The Wender Cedrene Synthesis Revisited: A Catalytic Enantioselective Entry to the Chiral Key Intermediate

Julia Westphal
Christian Eric Schumacher
Hans-Günther Schmalz*
Department für Chemie, Universität zu Köln,
Greinstrasse 4, 50939 Köln, Germany
schmalz@uni-koeln.de
Dedicated to Prof. Dr. Dieter Enders

Abstract

Received: 29.08.2016 Accepted: 01.09.2016 Published online: 26.09.2016 DOI: $10.1055 / \mathrm{s}-0036-1588602$; Art ID: ss-2016-z0595-op Abstract The seminal synthesis of the sesquiterpene (\pm)- α-cedrene reported by Wender in 1981 offers a uniquely short and elegant access to the bridged-tricyclic target compound by exploiting an intramolecular arene-olefin photocycloaddition. However, the synthesis was performed only in the racemic series so far. This synthesis was now re-investigated and the catalytic methods for the enantioselective preparation of the chiral key intermediate were evaluated. It was found that Cucatalyzed allylic substitution of a cinnamyl chloride with MeMgBr in the presence of a Taddol-derived chiral phosphine-phosphite ligand affords the corresponding (1-methylallyl)arene with high enantioselectivity (94% ee). Hydroboration and subsequent Suzuki coupling gave (R)-curcuphenol methyl ether from which (-)- α-cedrene was prepared along the route paved by Wender.

Key words terpenoids, total synthesis, enantioselectivity, asymmetric catalysis, allylation, photochemistry, copper, chiral P,P-ligands

The sesquiterpene α-cedrene ($\mathbf{1}$) is a natural product occurring in cedarwood oil together with its structural congeners β-cedrene (2), cedrol (3), and cedrenol (4) (Figure 1). ${ }^{1}$ Besides their established uses in perfumery ${ }^{2}$ and folk medicine ${ }^{3}$ these natural products have recently also received attention as specific bioactive agents, for instance, as antimicrobial compounds, ${ }^{4}$ or as selective inhibitors of certain cytochrome P450 enzymes. ${ }^{5}$
α-Cedrene (1) and its congeners all display the characteristic tricyclo[5.3.1.0 ${ }^{1,5}$]undecane skeleton with two quaternary carbon atoms and four chirality centers and have challenged organic chemists for more than six decades. Since the pioneering work of Stork, ${ }^{6}$ several total syntheses of these molecules have been developed utilizing different cyclization or cycloaddition strategies to build up the tricyclic ring system with the correct relative configuration of

1

3

4

Figure 1 The sesquiterpenes α-cedrene (1), β-cedrene (2), cedrol (3), and cedrenol (4)
the bridgehead stereocenters. ${ }^{7,8}$ Not surprisingly, stereocontrol at C2 proved to be a non-trivial task, ${ }^{9}$ and only a few of the reported syntheses were conducted in the non-racemic series. ${ }^{6,8 k, q, r}$

Among the all known routes toward the cedrenoids, the syntheses of (\pm)- α-cedrene (rac-1) disclosed by Wender in 1981 (Scheme 1) ${ }^{7}$ stands out because of its exceptional brevity, overall efficiency, and conceptual elegance. This synthesis strategically exploits an intramolecular areneolefin meta-photoaddition. ${ }^{10}$

More specifically, upon irradiation of curcuphenol methyl ether (rac-7), prepared from the m-cresol derivative 5 in a one-pot procedure, a mixture of regioisomeric photoproducts (rac-8a and rac-8b) is formed in a highly diastereoselective manner. ${ }^{7,11}$ Treatment of this mixture with bromine and subsequently with HSnBu_{3} then yields the ketone rac-9, from which (\pm)- α-cedrene (rac-1) is finally obtained by Wolff-Kishner reduction (Scheme 1). ${ }^{12}$

While the Wender cedrene synthesis has been appreciated as an (almost) 'ideal' synthesis ${ }^{13}$ and as a beautiful example for a total synthesis with a photochemical key step, ${ }^{14}$ one must be aware that it does not meet the requirements

Scheme 1 Total synthesis of (\pm)- α-cedrene (rac-1) according to Wender ${ }^{7}$
of modern natural product synthesis ${ }^{15}$ as long as it only gives access to the racemic product. Notably, more than fifteen approaches towards the non-racemic cedrene precursor $\mathbf{7}$ or its O-demethylated derivative (i.e., curcuphenol) have been developed. ${ }^{8 r, 16}$ However, a closer look reveals that most of these syntheses lack efficiency and/or practicability. Only recently, Feng et al. disclosed an apparently useful method for the conversion of citronellal into curcuphenol within six steps. ${ }^{17}$

Against this background, we asked ourselves whether the catalytic enantioselective methods recently developed in our laboratory for the preparation of benzylic chiral compounds (using modular Taddol-derived phosphine-phosphite ligands ${ }^{18}$) could be applied for the synthesis of (R) curcuphenol methyl ether (7). Both the Co-catalyzed hydrovinylation of styrenes ${ }^{19}$ and the Cu-catalyzed allylic alkylation of cinnamyl chlorides ${ }^{20}$ lead to (1-methylallyl)benzenes and thus appeared to be possibly suitable for the preparation of olefin $\mathbf{1 0}$ from the achiral precursors $\mathbf{1 1}$ or 12, respectively (Scheme 2). The conversion of $\mathbf{1 0}$ into $\mathbf{7}$ in

Scheme 2 Retrosynthetic analysis of (R)-curcuphenol methyl ether (7). Intermediate 10 derives from achiral precursors 11 or $\mathbf{1 2}$ through catalytic enantioselective reactions (possibly using Taddol-derived chiral phosphine-phosphite ligands)
turn should be achievable by hydroboration and Suzuki coupling. ${ }^{21}$

The vinylbenzene derivative 11 was best prepared as shown in Scheme 3. Starting from m-cresol (13) $\mathrm{MgCl}_{2} / \mathrm{Et}_{3} \mathrm{~N}$-assisted ortho-formylation ${ }^{22}$ with paraformaldehyde in THF and subsequent O-methylation (MeI, $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF) afforded an 86:14 mixture of regioisomers from which the pure main product 14 was isolated by chromatography in 81% yield.

Wittig methylenation of the aldehyde 14 under standard conditions then afforded $\mathbf{1 1}$ (93\%). With this substrate the cobalt-catalyzed hydrovinylation was then tested, at first in the racemic series. Following our established protocol ${ }^{19 a}$ using PPh_{3} as an achiral ligand the expected product rac-10 was obtained in 92% yield (Scheme 3). However, despite extensive experimentation, we did not succeed in performing this transformation with satisfying levels of enantioselectivity. In the best case, employing ligand $\mathbf{L}^{*} \mathbf{- 1}$, the product $\mathbf{1 0}$ was formed with only 24% ee. Here, the limitation of our otherwise broadly applicable asymmetric hydrovinylation protocol in the case of certain ortho-substituted styrenes becomes apparent. Nevertheless, the prepared sample of rac-10 at least provided a valuable racemic reference for analytical purposes.

Scheme 3 Preparation and Co-catalyzed hydrovinylation of the vinylarene 11

Next, we turned our attention to the asymmetric Cucatalyzed allylic substitution as an alternative route towards non-racemic 10 (compare Scheme 2). The required substrate, that is, the cinnamyl chloride $\mathbf{1 2}$ was prepared by Grignard reaction of aldehyde 14 with vinylmagnesium bromide and treatment of the resulting alcohol (rac-15) with thionyl chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Noteworthy, compound $\mathbf{1 2}$ proved to be rather sensitive towards decomposition. For this reason, it was always freshly prepared and directly employed (as a crude product) in the Cu-catalyzed transformation. ${ }^{20}$ Much to our satisfaction, the asymmetric allylic alkylation of $\mathbf{1 2}$ proceeded smoothly and with high regioand enantioselectivity (Scheme 4). Using a catalyst generated in situ from $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}$ ($2.5 \mathrm{~mol} \%$) and the Taddol-derived ligand $\mathbf{L}^{*}-\mathbf{2}(3 \mathrm{~mol} \%$), the reaction of $\mathbf{1 2}$ with MeMgBr in MTBE $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ cleanly afforded (R) - $\mathbf{1 0}$ in 80% yield after separating off minor amounts of the linear by-product by
column chromatography. The enantiomeric purity of $\mathbf{1 0}$ was $\geq 94 \%$ ee (as determined by chiral GC and also confirmed at the stage of 7). The expected ${ }^{20 \mathrm{a}} R$-configuration of the product was proven by its conversion into (-)- α-cedrene (1).

Scheme 4 Enantioselective synthesis of (R)-curcuphenol methyl ether (7) through Cu-catalyzed allylic substitution and Suzuki coupling and its conversion into (-)- α-cedrene (1)

Having prepared the key intermediate $\mathbf{7}$ in non-racemic form, we were curious whether the Wender protocols for its conversion into (-)- α-cedrene (1) could be reproduced in our hands. And indeed: Irradiation of a solution of 7 with UV light (254 nm) proceeded smoothly to afford a $1: 1$ mixture of the photoadducts $\mathbf{8 a} / \mathbf{8 b}$ as reported. By changing the solvent from n-pentane to methyl tert-butyl ether (MTBE) the yield of $\mathbf{8 a} / \mathbf{8 b}$ could even be improved to 84%.

The bromine-mediated cyclopropane opening $\left(\mathrm{Br}_{2}\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) and the subsequent reductive debromination step (HSnBu_{3}) proved to be a bit tricky. However, after some careful experimentation we were able to prepare pure cedrenone $(\mathbf{9})$ in reproducible yields. To avoid the formation of 'cedradienone' as an elimination product, the sensitive (crude) mixture of bromides 16, isolated by removal of all volatiles under reduced pressure, was immediately dissolved in n-pentane followed by addition of HSnBu_{3} (1 equiv, $0.5 \mathrm{~h}, 0^{\circ} \mathrm{C}$). Purification by column chromatography then afforded 9 in $61-65 \%$ yield. Noteworthy, the final Wolff-Kishner reduction of cedrenone (9) was performed applying the $\mathrm{TsNHNH} / \mathrm{NaBH}_{4}$-based protocol introduced by Caglioti ${ }^{23}$ to give (-)- α-cedrene ($\mathbf{1}$) in greatly improved
yield of $92 \%{ }^{12}$ The spectroscopic data ${ }^{24}$ and the molecular rotation of the synthetic sample confirmed its identity with the natural product.

In conclusion, we have re-investigated the Wender route towards cedrene as one of the most prominent and conceptually stunning sesquiterpene syntheses. In this context, we developed a catalytic enantioselective entry to the chiral key intermediate (R)-curcuphenol methyl ether (7) exploiting an asymmetric $\mathrm{Cu}(\mathrm{I})$-catalyzed allylic substitution as the chirogenic step. The further conversion of 7 into (-)- $\alpha-$ cedrene (1) was successfully performed according to Wender and improved in detail. The resulting synthesis (Scheme 4) of non-racemic 1 proceeds in eight steps (30\% overall yield)

All reactions sensitive towards air or moisture were carried out under an atmosphere of argon in flame-dried glassware with magnetic stirring. THF was freshly distilled from $\mathrm{Na} /$ benzophenone. NMR spectra were recorded in CDCl_{3} on Bruker Avance II 300, Avance II 500, and Avance II 600 instruments. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in the APT mode (attached proton test). Assignments were assisted by H,H-COSY, HMQC, and HMBC spectra. Enantiomeric analyses by GC were either performed on an Agilent (HP 7890B) instrument using a BGB 176SE capillary column [temperature program: $50{ }^{\circ} \mathrm{C}(10 \mathrm{~min}), 50-150{ }^{\circ} \mathrm{C}$ $\left.\left(1.0^{\circ} \mathrm{C} / \mathrm{min}\right), 150^{\circ} \mathrm{C}(5 \mathrm{~min})\right]$ or on an Agilent (HP 6890) instrument using a 6-TBDMS capillary column [50-100 $\left.{ }^{\circ} \mathrm{C}\left(0.1{ }^{\circ} \mathrm{C} / \mathrm{min}\right)\right]$ with H_{2} as carrier gas ($6 \mathrm{~mL} / \mathrm{min}, 0.7$ bar). Photoreactions were performed using a quartz exposure shaft in a Rayonet photoreactor of the type RPR-208 with eight lamps from Southern New England UV Company ($\mathrm{P}=800 \mathrm{~W}, \lambda=254 \mathrm{~nm} \pm 25 \mathrm{~nm}$).

2-Methoxy-4-methylbenzaldehyde (14) ${ }^{25}$

To a stirred solution of m-cresol ($5.3 \mathrm{~mL}, 50 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{Et}_{3} \mathrm{~N}(27 \mathrm{~mL}, 192 \mathrm{mmol}, 3.8$ equiv $)$ in THF $(250 \mathrm{~mL})$ were added MgCl_{2} ($7.2 \mathrm{~g}, 75 \mathrm{mmol}, 1.5$ equiv) and paraformaldehyde ($10.5 \mathrm{~g}, 338 \mathrm{mmol}$, 6.8 equiv) and the mixture was stirred for 18 h at $65^{\circ} \mathrm{C}$. After cooling to r.t., aq $1 \mathrm{M} \mathrm{HCl}(200 \mathrm{~mL})$ was added, the phases were separated, and the aqueous phase was extracted with EtOAc $(2 \times)$. After washing the combined organic layers with brine and drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was removed. The residue was filtered through a column of silica gel with $\mathrm{cHex} / \mathrm{EtOAc}(5: 1)$ to give 6.59 g ($48.5 \mathrm{mmol}, 96 \%$) of a $86: 14 \mathrm{mix}-$ ture of regioisomeric formylation products (as determined by NMR spectroscopy and GC-MS).
Under an atmosphere of argon, the above prepared aldehyde mixture ($5.7 \mathrm{~g}, 41.9 \mathrm{mmol}$) was added to a stirred suspension of $\mathrm{K}_{2} \mathrm{CO}_{3}(12.6 \mathrm{~g}$, $91 \mathrm{mmol}, 2.2$ equiv) in DMF (20 mL) followed by addition of MeI (5.8 $\mathrm{mL}, 92 \mathrm{mmol}, 2.2$ equiv). The mixture was stirred for 5 h at r.t. and then partitioned between $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(120 \mathrm{~mL})$. The organic layer was washed with brine $(5 \times 50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of all volatiles under reduced pressure and column chromatography with $c \mathrm{Hex} / \mathrm{EtOAc}\left(10: 1 ; R_{f}=0.33\right)$ afforded $5.3 \mathrm{~g}(35.3 \mathrm{mmol}$, 84%) of the pure aldehyde 14 as a colorless solid; $\mathrm{mp} 40^{\circ} \mathrm{C}$.
IR (ATR): 3446 (br), 2936 (w), 2920 (w), 2862 (w), 2839 (w), 1673 (w), 1606 (m), 1514 (vs), 1465 (m), 1420 (m), 1364 (m), 1270 (vs), 1235 (s), 1207 (s), 1149 (s), 1122 (m), 1034 (s), 921 (m), $810 \mathrm{~cm}^{-1}$ (m).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=10.39$ (s, $1 \mathrm{H}, \mathrm{CHO}$), $7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{H} 6), 6.83(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 6.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 3.90(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=189.6(\mathrm{CHO}), 162.0(\mathrm{C} 2), 147.5(\mathrm{C} 4)$, 128.7 (C6), 122.8 (C1), $121.8(\mathrm{C} 5), 112.3(\mathrm{C} 3), 55.7\left(\mathrm{OCH}_{3}\right), 22.5\left(\mathrm{CH}_{3}\right)$. GC-MS (70 eV): $m / z(\%)=150\left(100,[M]^{+}\right), 133(39), 107(21), 91$ (99).

2-Methoxy-4-methyl-1-vinylbenzene (11)

Under argon atmosphere, $\mathrm{MePPh}_{3} \mathrm{Br}$ ($2.02 \mathrm{~g}, 5.65 \mathrm{mmol}, 1.2$ equiv) was suspended in THF (40 mL) and cooled to $0^{\circ} \mathrm{C}$. Then, a n-BuLi solution (2.5 M in hexanes, $2.3 \mathrm{~mL}, 5.76 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. Afterwards, the aldehyde $\mathbf{1 4}$ ($0.730 \mathrm{~g}, 4.89 \mathrm{mmol}, 1.0$ equiv) dissolved in THF (4 mL) was added dropwise and stirring was continued for 14 h at r.t. The solvent was removed under reduced pressure and the residue was purified by column chromatography ($R_{f}=0.72, \mathrm{cHex} / \mathrm{EtOAc} 10: 1$) to yield 0.647 g of vinylarene 11 as a yellow oil ($4.55 \mathrm{mmol}, 93 \%$).
IR (ATR): 3005 (w), 2936 (w), 2253 (w), 1609 (w), 1502 (w), 1465 (w), 1412 (w), 1285 (w), 1266 (w), 1193 (w), 1161 (w), 1121 (w), 1042 (w), 998 (w), 904 (vs), 817 (w), 724 (vs), $650 \mathrm{~cm}^{-1}$ (m).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.38(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 7.04$ (dd, $J=$ $17.8,11.2 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}), 6.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3)$, $5.72\left(\mathrm{dd}, J=17.8,1.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.24(\mathrm{dd}, J=11.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.8(\mathrm{C} 2), 139.2$ (C4), $131.7(\mathrm{CH}=)$, 126.5 (C6), 124.1 (C 1), $121.5(\mathrm{C} 5), 113.6(\mathrm{C} 3), 111.9\left(\mathrm{CH}_{2}\right), 55.6$ $\left(\mathrm{OCH}_{3}\right), 21.4\left(\mathrm{CH}_{3}\right)$.
GC-MS (70 eV): $m / z(\%)=148\left(63,[M]^{+}\right), 133\left(67,\left[M-\mathrm{CH}_{3}\right]^{+}\right), 105$ (100).

1-(But-3-en-2-yl)-2-methoxy-4-methylbenzene (rac-10) through Hydrovinylation of 11

A Schlenk flask was charged with $\mathrm{Co}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$ ($269 \mathrm{mg}, 0.43 \mathrm{mmol}, 1$ $\mathrm{mol} \%$) under an argon atmosphere atmosphere, evacuated, and flooded with ethylene (1.2 bar) by connecting to an ethylene lecture bottle. The flask was immersed into an ice/water bath and anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(700$ mL) was injected, followed by $\mathrm{Et}_{2} \mathrm{AlCl}(2.48 \mathrm{~mL}, 2.51 \mathrm{mmol}, 6 \mathrm{~mol} \%)$ and the vinylarene $11(6.20 \mathrm{~g}, 41.83 \mathrm{mmol}, 1.0$ equiv). The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ before it was exposed to air and filtered through a pad of silica gel with n-pentane. After removal of all volatiles under reduced pressure $6.78 \mathrm{~g}(38.5 \mathrm{mmol}, 92 \%)$ of virtually pure rac-10 was obtained as a pale yellow oil $\left(R_{f}=0.77, c \mathrm{Hex} / \mathrm{EtOAc}\right.$ 10:1).
IR (ATR): 2960 (m), 2930 (m), 2869 (w), 2831 (w), 1612 (m), 1505 (vs), 1465 (s), 1409 (m), 1257 (vs), 1192 (m), 1156 (m), 1042 (vs), 908 (vs), 812 (vs), $731 \mathrm{~cm}^{-1}$ (vs).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 6), 6.74(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 6.69$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 3$), 6.10-5.99 (m, $1 \mathrm{H}, \mathrm{CH}=$), 5.07-5.00 $\left(\mathrm{m}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 3.89\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2^{\prime}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.33(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.30\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.1$ (C2), 143.2 (C3'), 131.0 (C4), 127.3 (C6), 121.3 (C5), 112.7 (C3), $111.7\left(\mathrm{C}^{\prime}\right), 55.5\left(\mathrm{OCH}_{3}\right), 35.4\left(\mathrm{C} 2^{\prime}\right)$, $21.6\left(\mathrm{ArCH}_{3}\right), 19.7\left(\mathrm{Cl}^{\prime}\right)$.
GC-MS (70 eV): $m / z(\%)=176\left(49,[M]^{+}\right), 161\left(100,\left[M-\mathrm{CH}_{3}\right]^{+}\right)$.

1-(2-Methoxy-4-methylphenyl)prop-2-en-1-ol (rac-15)

A solution of aldehyde $14(1.60 \mathrm{~g}, 10.7 \mathrm{mmol}, 1.00$ equiv $)$ in THF (100 mL) was cooled to $-78^{\circ} \mathrm{C}$ and vinylmagnesium bromide (0.7 M in THF, $17.6 \mathrm{~mL}, 12.4 \mathrm{mmol}, 1.15$ equiv) was added over a period of 1.5 h . After stirring for 1.5 h at $-78^{\circ} \mathrm{C}$, the reaction was stopped by addition of sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and MTBE (30 mL). After separation of the layers, the aqueous layer was extracted with $\operatorname{MTBE}(40 \mathrm{~mL})$ and the com-
bined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed and the crude material purified by column chromatography with cHex/EtOAc 5:1 $\left(R_{f}=0.18\right)$ to afford $1.82 \mathrm{~g}(10.2 \mathrm{mmol}, 96 \%)$ of $\mathrm{rac}-15$ as a colorless oil.
IR (ATR): 3402 (br), 3085 (w), 3003 (w), 2937 (w), 2864 (w), 2834 (w), 1612 (m), 1583 (m), 1505 (m), 1464 (m), 1409 (m), 1283 (s$), 1255$ (s$)$, 1192 (m), 1155 (m), 1123 (m), 1102 (m), 1038 (vs), 989 (s), 918 (s), $805 \mathrm{~cm}^{-1}$ (vs).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.17(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H6}$), 6.78 ($\mathrm{d}, \mathrm{J}=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5$ '), $6.08-6.19$ (m, $1 \mathrm{H}, \mathrm{CH}=), 5.37$ (t, J = 5.8 Hz, $1 \mathrm{H}, \mathrm{H} 1$), $5.30\left(\mathrm{dt}, J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.16(\mathrm{dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.76(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 2.35(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Ar}-$ CH_{3}).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.8$ (C2'), 139.8 (C2), 139.0 (C4'), 128.0 (C^{\prime}), 127.5 (C^{\prime}), 121.6 (C^{\prime}), $114.5\left(\mathrm{C}^{\prime}\right), 111.8\left(=\mathrm{CH}_{2}\right), 71.7$ (C1), $55.5\left(\mathrm{OCH}_{3}\right), 21.7\left(\mathrm{ArCH}_{3}\right)$.
GC-MS (70 eV): $m / z(\%)=178\left(53,[M]^{+}\right), 163(41), 149(39), 135(78)$, 122 (50), 115 (58), 105 (65), 91 (100), 77 (60), 65 (31), 51 (28).

(R)-1-(But-3-en-2-yl)-2-methoxy-4-methylbenzene (10) from rac15 via Allylic Substitution of 12

Under inert conditions, rac-15 ($445 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.00$ equiv) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$ and $\mathrm{SOCl}_{2}(0.2 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.23$ equiv $)$ was added. The resulting solution was stirred for 1 h at $0^{\circ} \mathrm{C}$. After partitioning between $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, the layers were separated, the organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and after filtration, the solvent was removed under reduced pressure to give the cinnamyl chloride 12 as a yellow oil.
Parallel to the preparation of $\mathbf{1 2}$, ligand $\mathbf{L}^{*} \mathbf{- 2}$ (prepared according to ref. 18b, $62 \mathrm{mg}, 3 \mathrm{~mol} \%$) and $\mathrm{CuBr} \cdot \mathrm{SMe}_{2}(12 \mathrm{mg}, 2.5 \mathrm{~mol} \%$) were dissolved in MTBE (16 mL) under argon and stirred at r.t. for 30 min . Then, the cinnamyl chloride $\mathbf{1 2}$ was added via syringe and the mixture was stirred for further 10 min at r.t. After cooling the solution to $-78{ }^{\circ} \mathrm{C}$, $\mathrm{MeMgBr}\left(1.0 \mathrm{~mL}\right.$ of a 3 M solution in $\mathrm{Et}_{2} \mathrm{O}, 3.0 \mathrm{mmol}, 1.22$ equiv, diluted with $8 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$) was slowly added by means of a syringe pump over a period of 10 h and the stirring was continued for 10 h at $-55^{\circ} \mathrm{C}$. The reaction was then stopped by addition of aq 1 M $\mathrm{HCl}(30 \mathrm{~mL})$, the layers were separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 30 \mathrm{~mL})$. The combined organic layers were washed with brine $(30 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. The solvent was removed under reduced pressure and the crude product (containing the branched and the linear isomers in a 88:12 ratio according to GC analysis) was purified by column chromatography using n-pentane as eluent. The desired product 10 was obtained in a yield of 353 mg (2.0 $\mathrm{mmol}, 80 \%$) as pale yellow oil ($R_{f}=0.49, c \mathrm{Hex} / \mathrm{EtOAc} 50: 1$). The enantiomeric purity was $>90 \%$ ee as determined by GC [BGB 176SE column, $50{ }^{\circ} \mathrm{C}(10 \mathrm{~min})$, then 50 to $150{ }^{\circ} \mathrm{C}\left(1.0^{\circ} \mathrm{C} / \mathrm{min}\right) ; t_{\mathrm{R}}=49.9 \mathrm{~min}$ (main enantiomer), 50.7 min$].$
$[\alpha]_{\lambda}{ }^{20}+133(365 \mathrm{~nm}),+77.5(436 \mathrm{~nm}),+40.9(546 \mathrm{~nm}),+35.4(579$ $\mathrm{nm}),+33.5(589 \mathrm{~nm})\left(c=0.80 \mathrm{~g} / 100 \mathrm{~mL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and GC-MS data were identical to the sample of rac-10 prepared through hydrovinylation (see above).
(R)-2-Methoxy-4-methyl-1-(6-methylhept-5-en-2-yl)benzene (7)

To a solution of olefin $\mathbf{1 0}$ ($532 \mathrm{mg}, 3.02 \mathrm{mmol}, 1.0$ equiv) in THF (40 mL) was added a 0.5 M solution of $9-\mathrm{BBN}$ in THF ($21.1 \mathrm{~mL}, 10.6 \mathrm{mmol}$, 3.5 equiv) and the mixture was stirred at r.t. for 5 h . In a second Schlenk flask, a suspension of $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.32 \mathrm{~g}, 6.2 \mathrm{mmol}, 2$ equiv) in DMF (25 mL) was stirred for 1 h at r.t. before 1-bromo-2-methylprop-1-ene ($0.42 \mathrm{~mL}, 3.96 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.18 \mathrm{~g}, 0.15 \mathrm{mmol}$,
$5 \mathrm{~mol} \%$), and $\mathrm{H}_{2} \mathrm{O}$ ($2.8 \mathrm{~mL}, 157 \mathrm{mmol}$, 52 equiv) were added. After 3 h at r.t., the solution of the in situ generated alkylborane was added and stirring was continued at $85^{\circ} \mathrm{C}$ for 16 h . Then, sat. aq $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$ and MTBE (100 mL) were added and the layers were separated. The aqueous layer was extracted with MTBE ($3 \times$) and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$. After drying $\left(\mathrm{MgSO}_{4}\right)$, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography ($\mathrm{cHex} / \mathrm{EtOAc} 50: 1$) to afford 7 ($650 \mathrm{mg}, 2.80 \mathrm{mmol}, 93 \%$) as a colorless liquid ($R_{f}=0.72, \mathrm{cHex} / \mathrm{EtOAc}$ 10:1). The enantiomeric purity was 94% ee as determined by GC [BGB 6 -TBDMS column, 50 to $100^{\circ} \mathrm{C}\left(0.1^{\circ} \mathrm{C} / \mathrm{min}\right) ; t_{\mathrm{R}}=363 \mathrm{~min}, 367 \mathrm{~min}$ (main enantiomer)].
$[\alpha]_{\lambda}^{20}-23(365 \mathrm{~nm}),-16.4(436 \mathrm{~nm}),-9.8(546 \mathrm{~nm}),-8.3(579 \mathrm{~nm})$, $7.9(589 \mathrm{~nm})\left(c=0.79 \mathrm{~g} / 100 \mathrm{~mL} \text { in } \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{3}$
IR (ATR): 2958 (m), 2923 (m), 1611 (m), 1580 (m), 1506 (s$), 1464$ (s$)$, 1455 (s), 1411 (m), 1286 (m), 1259 (vs), 1191 (m), 1157 (m), 1127 (m), 1098 (m), 1043 (vs), 927 (m), 845 (m), $809 \mathrm{~cm}^{-1}$ (vs).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.10(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H6}), 6.79$ ($\mathrm{d}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 6.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 3), 5.17$ (t, J = $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=$), 3.85 (s , $3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.19 (sext, $\left.J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2^{\prime}\right), 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.97$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 4^{\prime}$), $1.73\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}^{\prime}\right), 1.59\left(\mathrm{~s}, 3 \mathrm{H},=\mathrm{CCH}_{3}\right), 1.23\left(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 1^{\prime}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.1$ (C2), 136.3 (C4), 133.0 (C1), 131.2 (C6'), 126.7 (C6), 125.0 (C5'), 121.2 (C5), 111.6 (C3), $55.5\left(\mathrm{OCH}_{3}\right), 37.3$ (C3'), 31.6 (C^{\prime}), 26.4 ($\left.\mathrm{C4}^{\prime}\right), 25.9$ (vinyl- CH_{3}), $21.5\left(\mathrm{ArCH}_{3}\right), 21.2\left(\mathrm{Cl}^{\prime}\right)$, 17.7 (vinyl- $-\mathrm{CH}_{3}$).

GC-MS $(70 \mathrm{eV}): m / z(\%)=232\left(27,[\mathrm{M}]^{+}\right), 217\left(4,\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right), 201(1$, $\left.\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}\right), 149(100)$.

Photocyclization Products 8a and 8b

Compound $\mathbf{7}$ ($200 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.0$ equiv) was dissolved in MTBE $(40 \mathrm{~mL}, c=0.02 \mathrm{M})$ and exposed to the light from a Rayonet photoreactor ($254 \mathrm{~nm}, 250 \mathrm{~W}$) for 6 h . Afterwards, the solvent was removed and the residue was subjected to column chromatography ($\mathrm{cHex} / \mathrm{EtO}-$ Ac 50:1). Compound $\mathbf{8 a}$ and $\mathbf{8 b}$ were isolated in a combined yield of 168 mg ($0.72 \mathrm{mmol}, 84 \%$) as a yellow oil. Analytically pure samples of both isomers were obtained from early and late fractions, respectively.

8a

$R_{f}=0.39$ (cHex/EtOAc 50:1).
$[\alpha]_{\lambda}^{20}+36.8(365 \mathrm{~nm}),+24.2(436 \mathrm{~nm}),+11.0(546 \mathrm{~nm}),+9.1(579 \mathrm{~nm})$, $+8.1(589 \mathrm{~nm})\left(c=0.65 \mathrm{~g} / 100 \mathrm{ml}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR (ATR): 2951 (vs), 2868 (m), 1458 (m), 1447 (m), 1375 (m), 1131 (m), $1038(\mathrm{~m}), 751 \mathrm{~cm}^{-1}(\mathrm{~m})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.57$ (d, $\left.J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 10\right), 5.54(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9$), 3.35 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.44-2.39 (m, $1 \mathrm{H}, \mathrm{H} 2$), 2.06-2.01 (m, 1 H, H3a), 1.87-1.84 (m, 1 H, H5), 1.62 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H} 7$), 1.55-1.49 (m, $2 \mathrm{H}, \mathrm{H} 4$), 1.32 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C8), $1.11-1.08$ (m, $1 \mathrm{H}, \mathrm{H} 3 \mathrm{~b}$), 1.03 (d, $J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C2), $1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C6), $0.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C6).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=134.5$ (C10), 131.7 (C9), 94.8 (C8), 72.9 (C11), 68.6 (C5), $57.7\left(\mathrm{OCH}_{3}\right), 56.1$ (C7), 42.7 (C1), 40.8 (C6), 37.7 (C3), $32.5(\mathrm{C} 2), 29.0\left(2 \times \mathrm{CH}_{3}\right.$ at C6), $28.4(\mathrm{C} 4), 18.7\left(\mathrm{CH}_{3}\right.$ at C2), $17.3\left(\mathrm{CH}_{3}\right.$ at C8).
GC-MS (70 eV): $m / z(\%)=232\left(7,[M]^{+}\right), 217\left(8,\left[M-\mathrm{CH}_{3}\right]^{+}\right), 149(100)$, 133 (15), 115 (28), 91 (48).

8b

$R_{f}=0.46$ (cHex/EtOAc 50:1).
$[\alpha]_{\lambda}^{20}+32.7(365 \mathrm{~nm}),+20.0(436 \mathrm{~nm}),+9.06(546 \mathrm{~nm}),+7.5(579 \mathrm{~nm})$, $+6.7(589 \mathrm{~nm})\left(c=0.78 \mathrm{~g} / 100 \mathrm{~mL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
IR (ATR): 2951 (vs), 2900 (s), 2868 (m), 1470 (m), 1448 (s$), 1399$ (m), 1374 (m), 1363 (m), 1326 (m), 1266 (s), 1150 (m), 1114 (vs), 1024 (m), 1008 (s$), 820 \mathrm{~cm}^{-1}(\mathrm{~m})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.37$ (br s, $1 \mathrm{H}, \mathrm{H} 9$), 3.31 (s, $3 \mathrm{H}, \mathrm{H} 15$), 2.54 (s, $1 \mathrm{H}, \mathrm{H} 7$), 2.02-1.97 (m, 1 H, H2), 1.90-1.89 (m, 1 H, H5), 1.871.83 (m, 2 H, H3), 1.77 (s, 3 H, H14), 1.73-1.63 (m, 1 H, H10), 1.501.45 (m, 2 H, H4), 1.00 (s, 3 H, H12a), 0.89 (s, 3 H, H12b), 0.88 (d, J = $4.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H} 13$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.8$ (C8), 124.3 (C9), 67.5 (C7), 58.3 (C11), 57.1 (C15), 53.9 (C1), 50.8 (C5), 36.5 (C3), 35.7 (C2), 31.8 (C10), 25.2 (C12a), 23.3 (C4), 22.8 (C12b), 19.1 (C13), 17.7 (C14).

GC-MS (70 eV): m/z (\%) = $232\left(10,[\mathrm{M}]^{+}\right), 217\left(4,\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}\right), 200(1)$, 175 (8), 149 (100), 115 (21), 91 (34).

Cedrenone (9)

To a stirred solution of the mixture $\mathbf{8 a} / \mathbf{8 b}$ ($200 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ under argon at $0{ }^{\circ} \mathrm{C}$ was added dropwise Br_{2} ($44 \mu \mathrm{~L}, 0.86 \mathrm{mmol}, 1.0$ equiv). After 0.5 h at $0^{\circ} \mathrm{C}$, all volatiles were removed under reduced pressure and the residue was diluted with n pentane (5 mL). Then, $\mathrm{HSnBu}_{3}(232 \mu \mathrm{~L}, 0.86 \mathrm{mmol}, 1.0$ equiv) was added. After 0.5 h at $0^{\circ} \mathrm{C}$, the whole mixture was directly subjected to column chromatography (n-pentane, ultra pure silica gel) to yield pure cedrenone 9 ($115 \mathrm{mg}, 0.53 \mathrm{mmol}, 61 \%$) as a colorless oil.
$[\alpha]_{\lambda}{ }^{20}-29.4(546 \mathrm{~nm}),-25.1(579 \mathrm{~nm}),-24.6(589 \mathrm{~nm})(c=0.37 \mathrm{~g} / 100$ mL in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$).
IR (ATR): 2944 (s), 2866 (m), 1739 (vs), 1455 (m), 1377 (m), 1279 (m), $1217(\mathrm{~m}), 1148(\mathrm{~m}), 1035(\mathrm{~s}), 981(\mathrm{~s}), 944(\mathrm{~m}), 846(\mathrm{~m}), 678 \mathrm{~cm}^{-1}(\mathrm{~m})$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.36(\mathrm{dd}, J=2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 9), 2.53-$ 2.36 (m, 2 H, H10), 2.32 (dd, $J=4.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 2$), 2.20 (dd, $J=8.6$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H} 5), 2.07(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H} 7), 1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C8), $1.65-1.59$ (m, 2 H, H3, H4), $1.50-1.43$ (m, 1 H, H4), 1.35-1.31 (m, 1 H, H3), 1.15 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C6), $0.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C6), $0.84\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at C2).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=219.3$ (C11), 138.2 (C8), 120.6 (C9), 65.8 (C7), 60.2 (C1), 57.2 (C5), 42.3 (C6), 41.9 (C10), 36.1 (C3), 33.7 (C2), $25.9\left(\mathrm{CH}_{3}\right.$ at C 6$), 24.6$ (C 4 and CH_{3} at C 6), $24.3\left(\mathrm{CH}_{3}\right.$ at C 8$), 15.1\left(\mathrm{CH}_{3}\right.$ at C2).

(-)-(α)-Cedrene (1)

Cedrenone ($\mathbf{9} ; 50 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv) and tosylhydrazine (53 $\mathrm{mg}, 0.26 \mathrm{mmol}$, 1.3 equiv) were dissolved in $\mathrm{EtOH}(2 \mathrm{~mL})$ and refluxed for 2.5 h . The solvent was evaporated and the residue was dissolved in THF/ $\mathrm{H}_{2} \mathrm{O}(4: 1,5 \mathrm{~mL}) . \mathrm{NaBH}_{4}(35 \mathrm{mg}, 0.92 \mathrm{mmol}, 4.0$ equiv) was slowly added and the mixture was refluxed again for 2 h . After cooling down to r.t., the mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and n-pentane and the layers were separated. The aqueous layer was extracted with n-pentane (3 \times). The combined organic layers were washed first with sat. aq NaHCO_{3}, then with aq 1 N HCl and brine, and finally dried $\left(\mathrm{MgSO}_{4}\right)$. After evaporating the solvent, the residue was subjected to column chromatography (n-pentane) to yield (-)- α-cedrene ($\mathbf{1}$) as a colorless liquid ($43 \mathrm{mg}, 0.22 \mathrm{mmol}, 92 \%$).
$[\alpha]_{\lambda}{ }^{20}-330.5(365 \mathrm{~nm}),-195.8(436 \mathrm{~nm}),-109(546 \mathrm{~nm}),-94.7$ (579 $\mathrm{nm}),-91.2(589 \mathrm{~nm})\left(c=0.57 \mathrm{~g} / 100 \mathrm{~mL}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

IR (ATR): 2937 (vs), 2898 (s), 2869 (s), 2827 (m), 1469 (m), 1450 (s), 1374 (m), 1434 (s), 1362 (m), 1033 (m), 998 (m), 910 (m), 814 (m), $799 \mathrm{~cm}^{-1}$ (s).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.23$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 9$), 2.18 (dp, $J=16.7,2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H} 10 \mathrm{a}), 1.90-1.83$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H} 3 \mathrm{a}$), 1.79 ($\mathrm{m}, \mathrm{J}=18.6,3.7,1.8 \mathrm{~Hz}, 3$ H, H2, H7, H10b), 1.69 (s, $1 \mathrm{H}, \mathrm{H} 5$), 1.68 (q, J = $1.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C8), 1.67-1.64 (m, $1 \mathrm{H}, 4 \mathrm{a}$), 1.63-1.54 (m, $1 \mathrm{H}, \mathrm{H} 11 \mathrm{a}), 1.43-1.34(\mathrm{~m}, 3 \mathrm{H}$, H3b, H4b, H11b), 1.03 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C6), 0.96 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ at C6), 0.85 (d, J=7.2 Hz, 3 H, H13).
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=140.7$ (C8), 119.4 (C9), 59.1 (C5), 55.0 (C7), 54.0 (C1), 48.3 (C6), 41.6 (C2), 40.8 (C11), 39.0 (C10), 36.2 (C3), $27.8\left(\mathrm{CH}_{3}\right.$ at C 6$), 25.8\left(\mathrm{CH}_{3}\right.$ at C 6$), 25.0(\mathrm{C} 4), 24.9\left(\mathrm{CH}_{3}\right.$ at C 8$), 15.6\left(\mathrm{CH}_{3}\right.$ at C2).
GC-MS (70 eV): $m / z(\%)=204\left(25,[\mathrm{M}]^{+}\right), 189(5), 161(25), 119(100)$, 93 (40), 77 (30), 56 (10), 41 (30).
HRMS (70 eV, EI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{24}$: 204.1878; found: 204.1880.

Acknowledgment

This work was supported by the Fonds der Chemischen Industrie (doctorate stipend to J. W.) and the University of Cologne. We thank Prof. Axel Griesbeck and his co-workers for technical support concerning the photochemical reaction and Andreas Adler for chiral GC measurements.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588602. NMR spectra and chromatograms are included.

References

(1) (a) Walter, P. Justus Liebigs Ann. Chem. 1841, 39, 247. (b) Walter, P. Justus Liebigs Ann. Chem. 1843, 48, 35.
(2) Ohloff, G.; Pickenhagen, W.; Kraft, P. Scent and Chemistry. The Molecular World of Odors; VHCA/Wiley-VCH: Zürich/Weinheim, 2012, 296-300.
(3) Kim, T. H.; Yoo, S. D.; Lee, H. S.; Lee, K. M.; Seok, S. H.; Kim, M. G.; Jung, B. H.; Kim, M. G.; Shin, B. S. Drug Metabol. Pharmacokinet. 2015, 30, 168; and references cited therein.
(4) Johnston, W. H.; Karchesy, J. J.; Constantine, G. H.; Craig, A. M. Phytother. Res. 2001, 15, 586.
(5) Jeong, H. U.; Kwon, S. S.; Kong, T. Y.; Kim, J. H.; Lee, H. S. J. Toxicol. Environ. Health, Part A 2014, 77, 1522.
(6) (a) Stork, G.; Clark, F. H. J. Am. Chem. Soc. 1955, 77, 1072. (b) Stork, G.; Clark, F. H. J. Am. Chem. Soc. 1961, 83, 3114.
(7) Wender, P. A.; Howbert, J. J. J. Am. Chem. Soc. 1981, 103, 688.
(8) (a) Corey, E. J.; Girotra, N. N.; Mathew, C. T. J. Am. Chem. Soc. 1969, 91, 1557. (b) Crandall, T. G.; Lawton, R. G. J. Am. Chem. Soc. 1969, 91, 2127. (c) Demole, E.; Enggist, P.; Borer, C. Helv. Chim. Acta 1971, 54, 1845. (d) Anderson, N. H.; Syrdal, D. D. Tetrahedron Lett. 1972, 2455. (e) Corey, E. J.; Balanson, R. D. Tetrahedron Lett. 1973, 3153. (f) Lansbury, P. T.; Haddon, V. R.; Stewart, R. C. J. Am. Chem. Soc. 1974, 96, 896. (g) Breitholle, E. G.; Fallis, A. G. J. J. Org. Chem. 1978, 43, 1964. (h) Yates, P.; Stevens, K. E. Tetrahedron 1981, 37, 4401. (i) For a careful compilation of all syntheses published prior to 1983, see: Synform; Vol. 1; Quinkert, G., Ed.; Institut für Organische Chemie, University of Frankfurt: Frank-
furt/M, 1983, 115. (j) Horton, M.; Pattenden, G. Tetrahedron Lett. 1983, 24, 2125. (k) Solas, D.; Wolinsky, J. J. Org. Chem. 1983, 48, 670. (1) Horton, M.; Pattenden, G. J. Chem. Soc., Perkin Trans. 1 1984, 811. (m) Chen, Y.-J.; Chen, C.-M.; Lin, W.-Y. Tetrahedron Lett. 1993, 34, 2961. (n) Rigby, J. H.; Kirova-Snover, M. Tetrahedron Lett. 1997, 38, 8153. (o) Lee, H.-Y.; Lee, S.; Kim, D.; Kim, B. K.; Bahn, J. S.; Kim, S. Tetrahedron Lett. 1998, 39, 7713. (p) Crawford, J. J.; Kerr, W. J.; McLaughlin, M.; Morrison, A. J.; Pauson, P. L.; Thurston, G. J. Tetrahedron 2006, 62, 11360. (q) Fürstner, A.; Schlecker, A. Chem. Eur. J. 2008, 14, 9181. (r) Green, J. C.; Pettus, T. R. R. J. Am. Chem. Soc. 2011, 133, 1603.
(9) (a) Naegeli, P.; Kaiser, R. Tetrahedron Lett. 1972, 2013. (b) Büchi, G.; Hauser, A.; Limacher, J. J. Org. Chem. 1977, 42, 3323.
(10) For reviews, see: (a) Cornelisse, J. Chem. Rev. 1993, 93, 615. (b) Hoffmann, N. Synthesis 2004, 481. (c) Streit, U.; Bochet, C. G. Chimia 2008, 62, 962. (d) Streit, U.; Bochet, C. G. Beilstein J. Org. Chem. 2011, 7, 525.
(11) The diastereoselectivity of the photochemical key step was rationalized by assuming one preferred photoreactive conformation (exciplex) of rac-7 as shown in Scheme 5 (see also ref. 7).

Scheme 5 Photoreactive conformations of rac-7
(12) While no yield is given in ref. 7 for the Wolff-Kishner reduction of rac-9, Pettus and co-workers (ref. 8r) reported a yield of 52% for this transformation $\left[\mathrm{KOH}, \mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{O}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}\right.$, $125-215^{\circ} \mathrm{C}$.
(13) (a) Wender, P. A. Tetrahedron 2013, 69, 7529. (b) Chappell, D.; Russell, T. Org. Biomol. Chem. 2006, 4, 4409. (c) Winkler, J. D. Chem. Rev. 1996, 96, 167. (d) Hudlicky, T.; Reed, J. W. The Way of Synthesis; Wiley-VCH: Weinheim, 2007.
(14) Bach, T.; Hehn, J. P. Angew. Chem. Int. Ed. 2011, 50, 1000.
(15) (a) Enders, D.; Hoffmann, R. W. Chem. Unserer Zeit 1985, 19, 177. (b) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008. (c) Federsel, H.-J. Nat. Rev. Drug Disc. 2005, 4, 685.
(16) (a) Fuganti, C.; Serra, S. Synlett 1998, 1252. (b) Sugahara, T.; Ogasawara, K. Tetrahedron: Asymmetry 1998, 9, 2215. (c) Kimachi, T.; Takemoto, Y. J. Org. Chem. 2001, 66, 2700. (d) Ono, M.; Ogura, Y.; Hatogai, K.; Akita, H. Chem. Pharm. Bull. 2001, 49, 1581. (e) Hagiwara, H.; Okabe, T.; Ono, H.; Kamat, V. P.; Hoshi, T.; Suzuki, T.; Ando, M. J. Chem. Soc., Perkin Trans. 1 2002, 895. (f) Harmata, M.; Hong, X.; Barnes, C. L. Tetrahedron Lett. 2003, 44, 7261. (g) Lu, J.; Xie, X.; Chen, B.; Shea, X.; Pan, X. Tetrahedron: Asymmetry 2005, 16, 1435. (h) Kim, S.-G.; Kim, J.; Jung, H. Tetrahedron Lett. 2005, 46, 2437. (i) Kamal, A.; Malik, M. S.; Shaik, A. A.; Azeeza, S. Tetrahedron: Asymmetry 2007, 18, 2547. (j) Green, J. C.; Jimenez-Alonso, S.; Brown, E. R.; Pettus, T. R. R. Org. Lett. 2011, 13, 5500. (k) Serra, S. Tetrahedron: Asymmetry 2011, 22, 619. (1) Soga, K.; Kanematsu, M.; Yoshida, M.; Shishido, K. Synlett 2011, 1171. (m) Aggarwal, V. K.; Ball, L. T.; Carobene, S.; Connelly, R. L.; Hesse, M. J.; Partridge, B. M.; Roth, P.; Thomas, S. P.; Webster, M. P. Chem. Commun. 2012, 48, 9230. (n) Serra, S. Tetrahedron: Asymmetry 2014, 25, 1561. (o) Coffinier, R.; El Assal, M.; Peixoto, P. A.; Bosset, C.; Miqueu, K.; Sotiropoulos, J.-M.; Pouységu, L.; Quideau, S. Org. Lett. 2016, 18, 1120.
(17) Feng, J.; Zhu, G.; Liu, B.; Zhou, X. Chin. J. Chem. 2013, 31, 23.
(18) (a) Velder, J.; Robert, T.; Weidner, I.; Neudörfl, J.-M.; Lex, J.; Schmalz, H.-G. Adv. Synth. Catal. 2008, 350, 1309. (b) Dindaroglu, M.; Falk, A.; Schmalz, H.-G. Synthesis 2013, 45, 527. (c) Falk, A.; Göderz, A.-L.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2013, 52, 1576. For a recent application of such a ligand in enantioselective 1,4-addition, see: (d) Cernijenko, A.; Risgaard, R.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 9425.
(19) (a) Movahhed, S.; Westphal, J.; Dindaroglu, M.; Falk, A.; Schmalz, H.-G. Chem. Eur. J. 2016, 22, 7381. For recent reviews on hydrovinylation, see: (b) Hilt, G. Eur. J. Org. Chem. 2012, 4441. (c) RajanBabu, T. V.; Cox, G. A.; Lim, H. J.; Nomura, N.; Sharma, R. K.; Smith, C. R.; Zhang, A. In Comprehensive Organic Synthesis II; Vol. 5; Molander, G. A.; Knochel, P., Eds.; Elsevier: Amsterdam, 2014, 2nd ed. 1582-1620.
(20) (a) Lölsberg, W.; Ye, S.; Schmalz, H.-G. Adv. Synth. Catal. 2010, 352, 2023. (b) Lölsberg, W.; Werle, S.; Neudörfl, J.-M.; Schmalz, H.-G. Org. Lett. 2012, 14, 5996. For reviews on asymmetric Cucatalyzed allylic substitution using Grignard reagents, see:
(c) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008, 108, 2796. (d) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824. For an early key publication, see also: (e) Tissot-Croset, K.; Alexakis, A. Tetrahedron Lett. 2004, 45, 7375.
(21) Zhang, A.; RajanBabu, T. V. Org. Lett. 2004, 6, 3159.
(22) Gharat, L. A.; Gajera, J. M.; Khairatkar-Joshi, N.; Kattije, V. G. PCT Int. Appl WO 2009081222 A1, 2009.
(23) (a) Caglioti, L. Org. Synth. 1972, 52, 122. (b) Lesma, G.; Danieli, B.; Passarella, D.; Sacchetti, A.; Silvani, A. Tetrahedron: Asymmetry 2003, 14, 2453.
(24) For the complete assignment of all ${ }^{1} \mathrm{H}$ NMR signals of cedrene, see: Perez-Hernandez, N.; Gordillo-Roman, B.; Arrieta-Baez, D.; Cerda-Garcia-Rojas, C.-M.; Joseph-Nathan, P. Magn. Reson. Chem. 2015, 53, in press; DOI 10.1002/mrc. 4246.
(25) The analytical data of $\mathbf{1 4}$ are in agreement with the literature: Glennon, R. A.; Raghupathi, R.; Bartyzel, P.; Teitlr, M.; Leonhardt, S. J. Med. Chem. 1992, 35, 734.

