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Abstract A novel multifunctional carbazole–aminoquinoline
dimer PZ001 was designed, synthesized, and evaluated.
The results indicated that PZ001 possessed selective copper
chelation, and inhibited copper-induced Aβ1–42 aggregation.
Furthermore, PZ001 exerted powerful neuroprotection
against glutamate-induced HT22 cell death. These results

suggest that PZ001 may be a promising multifunctional
anti-AD compound.
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Alzheimer's disease

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder that causes problems with memory, thinking,
and behavior, and seriously leads to death. The World
Alzheimer Report 2016 shows that there are about 47 mil-
lion people worldwide that are living with AD in 2016. The
number is predicted to increase to more than 131 million by
2050, as the aging of population (Alzheimer’s disease
international 2016). Research found that the pathogenesis of
AD is associated with many pathways including the defi-
ciency of cholinergic neurotransmitters, the formation of
neurotoxic beta-amyloid (Aβ) peptide, tau protein hyper-
phosphorylation, metal ion disturbance, oxidative stress,
and so on (Fang et al. 2013; Sreenivasachary et al. 2017;
Huang and Mucke 2012; Horton et al. 2017; Villarroya
et al. 2007). AD has been discovered more than 100 years
ago, but only five drugs have been clinically used to treat
AD (Rampa et al. 2012; Schneider et al. 2014). However,
these drugs, acting on a single target, could only attenuate
the symptom of AD instead of curing the disease.

Facing the multiple pathogenesis of AD, the classical
therapeutic method aiming at one target may be inadaptable
to this complex disease. Therefore, developing multi-
functional molecules as multi-target direct ligands (MTDLs)
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has become a promising strategy for designing new anti-AD
agents (Leon et al. 2013; Lu et al. 2012; Rosini 2014).

Senile plaques is one of the main pathological char-
acteristics of AD. The amyloid proteins (Aβ) is the main
component of senile plaques (Hardy and Selkoe 2002;
Salahuddin et al. 2016). The post-mortem analysis of
amyloid plaques indicate the levels of copper, iron, and zinc
are about 5.7, 2.9, and 2.8 times than the levels in normal
brains, respectively (Dong et al. 2003). Cu–amyloids induce
oxidative damage, and then produce reactive oxygen spe-
cies (ROS) resulting in neuron death (Robert et al. 2015).
The mitochondrial dysfunction is also associated with
Aβ–Cu(II) (Jiang et al. 2007). NMDA receptor activation,
APP processing, and tau phosphorylation are also affected
by the abnormal metal ions in AD patients (Ayton et al.
2013). Bis(8-aminoquinolines) ligan ds (Fig. 1), tetradentate
copper chelators, generate the Cu(II)−bis(8-aminoquino-
line) complex by competing with Cu–Aβ for Cu (Nguyen
et al. 2015). They can also decrease oxidative damage
induced by Cu–Aβ (Nguyen et al. 2014). PA1637 (Fig. 1)
has high selectivity for Cu2+ chelation and incapacity to
complex zinc ions. It could fully reverse the memory deficit
in Aβ1–42 injected mice (Ceccom et al. 2012). In con-
sideration of the high activities of Bis(8-aminoquinolines)
ligands, we took 8-aminoquinoline as one moiety for
development of multifunctional anti-AD agents.

Oxidative stress is one of the most important nosogenetic
factors in AD, and closely associated with other hypotheses
(Bonda et al. 2010). ROS, the production of oxidative stress,
causes oxidative damage leading to neuron damage and
death. Oxidative damage plays an important part in the
decrease of neurons. Therefore, the antioxidant could be a
potential strategy to prevent and treat AD (Nunomura et al.
2006; Rosini et al. 2014). Carbazole, an important nitrogen
aromatic heterocyclic compound, possesses a lot of biological
activities associated with AD (Tang and Liu 2007). It has
been reported that carbazole derivatives could scavenge ROS,
protect neurons against oxidative damage (De Jesus-Cortes

et al. 2012; Fang et al. 2016; MacMillan et al. 2011; Naidoo
et al. 2014; Pieper et al. 2014, 2010; Tesla et al. 2012;
Wang et al. 2014a, 2014b), inhibit the aggregation of Aβ
(Zall et al. 2011; Saturnino et al. 2014), and inhibit choli-
nesterase (Thiratmatrakul et al. 2014; Tsutsumi et al. 2016).
In our previous research, carbazole derivatives showed
potent neuroprotective effects (Zhu et al. 2013). These
specific functions of carbazole derivatives make them to
become ideal anti-AD lead structures.

Herein, we combined 8-aminoquinoline as a
copper selective chelate moiety, and 4-hydroxycarbazole as
a neuroprotective moiety to develop potential multi-
functional anti-AD agents. The compound (PZ001) was
synthesized by connecting 8-aminoquinoline to 4-
hydroxycarbazole via the 2-hydroxypropil chain (Fig. 2).
Biological evaluation demonstrated that PZ001 was a
multifunctional anti-AD agent with selective copper chela-
tion, Aβ aggregation inhibition, and also neuroprotection.

Material and methods

Chemistry

Reagents and solvents were purchased from commercial
sources and were used without further purification unless
stated. The progress of the reactions was monitored by thin-
layer chromatography on a glass plate coated with silica gel
with fluorescent indicator (GF254) and visualized with UV
light. The 1H and 13C nuclear magnetic resonance (NMR)
spectra were recorded on a Bruker Avance spectrometer 400
at 400 and 100MHz, respectively. Chemical shifts are given
in ppm (δ) referenced to CDCl3 with 7.26 for 1H and 77.10
for 13C, and to d6-DMSO with 2.50 for 1H and 4.90 for 13C.
In the case of multiplet, the signals are reported as intervals.
Signals are abbreviated as follows: s, singlet; d, doublet; t,
triplet; q, quartet; m, multiplet. Coupling constants are
expressed in hertz. High-resolution mass spectrometric data
(HRMS) were collected on a Shimadzu LCMS–IT–TOF
mass spectrometer. The purity of all final compounds was

Fig. 1 General structure of bis(8-aminoquinoline) ligands a and
PA1637, and their copper(II) complexes [CuII-a] and [CuII-PA1637],
respectively

Fig. 2 Design of PZ001
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determined by Agilent 1260 high performance liquid
chromatography (HPLC) system using an Eclipse XDB-C18

column. In HPLC conditions, flow rate was set at 1 mL/min,
and gradient elution was used 70% MeOH/H2O with 0.1%
TFA for 15 min.

Synthesis of 4-(oxiran-2-ylmethoxy)-9H-carbazole (1)

To a suspension of 4-hydroxy carbazole (1 g, 5.5 mmol) and
K2CO3 (1.52 g, 11 mmol) in acetonitrile (20 mL), epi-
chlorohydrin (5.0 mL, 6.4 mmol) was added. The reaction
mixture was refluxed for 24 h. After completion of the
reaction, as indicated by TLC, the acetonitrile in the reac-
tion mixture was removed under reduced pressure. The
obtained residue was dissolved in ethyl acetate (50 mL),
organic phase was washed with water (3× 20 mL), sepa-
rated, dried with anhydrous Na2SO4, evaporated under
reduced pressure, and purified by column chromatography
over silica gel (1:1, dichloromethane/petroleum ether) to
give 1 as a white solid (0.86 g, 65%). 1H NMR (400MHz,
CDCl3) δ 8.36 (d, J= 7.9, 0.9 Hz, 1H), 8.10 (s, 1H),
7.46–7.39 (m, 2H), 7.35 (t, J= 8.0 Hz, 1H), 7.27 (dd, J=
5.8, 2.2 Hz, 1H), 4.49 (dd, J= 11.0, 3.3 Hz, 1H), 4.30 (dd,
J= 11.0, 5.4 Hz, 1H), 3.59 (dddd, J= 5.6, 4.1, 3.4, 2.6 Hz,
1H), 3.03 (dd, J= 5.0, 4.1 Hz, 1H), 2.92 (dd, J= 5.0, 2.6
Hz, 1H). 13C NMR (100MHz, CDCl3) δ 155.02, 141.01,
138.76, 126.62, 125.14, 123.24, 122.55, 119.78, 112.92,
110.00, 104.09, 101.39, 68.84, 50.40, 44.92. MS ESI:
239.1.

Synthesis of 1-((9H-carbazol-4-yl)oxy)-3-(quinolin-8-
ylamino)propan-2-ol (PZ001)

A solution of 4-(oxiran-2-ylmethoxy)-9H-carbazole (300
mg, 1.26 mmol) in 15 mL of MeOH was added to the 8-
aminoquinoline (222 mg, 1.5 mmol). The mixture was
heated at 50 °C for 16 h. The solution was evaporated in
vacuo. The crude products was purified by column chro-
matography over silica gel (10:3, petroleum ether/ethyl
acetate) to afford PZ001 as a faint yellow solid (298 mg,
62%). 1H NMR (400MHz, DMSO) δ11.26 (s, 1H), 8.73 (d,
J= 3.7 Hz, 1H), 8.28 (d, J= 7.8 Hz, 1H), 8.20 (d, J= 8.1
Hz, 1H), 7.49 (dd, J= 8.2, 4.2 Hz, 1H), 7.44 (d, J= 8.1 Hz,
1H), 7.30 (dq, J= 16.0, 8.0, 7.5 Hz, 3H), 7.12 (t, J= 7.4
Hz, 1H), 7.06 (dd, J= 8.0, 4.0 Hz, 2H), 6.76 (d, J= 7.7 Hz,
1H), 6.70 (d, J= 7.9 Hz, 1H), 5.56 (s, 1H), 4.43–4.34 (m,
1H), 4.26 (d, J= 5.1 Hz, 2H), 3.68 (d, J= 10.2 Hz, 1H),
3.48 (dd, J= 12.8, 7.0 Hz, 1H).13C NMR (100MHz,
DMSO) δ155.31, 147.42, 145.11, 141.60, 139.40, 138.03,
136.45, 128.78, 128.22, 126.95, 125.03, 122.99, 122.20,
122.17, 119.06, 113.85, 112.05, 110.84, 104.90, 104.45,
100.95, 70.79, 68.05, 55.38, 46.57.HRMS calcd. for

C24H21N3O2 [M+H]+: 384.1713. Found: 384.1707. HPLC
purity: 98.4%.

Biological assay

Metal-chelating ability assay

The metal chelation was monitored using a UV–vis spec-
trophotometer in anhydrous ethanol buffer by screening the
absorption spectra ranging from 200 to 600 nm. To examine
the metal selectivity of PZ001 for Cu(II), PZ001 (2 μL, 10
mM, stock solution) and CuCl2 (2 or 4 μL, 10 mM, stock
solution), FeCl3, ZnCl2 or FeCl3 (2 μL, 10 mM, stock
solution) were added to 1 mL anhydrous ethanol. Then, the
mixture was allowed to stand at room temperature for 30
min. The absorption spectra of PZ001 (20 μM, final con-
centration) alone or in the presence of CuCl2 (20 or 40 μM,
final concentration), FeCl3, ZnCl2, and FeCl3 (20 μM, final
concentration) in ethanol were recorded at room
temperature.

Thioflavin T (ThT) fluorescence assay

The inhibition of self-mediated and copper-mediated Aβ1−42

aggregation was determined by ThT fluorescence assay as
previously described (Lu et al. 2013). Aβ1−42 (Millipore;
counterion, NaOH) was dissolved in ammonium hydroxide
(1% v/v) to give a stock solution (2000 μM), which was
aliquoted into small samples and stored at −80 °C.

For the inhibition of self-mediated Aβ1−42 aggregation
experiment, the Aβ stock solution was diluted with 50 mM
phosphate buffer (pH 7.4) to 50 μM before use. A mixture
of the peptide (10 μL, 25 μM, final concentration) with or
without the tested compound (PZ001,10 μL, 20 μM, final
concentration) was incubated at 37 °C for 48 h. Blanks
using 50 mM phosphate buffer (pH 7.4) instead of Aβ was
also carried out. The sample was diluted to a final volume of
200 μL with 50 mM glycine–NaOH buffer (pH 8.0) con-
taining ThT (5 μM). Then the fluorescence intensities were
recorded 5 min later (excitation, 450 nm; emission, 485
nm). The percent inhibition of aggregation was calculated
by the expression (1−IFi/IFc)× 100, in which IFi and IFc
are the fluorescence intensities obtained for Aβ in the pre-
sence and absence of inhibitors after subtracting the back-
ground, respectively.

For the inhibition of copper-mediated Aβ1−42 aggrega-
tion experiment, the Aβ stock solution was diluted in 20 μM
HEPES (pH 6.6) with 150 μM NaCl. The mixture of the
peptide (10 μL, 25 μM, final concentration) with or without
copper (10 μL, 25 μM, final concentration), and the tested
compound (PZ001, 10 μL, 50 μM, final concentration) was
incubated at 37 °C for 24 h. Then 20 μL of the sample was
diluted to a final volume of 200 μL with 50 mM
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glycine–NaOH buffer (pH 8.0) containing ThT (5 μM). The
detection method was the same as that of self-mediated
Aβ1−42 aggregation experiment.

Cell culture

HT22 cells were maintained in Dulbecco's modified Eagle
media (DMEM) supplemented with 10% (v/v) fetal bovine
serum (FBS) and incubated at 37 °C under 5% CO2. Test
compounds were dissolved in DMSO and diluted in DMEM
supplemented with 10% (v/v) FBS. The final concentration
of DMSO in the medium was less than 0.01% (v/v), which
showed no influence on cell growth.

Assessment of cell viability by MTT assay

The cell viability was determined by MTT assay as pre-
viously described (Wang et al. 2016). To study the cyto-
toxicity and the neuroprotective effects of PZ001, HT22
cells were cultured in 96-well plates and incubated over-
night. Cells were pretreated with tested compounds or the
vehicle DMSO for 30 min followed with/without 2 mM
glutamate (Glu) for 24 h. Ten microliters of 5 mg/mL MTT
was added to each well and cells were incubated for 2 h at
37 °C. To dissolve purple formazan crystal, 100 μL DMSO
was carefully added to replace the medium. After vigor-
ously shaking for 15 min at 37 °C, the absorbance at 570 nm
was measured using a microculture plate reader.

Statistical analysis

All analyses were repeated at least in duplicate. Statistical
analyses among groups were tested by one-way analysis of
variance (ANOVA). Differences were considered statisti-
cally significant at P< 0.05.

Measurement of intracellular ROS

HT22 cells were grown in Corning 96-well plates at a cell
density of 4× 103 cells/well. After overnight attachment,
cells were pretreated with the test compounds or the vehicle
control DMSO for 30 min and then incubated with/without
4 mM Glu for 12 h. Cells were washed twice with
phosphate-buffered saline (PBS) and then incubated with
10 μM non-fluorescent dye DHE in serum-free medium for
30 min at 37 °C in the dark. Cells were subsequently

washed twice with PBS and photographed using a (200×)
fluorescence microscope.

PAMPA-BBB assay

Prediction of the brain penetration of compounds was
evaluated using a parallel artificial membrane permeation
assay (PAMPA) and porcine brain lipid (Avanti Polar
Lipids) in a similar manner as previously described (Chen
et al. 2014).

Results and discussion

Chemistry

The synthetic route for the novel compound PZ001 is
shown in Scheme 1. Commercially available 4-
hydroxycarbazole was reacted with epichlorohydrin in the
presence of K2CO3 to give 4-(oxiran-2-ylmethoxy)-9H-
carbazole (1). Compound 1 was then made to react with 8-
aminoquinoline at 50 °C to get the target compound PZ001.

Metal-chelating ability assay

In consideration of containing 8-aminoquinoline moiety, the
metal-chelating ability of PZ001 was investigated using
UV–vis spectrometry. The results in Fig. 3a show that
PZ001 had the maximum absorption peaks at 285, 320, and
335 nm, and a shoulder peak. When CuCl2 was added, the
maximum absorption wavelength of PZ001 shifted from
320 to 317 nm, and the shoulder peak disappeared. The
results demonstrate the formation of an PZ001–Cu(II)
complex. Interestingly, when FeCl2, FeCl3, or ZnCl2 was
mixed with PZ001, no changes in the maximum absorption
peak wavelengths were observed, which suggested that
PZ001 could selectively chelate Cu(II). 8-aminoquinoline, a
group of copper selective chelation, showed to selectively
chelate Cu(II) in Fig. 3b. Clioquinol (CQ) is a unselective
metal ion chelator. CQ could chelate all of the four metal
ions in Fig. 3c. 4-hydroxycarbazole showed no metal ion
chelation, which indicated copper selective chelation of
PZ001 comes from 8-aminoquinoline.

Scheme 1 Synthetic route of
PZ001. Reagents and
conditions: a epichlorohydrin,
K2CO3, acetonitrile, reflux, 24 h;
b 8-aminoquinoline, MeOH,
50 °C, 16 h

Med Chem Res



Aβ1–42 anti-aggregating activity

The inhibitory activity of PZ001 against self-mediated
Aβ1−42 aggregation was evaluated using a ThT fluorescence
assay. The result showed that PZ001 inhibited Aβ self-
aggregation (22.9%) (Table 1). Furthermore, given that
copper-mediated Aβ1−42 aggregation plays an important
role in AD pathogenesis and PZ001 could chelate Cu(II),
the ability of the inhibition of copper-mediated Aβ1−42

aggregation was studied. CQ was used as the positive
control compound. The fluorescence of Aβ treated with

Cu(II) and the tested compound decreased dramatically
(PZ001, 22.3% inhibition of copper-mediated Aβ1−42

aggregation; CQ, 12.3% inhibition). These results indicated
PZ001 inhibited copper-mediated Aβ1−42 aggregation.

Neuroprotection of PZ001 against oxidative stress

The neurotoxicity induced by Glu in HT22 cells, is con-
sidered to be an excellent model for studying the influence
of oxidative stress in neurons. Our results (Fig. 4) showed
that PZ001 possessed good neuroprotection in Glu-induced
cell death at 10 μM. 4-hydroxycarbazole also had significant
neuroprotection at 10 μM, which suggestted neuroprotec-
tion of PZ001 comes from 4-hydroxycarbazole.

Cell toxicity of PZ001

In order to evaluate the cytotoxicity, the HT22 cells was
exposed to PZ001 at 50–200 μM for 24 h and then MTT
assay was applied. Results (Fig. 5a) indicated that the OD
decreased significantly at 50 μM. The decrease of OD may
be related to cell death or the inhibition of cell proliferation
lead by PZ001. In order to search for the reason, we

Fig. 3 Metal ion chelating activity assay. UV–vis spectrum of PZ001, 8-aminoquinoline, CQ, or 4-hydroxycarbazole (20 μM) alone and in the
presence of CuCl2 (20 μM), FeCl2 (20 μM), FeCl3 (20 μM), or ZnCl2 (20 μM) in anhydrous ethanol buffer was measured at room temperature

Table 1 Inhibitory activities of PZ001 against Aβ1–42 self/copper-
induced aggregation

Compound Inhibition of self-
mediated Aβ1−42

aggregation

Inhibition of Cu-mediated
Aβ1−42 aggregation

PZ001a 22.9 22.3

Congo Redb 70.6 –

Clioquinolc – 12.3

a The final concentration of PZ001 was 20 μM
b The positive control was 5 μM congo red
c The positive control was 20 μM clioquinol
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observed cells through a photomicroscope. In Fig. 5b, no
cell death was found even under 50 μM of PZ001. Then the
lactate dehydrogenase (LDH) release was examined, the
results (Fig. 5c) showed the HT22 cells, treated with PZ001

at 20–100 μM, had no obvious effect on LDH release.
Therefore, PZ001 did not cause the cell death. The decrease
of OD may be connected with the inhibition of cell
proliferation.

ROS scavenging assay

Carbazole derivatives exhibit antioxidant activity by
directly scavenging ROS. Thus, we measured the free
radical scavenging ability of PZ001 by fluorescent probe
DHE assay. The results showed that all of PZ001, 4-HC,
and LA exhibited the ability of scavenging ROS at 10 μM
(Fig. 6).

Prediction of BBB permeability

The penetration of blood–brain barrier (BBB) is a crucial
detection index for central nervous system (CNS) drugs. To
investigate whether PZ001 could penetrate the BBB, we
used a PAMPA for the BBB (PAMPA-BBB) (Di et al.
2003). The results (Table 2, S1) showed that PZ001 was
CNS+, which indicated PZ001 could penetrate the BBB.

Fig. 5 Cell cytotoxicity of PZ001 in HT22 cells. a HT22 cells were
treated with PZ001 (50–200 μM) for 24 h. OD was tested by MTT
assay. b Cells were photographed using a photomicroscope (×200).
(a) CT; (b) PZ001 (50 μM); scale bar, 50 μm. c Cells were treated with

PZ001 (20–100 μM) for 24 h. LDH release was tested by LDH cyto-
toxicity assay kit. Data are presented as means± S.D. One-way
ANOVA followed by Tukey’s test. ***P < 0.001 vs. control group

Fig. 4 The neuroprotective effects of PZ001, 4-hydroxycarbazole(4-
HC), alpha lipoic acid (LA) on glutamate-induced cytotoxicity in
HT22 cells. HT22 cells were pretreated with different compounds (3,
10 μM) for 0.5 h, followed by stimulation with glutamate (5 mM) for
24 h. Cell viability was determined by the MTT assay. Data are pre-
sented as means± S.D. One-way ANOVA followed by Tukey’s test.
###P < 0.001 vs. control group; ***P< 0.001 vs. glutamate-treated
group

Med Chem Res



Conclusion

In conclusion, basing on the copper selective chelation of 8-
aminoquinoline and the neuroprotective effect of 4-hydro-
xycarbazole, we designed and synthesized a novel multi-
functional compound PZ001, which contains two
pharmacophores. PZ001 exhibited good copper selective
chelation and inhibition of copper-mediated Aβ1−42 aggre-
gation, also slight inhibition of self-mediated Aβ1−42

aggregation. In addition, due to the effect of 4-hydro-
xycarbazole, PZ001 showed significant neuroprotective
effect against Glu-induced cell death in HT22 cells at 10
μM and low toxicity. In summary, these results suggest that
compound PZ001 will be a novel promising multifunctional
anti-AD hit compound.
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