction containers (screw cap glass tube or Teflon 
autoclave). Overall, 114 conditions were tested. Although we 
intended to fabricate single crystals, only powdered crystals 
unsuitable for single-crystal structural analysis were obtained. 
Therefore, we attempted to extract chemical insights from failure 
experiments. As precipitates were obtained under all conditions, 
they were collected by centrifugation and analyzed by PXRD, 
which revealed the presence of single-phase Ag2S, a low-
crystalline phase, an unknown phase, or complicated mixtures. 
To analyze the experimental data using supervised machine 
learning, one must define what phases correspond to successful 
results. However, arbitrariness was inevitable when the PXRD 
patterns of these mixtures were assessed by humans to 
determine reaction success/failure, and thus, an objective 
approach was necessary. Therefore, we performed cluster 
analysis to automatically classify the PXRD patterns into several 
categories based on similarities (Figure S1, Supporting 
Information) and further verified placement accuracy on a point-
by-point basis. The patterns were classified into five categories, 
namely two unknown phases [unknown phase 1 (23 cases) 
and unknown phase 2 (7 cases)], a low-crystalline phase (56 

cases), Ag2S (27 cases), and a minor uncertain impurity phase 
(1 case) (Figures 2(a) and S1). At this point, we want to re-state 
that the grouping of PXRD patterns into one of the five 
categories by humans is inevitably arbitrary, whereas clustering 
analysis forces each pattern into one of the categories using 
quantitative indicators, which is one of the advantages of this 
analysis. As the following supervised learning handles data 
statistically, one can expect blurring in the boundary region not 
to be a fatal problem.  
Random forest analysis was subsequently performed to 
evaluate the main reaction parameters affecting product 
selectivity (Section S4). The 10 synthetic parameters, namely 
reaction temperature, solvent type, reaction container type, 
ligand concentration, metal/ligand ratio, metal ion concentration, 
isothermal reaction time (h), modulator type, modulator amount 
(mol), and modulator concentration (mM), were used as 
explanatory variables. Temperature, concentration, reaction time, 
and mixing ratio were expressed as numerical data, whereas 
solvent type, modulator type, and reaction container type, which 
are difficult to handle as numerical data, were expressed as 
categorical data. The main phase determined by cluster analysis 
of PXRD patterns for different conditions was analyzed as an 
objective variable. The results of random forest analysis allowed 
the number of explanatory variables with large contributions to 
be decreased to eight, namely reaction temperature 
(contribution = 30.3%), solvent type (28.6%), reaction container 
type (11.7%), ligand concentration (11.0%), metal/ligand ratio 
(9.5%), metal ion concentration (7.3%), isothermal reaction time 
(0.9%), and modulator amount (0.4%) (Figure S4). For 
visualization, decision tree analysis was performed using the 
screened explanatory variables. Figure 2(b) shows the decision 
tree based on the dataset containing 114 synthetic conditions 
and the corresponding PXRD patterns, indicating that Ag2S 
mainly forms above 120 °C. This behavior strongly suggests that 
high temperatures induce the decomposition of H3ttc. In most 
cases, the addition of water as a solvent led to Ag2S formation, 
which suggests that H3ttc is hydrolyzed at high temperatures to 
produce H2S. Although we did not consider the possibility of this 
hydrolysis taking place prior to carrying out decision tree 
analysis, H3ttc has been reported to gradually produce H2S in 
water at high temperatures by aromatic nucleophilic 
substitution–based hydrolysis (Figure S8),[13] which can be 
enhanced by Ag+ coordination.[14a, 14b] Therefore, decision tree 
analysis indicated the importance of preventing hydrolysis and 
suggested that unknown phases 1 and 2 are more likely to 
form under the conditions in the lower right branch of the 
decision tree. In summary, we inferred that Ag2S is more likely to 
form at temperatures above 120 °C, while unknown phases tend 
to form in the presence of water or acetonitrile, and the low-
crystalline phase easily forms in the absence of water. On the 
other hand, the reaction container type did not appear on the 
decision tree node, although random forest analysis suggested 
that this parameter affected the reaction outcome (score = 
11.7%, see Figure S4). This discrepancy was explained as 
follows. All experiments using screw cap glasses were 
conducted at low temperatures (≤70 °C) in view of the low 
resistance of these glasses to pressure. The p-value of logistic 
regression with “temperature,” as the explanatory variable, and 
“reaction container type,” as the objective variable, was below 
0.0001, indicating a strong correlation between temperature and 
reaction container type. Therefore, it is most likely that the 
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container type and the experimental results were indeed 
associated but not causally related, i.e., their relationship was 
spurious. In this case, temperature would be the originally 
dominant factor. Indeed, random forest analysis showed that 
temperature had the highest contribution of 30.3% (Figure S4). 
 
Second exploratory synthesis and machine learning 
analysis for 326 synthetic conditions 
We performed 212 additional experiments to synthesize single 
crystals of unknown phases 1 and 2. Based on the results of 
decision tree analysis, the reaction temperature was set below 
100 °C to avoid ttc hydrolysis, and water- or acetonitrile-
containing solvents were used. As container type did not appear 
to be a dominant factor in the nodes of the decision tree in 
Figure 2(b), all additional experiments were conducted using 
Teflon containers. We also focused on certain parameters with 
low (according to random forest analysis) contributions. The low 
contribution of a given parameter not only suggests that it 
cannot influence the experimental results, but also implies that 
the range of the explored experimental conditions may have 
been too narrow to contribute. For this reason, parameters with 
contributions evaluated as low by random forest analysis should 
not be ignored but rather be expanded to the currently 
unexplored conditions. For example, in 114 experiments, we 
added a monodentate ligand (acetic acid) as a modulator to 
improve crystallinity.[15] The results of random forest analysis 
performed for the 114 conditions indicated that the contribution 
of the modulator was small. However, as the addition of acetic 
acid was only examined under four conditions, it was impossible 
to determine whether modulators actually play an important role 
in determining product selectivity. Therefore, we performed 
additional experiments using various modulator types [acetic 
acid (AcOH), benzoic acid (HBA), sodium N,N-
diethyldithiocarbamate (DDC), pyridine (Pyr), diethylamine 
(DEA), triethylamine (TEA), ethylenediamine (EDA)] and 

concentrations (Figure S9). While no single crystals of unknown 
phases were obtained, the 326 conditions were subjected to 
cluster analysis, random forest analysis, and decision tree 
analysis (Figures 2(c), S2, S5, and S7). The patterns were again 
classified into five categories, namely unknown phase 1 (63 
cases), unknown phase 2 (19 cases), a low-crystalline phase 
(175 cases), Ag2S (61 cases), and a minor uncertain impurity 
phase (8 cases) (Figure S2). According to cluster analysis, four 
patterns fell into a category different from that assigned by 
analysis of the 114 conditions. These four entries were PXRD 
patterns of mixtures of two or more phases (Figure S3). The 
number of cases where the classification differed from that 
observed for 114 conditions was relatively small, which 
demonstrated the good reproducibility of cluster analysis. 
The results of decision tree analysis (Figures 2(c) and S6) 
indicated that Ag2S formed in the presence of water above 90 °C. 
Below 90 °C, unknown phase 2 was obtained in the presence 
of AcOH and HBA as modulators. In contrast, the low-crystalline 
phase was mainly obtained in non-aqueous solvents or at high 
concentrations of Pyr, EDA, DEA, or TEA. Unknown phase 1 
was predominantly obtained when water was used as the 
solvent in the presence of a moderate modulator amount, which 
suggested that proton concentration had a significant effect on 
product selectivity. The information extracted from decision trees 
revealed the conditions most likely to yield each phase. 
Specifically, Ag2S formed in the presence of water at high 
temperature; unknown phase 1 formed in the presence of 
water under weakly basic to acidic conditions; unknown phase 
2 formed in the presence of water under acidic conditions; and 
the low-crystalline phase formed under basic conditions or in the 
absence of water. These results suggested that proton 
concentration is an important factor for the selective syntheses 
of the unknown phases. 
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Figure 2. (a) Representative powder X-ray diffraction patterns for various categories. Decision trees based on these patterns and (b) 114 or (c) 326 synthetic 
conditions. The entireties of the corresponding decision trees are shown in Figures S6 and S7, respectively. 

Preparation of single crystals and structural analysis 
According to the random forest analysis of 326 conditions, the 
contribution of metal ion type was small (2.0%, Figure S5), 
possibly because only two Ag+ sources were explored, i.e., the 
influence of the Ag+ source could not be sufficiently evaluated. 
Therefore, we used insoluble silver halides and successfully 
obtained single crystals of unknown phases mixed with the silver 
halide precursors. The formation of large single crystals was 
most likely due to the deceleration of Ag–S bond formation 
caused by the sustained release of Ag+ from the insoluble silver 
halides.[16] As machine learning analysis was not performed with 
crystal size as the objective variable, the formation of single 
crystals in the presence of silver halides was an accidental result. 
However, to get a result different from that of previous 
experiments, the guideline of exploring a wider range of 

parameters with small (according to random forest analysis) 
contributions proved to be useful. Although the products were 
obtained as mixtures with silver halides, their crystal structures 
could still be determined (Table 1), which allowed us to validate 
the results of decision tree analysis as follows.  
The composition of unknown phase 1 (KGF-6) was determined 
as [Ag2Httc]n, i.e., one proton was present per ttc unit, in line 
with the moderate proton concentration used for the synthesis of 
this phase, as suggested by decision tree analysis. The Ag 
atoms of KGF-6 were shown to feature an unusual five-fold 
coordination in a trigonal bipyramidal structure (the N atoms of 
the triazine ring were not coordinated), with the Ag ions 
disordered along the axial direction of this structure (Figures 3(a) 
and S10). The Ag–S bond lengths in the triplanar structure were 
obtained as 2.50–2.66 Å, and those between the Ag and axial S 
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atoms were determined as 2.77–3.35 Å (this Ag atom was 
disordered over three positions). In addition, the Httc ligand was 
revealed to have two crystallographically non-equivalent S 
atoms, S1 (μ2-S atom) and S2 (μ4-S atom), which could 
coordinate Ag ions to afford a AgS layer in the ac-plane (Figure 
3(b)). Furthermore, the layers were stacked with S atoms as 
shared vertices to form a three-dimensional Ag–S network 
(Figure 3(d)). Moreover, one-dimensional channels were present 
between the AgS layers, where the Httc triazine rings aligned 
perpendicularly to the channel direction to form a one-
dimensional columnar structure (Figure 3(c)). The distance 
between the neighboring C and N atoms in the triazine rings was 
determined as ~3.09 Å, indicating strong aromatic interactions. 
Such a columnar structure is also expected to act as an electron 
carrier path.[17]  
 
Table 1. Crystallographic data for KGF-6, -7, and -8. 

Compound KGF-6 KGF-7 KGF-8 

CCDC number 2052285 2052284 2071617 

Formula C3HAg2N3S3 C3H2AgN3S3 C3Ag3N3S3 

Formula weight/Da 390.99 284.13 497.85 

Temperature/K 150 150 150 

Crystal system orthorhombic monoclinic orthorhombic 

Space group Pnma C2/m Pna21 

a/Å 6.9154(2) 7.080(4) 7.5715(10) 

b/Å 13.0731(4) 12.924(7) 7.9093(7) 

c/Å 7.4840(2) 7.431(4) 12.5668(13) 

α/o 90 90 90 

β/o 90 103.196(6) 90 

γ/o 90 90 90 

Volume/Å3 676.60(3) 661.9(7) 752.57(14) 

Z 4 4 4 

ρcalc/g cm−3 3.838 2.851 4.394 

μ/mm−1 6.627 3.898 8.488 

F(000) 728.0 544.0 912.0 

Reflections collected 21245 3541 6764 

Unique reflections 807 732 2158 

Goodness-of-Fit on F2 1.253 0.994 1.008 

Final R1 index 
[I ≥ 2σ (I)] 0.0263 0.0246 0.0710 

Final R1 index [all data] 0.0276 0.0255 0.1179 

Final wR2 index 
[I ≥ 2σ (I)] 0.0815 0.0637 0.1916 

Final wR2 index 
[all data] 0.0807 0.0629 0.1625 

 

The composition of unknown phase 2 (KGF-7) was determined 
as [AgH2ttc]n, i.e., two protons were present per ttc unit (Figures 
3(e) and S11). The two Ag atoms formed Ag–S bonds (2.52–
2.88 Å) with the four H2ttc S atoms to afford a dinuclear complex 
connected by H2ttc units, i.e., a one-dimensional CP. The 
presence of one proton in KGF-6 and two protons in KGF-7 
agreed with the tendency of KGF-6 to form under near-neutral 
conditions and that of KGF-7 to form under acidic conditions, as 
suggested by the decision trees. Furthermore, a single crystal of 
proton-free [Ag3ttc]n (KGF-8) was accidentally prepared in the 
presence of 4,4’-bipyridine (bpy). Although the temperature 
factor could not be optimized, and the electron density around 
the Ag atoms was high because of the poor quality of the KGF-8 
single crystal, the simulated PXRD pattern of this CP agreed 
well with the broad PXRD patterns of some samples classified 
as the low-crystalline phase (Figure S13). The formation of 
proton-free single-crystalline KGF-8 was ascribed to the action 
of bpy as a good proton acceptor. The fully deprotonated 
structure of ttc in KGF-8 well agreed with the decision tree 
results, showing that the low-crystalline phase was more likely to 
form under basic or water-free conditions, i.e., at low proton 
concentrations. KGF-8 also featured Ag–Ag and Ag–N bonds, 
unlike KGF-6 and -7 (Figures 3(f) and S12). KGF-6 and -7 were 
stable in water and 0.1 M HCl for 24 h, but were deprotonated to 
afford KGF-8 when immersed into 0.1 M NaOH (Figure S14). 
Thermogravimetric analysis revealed that KGF-6, -7, and -8 are 
stable up to 300 °C (Figure S15), confirming the thermal and 
chemical stabilities of these thiolate-coordination-based CPs.  

 

Figure 3. (a) Ligand coordination environment of [Ag2Httc]n (KGF-6). (b) 
Portion of KGF-6 structure along the b-axis. (c) One-dimensional column of 
Httc molecules in KGF-6. (d) Perspective view of the KGF-6 crystal structure 
along the a-axis. (e) Perspective view of the [AgH2ttc]n (KGF-7) crystal 
structure along the a-axis. (f) Perspective view of the [Ag3ttc]n (KGF-8) crystal 
structure along the a-axis. Ag: green, S: yellow, N: blue, C: gray, H: pink. The 
displayed Ag atoms represent the major occupancy. 
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Evaluation of electronic properties 
Based on the diffuse reflectance ultraviolet-visible-near-infrared 
spectra of KGF-6, -7, and -8, their optical bandgaps were 
determined as 2.76, 2.79, and 2.95 eV, respectively (Figure 
S19). Photoelectron yield spectra revealed that the valence 
band maximum (VBM) levels of all three isomers were nearly 
identical, equaling −5.92, −5.98, and −5.93 for KGF-6, -7, and -8, 
respectively (Figures S20 and S21). The band structures and 
densities of states of each isomer were evaluated using 
CASTEP first-principle calculations,[18] and the VBM and 
conduction band minimum (CBM) of KGF-7 and -8 were found to 
be relatively flat. Contrastingly, KGF-6 exhibited a steeply 
dispersed band structure with VBM and CBM levels of ~0.4 eV 
(Figures 4(a), (c), and (e)), which indicated semiconductor-like 
behavior. The effective masses of holes and electrons were 
obtained by density functional theory calculations as mh* = 
0.96m0 and me* = 0.81m0 (m0 = electron rest mass), respectively, 
and were therefore comparable to those of a previously reported 
highly-conductive MOF, Fe3(THT)2(NH4)3 (THT = 2,3,6,7,10,11-
triphenylenehexathiol), which was claimed to have a mobility as 
high as ~220 cm2 V−1 s−1.[19] Notably, the VBM and CBM of KGF-
6 mainly originated from the Ag and S atoms and the C and N 
atoms, respectively (Figure 4(b)). Furthermore, the highest 
occupied molecular orbital and lowest unoccupied molecular 
orbital distributions indicated that these orbitals are distributed 
across the AgS network and the triazine ring, respectively 
(Figure S22), to form an alternating p–n heterostructure at the 
molecular level for charge separation. The segregated structure 
and the relatively low effective masses of holes and electrons 
could provide ambipolar pathways, which may be a useful 
attribute in the context of photocatalysis and solar cells. 
Moreover, time-resolved microwave conductivity (TRMC) 
measurements were performed to evaluate the CP 
photoconductivities. The maximum values of φΣμmax (φ = charge 
carrier generation yield, Σμ = sum of hole and electron 
mobilities) equaled 1.6 × 10−4, 2.7 × 10−5, and 2.8 × 10−5 cm2 V−1 
s−1 for KGF-6, -7, and -8, respectively (Figure 5). The value 
obtained for KGF-6 is one order of magnitude higher than those 
of KGF-7 and -8 and is comparable to those of previously 
reported conductive CPs, MOFs, and covalent organic 
frameworks.[20] The TRMC results were consistent with the band 
dispersions (flat for KGF-7 and -8; steeper for KGF-6) obtained 
by first-principle calculations. The effective lifetime (i.e., the 
weight-averaged lifetimes of double-exponential fits) of KGF-6 
was determined as 10.2 μs; thus, this compound exhibited both 
a long-lived charge separation state and high mobility. This 
finding was consistent with the crystal structure having 
segregated paths for hole and electron transport.[21] With 
decreasing excitation intensity (~1016–1014 photon cm−2 pulse−1), 
φΣμmax slightly increased, but the half-life times decreased, 
which suggests that charge carrier decay was mainly due to 
charge trapping (Figure S26). 

 

Figure 4. (a, c, e) Band structures and (b, d, f) density of states of (a, b) KGF-
6, (c, d) KGF-7, and (e, f) KGF-8. In the band structures, the energy level of 
the valence band maximum is represented as zero. 

 

Figure 5. Results of time-resolved microwave conductivity measurements (λex 
= 355 nm) for KGF-6 (red), KGF-7 (orange), and KGF-8 (blue). 

Conclusion 

Semiconductive CPs containing Ag–S bonds were synthesized 
using machine learning to extract chemical insights from failure 
experiments. Single-crystal structure analysis demonstrated that 
the number of protons in the isomer crystal structures was 
consistent with the proton concentration dependency in the 
synthetic conditions suggested by decision tree analysis. One 
topological isomer, KGF-6, possessed an infinite three-
dimensional Ag–S network and a one-dimensional columnar 
triazine ring structure, therefore exhibiting high photoconductivity, 
as evidenced by first-principle calculations and TRMC 
measurements. The proposed machine-learning-assisted 
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method is expected to promote the discovery of novel CPs that 
are difficult to crystallize with selective topologies. 
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Semiconductive trithiocyanuric acid (H3ttc)-based coordination polymers (CPs) featuring Ag–S bonds are synthesized using machine-
learning-assisted techniques. One of the obtained CPs, [Ag2Httc]n (KGF-6), contains a three-dimensionally extended infinite Ag–S 
bond network with one-dimensional column structures of stacked triazine rings, which provides segregated paths for holes and 
electrons. 
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