Direct reductive amination using triethylsilane and catalytic bismuth(III) chloride

Takehiko Matsumura, Masahisa Nakada*
Department of Chemistry and Biochemistry, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

A R T I C L E I N F O

Article history:

Received 21 December 2013
Revised 23 January 2014
Accepted 28 January 2014
Available online 6 February 2014

Keywords:

Bismuth(0)
Bismuth(III) chloride
Catalysis
Direct reductive amination
Triethylsilane

Abstract

Direct reductive amination (DRA) using triethylsilane (TESH) and catalytic bismuth(III) chloride (BiCl_{3}) is described for the first time. The use of TESH and BiCl_{3} provides easy handling, low cost, non-toxicity, and a mild Lewis acid activity, thereby meeting the demand for green and sustainable chemistry. The developed DRA is highly chemoselective and applicable to less-basic amines. The experimental results of this study revealed that the developed DRA could be catalyzed by BiCl_{3}, which was gradually reduced to $\mathrm{Bi}(0)$ or bismuth with a low valency by TESH , but $\mathrm{TESCl}, \mathrm{Bi}(0)$, and $\operatorname{Bi}(0)$ with TESCl catalyzed the DRA to some extent.

© 2014 Elsevier Ltd. All rights reserved.

Because many biologically active and pharmaceutically relevant compounds include amines and their derivatives, amine preparation methods are important. ${ }^{1}$ Therefore, a variety of preparation methods for amines have been reported, and the direct reductive amination (DRA) of aldehydes and ketones has been widely used for the preparation of primary, secondary, and tertiary amines, because it offers compelling advantages over other synthetic methods owing to brevity, wide availability of substrates and reagents, generally mild reaction conditions, and high functional group tolerance in some cases. DRA has another advantage in that intermediate imines do not need to be isolated. Thus, a mixture of an aldehyde or ketone and an amine is treated with a reducing reagent in a one-pot fashion. Therefore, DRA is not only useful but also effective for the reaction of aromatic amines with aliphatic carbonyl compounds that produce unstable imines. However, the reducing reagent should be carefully selected for a successful reaction because the reduction of aldehydes or ketones sometimes competes under the reaction conditions.

Catalytic hydrogenation with a platinum, palladium, or nickel catalyst has been used for DRA because it is an economical and effective method and has advantages in large-scale reactions. ${ }^{2}$ However, this method has not been applied to the reaction of compounds containing carbon-carbon multiple bonds and reducible functional groups such as nitro and cyano groups.

[^0]DRA using sodium cyanoborohydride $\left(\mathrm{NaBH}_{3} \mathrm{CN}\right)^{3}$ and sodium triacetoxyborohydride $\left[\mathrm{NaBH}(\mathrm{OAc})_{3}\right]^{1 \mathrm{c}, 4}$ offers the advantages of simplicity, wide availability of substrates, mild reaction conditions, and a tolerance to other functional groups. However, the former is highly toxic and generates toxic byproducts such as hydrogen cyanide (HCN) and sodium cyanide (NaCN). Moreover, it requires large quantities of excess amine. The latter requires corrosive acetic acid to carry out the reaction, ${ }^{5}$ and it is not compatible with aromatic and unsaturated ketones. ${ }^{4,6}$

Several reagents for DRA other than those mentioned above have been developed, including sodium ${ }^{6}$ or zinc borohydride with Brønsted acid or Lewis acid, ${ }^{7}$ nickel boride, ${ }^{8}$ pyridine- $\mathrm{BH}_{3},{ }^{9}$ 2-picoline- $\mathrm{BH}_{3},{ }^{10}$ 2,6-diborane-methanol, ${ }^{11}$ dimethylamine $\cdot \mathrm{BH}_{3},{ }^{12}$ t-BuMeiPrN $\cdot \mathrm{BH}_{3},{ }^{13}$ 5-ethyl-2-methylpyridine- $\mathrm{BH}_{3},{ }^{14}$ benzylamine. $\mathrm{BH}_{3},{ }^{15}$ borohydride exchange resin (BER), ${ }^{16}$ zinc-acetic acid, ${ }^{17}$ sodium borohydride-magnesium perchlorate, ${ }^{18}$ zinc borohy-dride-zinc chloride, ${ }^{19}$ silica gel-zinc borohydride, ${ }^{7 d}$ and dibutyltin chloride hydride. ${ }^{20}$ However, most of the reported DRAs call for filtration, aqueous workup, evaporation, or a combination of these techniques prior to purification. These operations typically serve to remove or decompose organic-insoluble metal salts introduced as reducing reagents such as $\mathrm{NaBH}_{3} \mathrm{CN}$ and $\mathrm{NaBH}(\mathrm{OAc})_{3}$.

Therefore, it is reasonable that the use of organic-soluble reducing reagents such as organosilanes with efficient catalysts could streamline DRA. ${ }^{21}$ It could also provide the advantage of multiple parallel solution phase synthesis, which requires a protocol with no pre-chromatography product manipulation. Although a variety of DRA have been reported, as described above, there have been
limited reports on DRA using organosilane as a reducing reagent. Organosilanes such as triethylsilane (TESH), in the presence of acid catalysts, are mild and useful reagent systems for reduction. However, trifluoroacetic acid (TFA)/TESH ${ }^{22}$ is not compatible with acid labile functional groups. The use of $\mathrm{TiCl}_{4} /$ organosilane ${ }^{23}$ is limited to aromatic aldehydes. $\mathrm{Bu}_{2} \mathrm{SnCl}_{2} / \mathrm{PhSiH}_{3}{ }^{24}$ is toxic, $\mathrm{Ti}(\mathrm{OiPr})_{4} /$ polymethylhydrosiloxane (PMHS) ${ }^{25}$ is water-sensitive, and organosilane with a hydrio-iridium complex ${ }^{26}$ is not compatible with substrates containing reducible functionalities. Hence, the development of improved methods using organosilanes is still anticipated. We herein report DRA using TESH and catalytic bismuth(III) chloride (BiCl_{3}).

The preparation of aryl- and diarylamine derivatives is important in research on structure-activity relationships. The DRA of aryl- and diarylamines is a rational approach from the standpoint described above, and DRAs, which use organosilane and a catalytic amount of $\mathrm{Ga}(\mathrm{OTf})_{3}{ }^{27}$ or $\mathrm{InCl}_{3},{ }^{28}$ have also been reported. However, both reagents are relatively expensive, and in the latter system, the unsaturated carbonyl compounds are potentially reduced. ${ }^{29}$ Moreover, it has been reported that $\operatorname{In}(\mathrm{III})$ results in teratogenicity in rats. ${ }^{30}$

It has been reported that diarylamines are included in many biologically active and pharmaceutically relevant compounds, ${ }^{31}$ as well as new materials, ${ }^{32}$ but DRAs of aldehydes and diphenylamine have been limited. Therefore, we started to screen various Lewis acids as a catalyst for the DRA of benzaldehyde and diphenylamine using TESH and Lewis acid. ${ }^{33}$

The DRA was examined using a $1: 1$ ratio of benzaldehyde and diphenylamine in the presence of 3.0 equiv of TESH and $10 \mathrm{~mol} \%$ Lewis acid in acetonitrile at room temperature (Table 1). TiCl_{4} (59\%, entry 1) and $\mathrm{SnCl}_{4}(68 \%$, entry 2) afforded the product in good yields. SbCl_{5} (entry 3), ZnCl_{2} (entry 4), PbCl_{2} (entry 5), and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (entry 6) did not afford any product, and $\mathrm{YCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was almost ineffective (10%, entry 7). The yields in the reactions with $\mathrm{Bi}(\mathrm{III})$ were high, except BiF_{3} (0%, entry 8). The yield was 99% when $10 \mathrm{~mol} \%$ of BiCl_{3} was used (entry 9), and use of the reduced amount ($5 \mathrm{~mol} \%$) reduced the yield to 34% (entry 10). The yields when BiBr_{3} and BiI_{3} were used were 79% (entry 11) and 81% (entry 12), respectively. Interestingly, $\mathrm{Bi}(\mathrm{OTf})_{3}$ (74%, entry 13), which is known to be a strong Lewis acid, was less effective than the other $\mathrm{Bi}(\mathrm{III})$ reagents (entries $9,11,12$). The DRA catalyzed by $\mathrm{InCl}_{3}{ }^{28}$ proceeded faster and afforded the product with 95% yield (entry 14); however, InCl_{3} is relatively expensive and has

Table 1

		$\xrightarrow[\mathrm{CH}_{3} \mathrm{CN}, \mathrm{rt}]{\begin{array}{c} \mathrm{Et}_{3} \mathrm{SiH}(3.0 \text { equiv) } \\ \text { catalyst }(10 \mathrm{~mol} \%) \end{array}}$	
Entry	Catalyst	Time (h)	Yield ${ }^{\text {a }}$ (\%)
1	TiCl_{4}	23	59
2	SnCl_{4}	23	68
3	SbCl_{5}	23	9
4	ZnCl_{2}	23	NR
5	PbCl_{2}	23	NR
6	$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$	13	NR
7	$\mathrm{YCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	13	10
8	BiF_{3}	13	NR
9	BiCl_{3}	13	99
$10^{\text {b }}$	BiCl_{3}	13	34
11	BiBr_{3}	13	79
12	BiI_{3}	13	81
13	$\mathrm{Bi}(\mathrm{OTf})_{3}$	13	74
14	InCl_{3}	10	95

[^1]Table 2

disadvantages, as described above. Consequently, the results listed in Table 1 indicate that the use of $\mathrm{BiCl}_{3}(10 \mathrm{~mol} \%)$ is the most effective and practical for the DRA of benzaldehyde and diphenylamine using TESH.

To the best of our knowledge, DRA using organosilanes and catalytic $\mathrm{Bi}($ III) has never been reported. In addition, $\mathrm{Bi}(\mathrm{III})$ has been used as an efficient green catalyst because of its many advantages, including its easy handling, low cost, nontoxic nature, and mild Lewis acid activity. ${ }^{34}$ Hence, we decided to study DRA using organosilanes and BiCl_{3}.

The reaction conditions for DRA using BiCl_{3} were examined (Table 2). The DRAs of benzaldehyde and diphenylamine using TESH in various solvents were screened. Trace amounts of the product were obtained in toluene (entry 2) and diethyl ether (entry 3), but no reactions occurred in dichloromethane (entry 4), THF (entry 5), DMF (entry 6), and DMSO (entry 7). Reactions with some organosilanes were also examined, but no reaction occurred with $\mathrm{Ph}_{3} \mathrm{SiH}$ (entry 8) and (EtO) $)_{3} \mathrm{SiH}$ (entry 9). The reactions with PhMe ${ }_{2} \mathrm{SiH}$ (entry 10), $\mathrm{Et}_{2} \mathrm{SiH}_{2}$ (entry 11), $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ (entry 12), PhMeSiH 2 (entry 13), and PhSiH_{3} (entry 14) afforded the product in yields of $71 \%, 72 \%, 42 \%, 95 \%$, and 97%, respectively. The results listed in Table 2 indicate that the DRA of benzaldehyde and diphenylamine exhibited the best performance when TESH or PhSiH_{3} in the presence of catalytic BiCl_{3} in acetonitrile as the solvent was used.

The DRAs of various aldehydes and ketones using TESH and BiCl_{3} were examined, as summarized in Table 3. The substituent effect of substrates was observed in the DRAs of arylaldehydes with diphenylamine (Table 3). The yield was reduced in the DRAs of o-chlorobenzaldehyde (entry 2) and o-ethynylbenzaldehyde (entry 3), which can be attributed to the steric hindrance suffered from the o-substituent. The yield in the DRA of p-nitrobenzaldehyde (entry 4) was 90%, while that of p-methoxybenzaldehyde (entry 5) decreased to 35% and the starting material remained. This difference can be explained by the electronic effect of the substituent, that is the electron-donating p-substituent deactivated the benzaldehyde. This electronic effect well explains the DRA of 3,4,5-trimethoxybenzaldehyde (entry 6) in which the product was formed with a low yield and the starting material remained again.

The above substituent effect is consistent with a reaction mechanism via the formation of iminium by the nucleophilic attack of diphenylamine to aldehyde and the subsequent reduction of the imine. Chloride, nitro group, and alkyne, which are reducible

Table 3
(30
${ }^{\text {a }}$ Isolated yield.
b $30 \mathrm{~mol} \%$ of BiCl_{3} was used.
functionalities, remained intact in the DRA, indicating that the DRA proceeded chemoselectively.

The DRAs of heterocyclic aldehydes, 2-furfural (entry 7) and 2-thienal (entry 8), afforded products in moderate yields. The catalyst may be deactivated by the chelate formation with aldehydes; however, as shown later, the DRAs of 2-furfural and 2-thienal with ethyl carbamate afforded products in high yields. Therefore, the reason for the low yields in entries 7 and 8 is not clear at this stage. The DRA of 3-pyridinealdehyde (entry 9) did not proceed, probably because of the salt formation with the catalyst.

The DRAs of the aliphatic aldehydes (entries 10 and 11) afforded products in excellent yields, although sterically hindered pivalaldehyde afforded the product with a yield of 32% (entry 12). The DRAs of cyclohexanone (entry 13) and acetophenone (entry 14) were also examined; the yield of the former was 28%, and the latter did not proceed.

The DRAs of benzaldehyde with aniline and its derivatives were examined, as illustrated in Table 4. Aniline (entry 1) and its derivatives with no 0 -substituents (entries $2-5$) afforded products with good to excellent yields (76%-quant). In the DRAs with o-substituted anilines, the yield depended on the substituent, that is the results in entries 6-10 indicate that the yield was reduced by a relatively large o-substituent because 2 -nitroaniline (entry 6) and 2,4 -dinitroaniline (entry 7) afforded the product in 50% and 0% yields, respectively. The different results for 2 -chloroaniline (79%, entry 8) and 2 -bromoaniline (52%, entry 9) are also explained by the size of the atoms. Notably, 2,4,6-trichloroaniline (entry 10) afforded the product in 68% yield, which was not prepared by the DRA with $\mathrm{NaBH}(\mathrm{OAc})_{3}$. The result with aminopyridine (entry 11) was consistent with the result obtained with 3-pyridinealdehyde (Table 3, entry 9). No DRA occurred for morphorine (entry 12) and its hydrochloride (entry 13), N,N-diethylamine (entry
$14)$, and p-anisidine (entry 15), and N-methylaniline (entry 16) afforded the product with only 9% yield probably because the increased basicity of amines could reduce the acidity of the catalyst or the reactivity of imines.

The results listed in Tables 3 and 4 also demonstrate the high chemoselectivity of the current DRA method, because the terminal alkyne, bromo, chloro, ester, fluoro, and nitro groups remained intact during the DRA. The results in Tables 3 and 4 also indicate that the DRAs of relatively weak amines such as non- N -alkylated arylamines and diaryl amines proceed with good to excellent yields.

The DRAs of carbonyl compounds with less basic amines such as carbamates and amides were examined (Table 5). The DRA of benzaldehyde with ethyl carbamate (entry 1) afforded the product in 96% yield, and phenyl carbamate (entry 2) afforded the product in 75% yield. The yields of the DRAs of acetamide (entry 3) and phenylamide (entry 4) were relatively low, 13% and 23%, respectively. The pKa values of carbamates and amides are not very different; hence, the reason for the different yields is unclear at this stage.

Interestingly, the DRAs of cyclic carbamates (entries 5 and 6) did not proceed. The reaction of propionaldehyde with ethyl carbamate afforded the product in 85% yield (entry 7), and the DRAs of pivalaldehyde (entry 8) and cyclohexanecarbaldehyde (entry 9) afforded the products in 89% and 92% yields, respectively. The DRAs of heterocyclic aldehydes, 2-furfural (entry 10) and 2-thienal (entry 11), were also performed, and the corresponding products were obtained in 66% and 85%, respectively. Finally, the DRA of cyclohexanone (entry 12) was examined, and the yield was 66\%, indicating the possibility of further extending the developed DRA.

As shown in Tables $3-5$, in DRAs using TESH and BiCl_{3} the reactions of less basic amines such as diarylamine, aniline derivatives, and carbamates proceeded in good to excellent yields, but it was difficult for the reactions of relatively basic amines such as piperidine and its hydrochloride salt, and N-methyl aniline, to proceed.

Table 4

(
${ }^{\text {a }}$ Isolated yield.

This unique chemoselectivity is different from other DRAs reported thus far. ${ }^{20,24,26-28,35,36}$

Additional studies were pursued to acquire information about the reaction mechanism of the DRA. Because it has been reported that triethylsilylchloride (TESCl) is formed in the reaction of TESH and $\mathrm{BiCl}_{3},{ }^{37}$ the DRA of benzaldehyde and diphenylamine with TESH was examined in the presence of $\operatorname{TESCl}(30 \mathrm{~mol} \%$) (Table 6, entry 2). As a result, the product was obtained with a yield of only 23%. This suggested that the DRA proceeded with TESCl to some extent, but the low yield indicated that TESCl did not play a major role in the DRA. It has also been suggested that $\operatorname{Bi}(0)$ is formed in the reaction of TESH and $\mathrm{BiCl}_{3} .{ }^{37}$ Indeed, black precipitates are formed in the reaction of TESH and BiCl_{3} in acetonitrile, but the DRA using commercially available $\mathrm{Bi}(0)$ powder afforded the product only in 4% yield (entry 3). Interestingly, the use of $\operatorname{Bi}(0)$ powder and TESCl (entry 4) afforded the product in 69% yield.

We also examined the reduction of (E)-1-(4-chlorophenyl)- N phenylmethanimine under the same reaction conditions in Table 6. As summarized in Table 7, the reductions were found to show the same trend in Table 6.

To the best of our knowledge, the DRA with TESH and the reduction of imine with TESH that were catalyzed by $\operatorname{Bi}(0)$ powder and TESCl have never been reported thus far. The mechanism of the DRA and the reduction catalyzed by $\mathrm{Bi}(0)$ powder and TESCl is interesting but is not clear at this stage; hence, further research on this reaction and its mechanism is now underway.

Wada et al. reported that the allylations of aldehydes using allylbromide and $\operatorname{Bi}(0)$ powder afford products in high to excellent yields. ${ }^{38}$ Therefore, to examine the nature of the black precipitates,
the allylation of benzaldehyde with allylbromide was carried out in the presence of the black precipitates formed by the reaction of TESH and BiCl_{3} (indicated as $\mathrm{Bi}(0)^{*}$ (time of the reaction)), that is after mixing TESH (10.0 equiv) and $\mathrm{BiCl}_{3}(100 \mathrm{~mol} \%$) in acetonitrile at room temperature for 3 min , all the volatile materials, including TESCl, were removed under reduced pressure, and the resultant black precipitates $\left(\operatorname{Bi}(0)^{*}(3 \mathrm{~min})\right)$ were used for the allylation (Table 8, entry 1).

As a result, the allylated product was obtained in 27% yield using $\operatorname{Bi}(0)^{*}$ (3 min), and the allylation using $\operatorname{Bi}(0)^{*}(1 \mathrm{~h})$ afforded the product in 98% yield (entry 2). These results suggest that $\mathrm{Bi}(0)$, or bismuth with a low valency, would be gradually formed by the reaction of TESH and BiCl_{3}. The results listed in Tables 6 and 7 indicate that BiCl_{3} acted as the catalyst for the DRA, while the concomitant reduction of BiCl_{3} with TESH gradually proceeded to afford $\operatorname{Bi}(0)$, but the DRA is catalyzed by TESCl and $\mathrm{Bi}(0)$ with TESCl in part.

In summary, we have developed a simple DRA procedure using TESH and catalytic $\mathrm{BiCl}_{3} .{ }^{39}$ The first use of BiCl_{3} with TESH for the DRA demonstrated a high chemoselectivity, wherein only less basic amines such as diarylamine, aniline derivatives, and carbamates afforded the products in good to excellent yields. Interestingly, Wada et al. reported the reductive etherification of carbonyl compounds using TESH and catalytic $\mathrm{BiCl}_{3} .{ }^{40}$ Hence, the DRA reported herein proceeds faster than the reductive etherification. BiCl_{3} has many advantages such as easy handling, low cost, nontoxic nature, and mild Lewis acid activity, meeting the demand of green and sustainable chemistry. Therefore, the DRA herein reported would be a good choice for certain cases. In this study,

Table 5

Entry	$\mathrm{R}^{1} \mathrm{COR}^{2}$	$\mathrm{R}^{3} \mathrm{NHCOR}^{4}$	Time (h)	Product	Yield ${ }^{\text {a }}$ (\%)	Entry	$\mathrm{R}^{1} \mathrm{COR}^{2}$	$\mathrm{R}^{3} \mathrm{NHCOR}^{4}$	Time (h)	Product	Yield ${ }^{\text {a }}$ (\%)
1			24	3 ac	96	7	$\widehat{\mathrm{Cl}}$		14	3ai	85
2			24	3ad	75	8	$>$		24	3aj	89
3			19	3ae	13	9			29	3ak	92
4			22	3af	23	10			21	3al	66
5			24	3 ag	NR	11			21	3am	85
6			24	3ah	NR	12			43	3an	66

${ }^{\text {a }}$ Isolated yield.

Table 6

Table 7

Entry	Catalyst	Yield $^{\text {a }}$ (\%)
1	$\mathrm{BiCl}_{3}(10 \mathrm{~mol} \%)$	86
2	$\mathrm{TESCl}(30 \mathrm{~mol} \%)$	29
3	$\mathrm{Bi}(10 \mathrm{~mol} \%)^{\mathrm{b}}$	17
4	$\mathrm{Bi}(10 \mathrm{~mol} \%)^{\mathrm{b}}+\mathrm{TESCl}(30 \mathrm{~mol} \%)$	89

${ }^{\text {a }}$ Isolated yield.
${ }^{\text {b }}$ Commercially available bismuth powder.
the experimental results indicated that $\mathrm{Bi}(0)$ would be formed by the reaction of TESH and BiCl_{3}, which has been suggested by other researchers, but $\operatorname{Bi}(0)$ thus formed was used for the allylation reported by Wada et al. for the first time. The experimental results in this study revealed that the developed DRA would be catalyzed by BiCl_{3}, which is gradually reduced to $\mathrm{Bi}(0)$ or bismuth with a low valency by TESH, but TESCl, $\mathrm{Bi}(0)$, and $\mathrm{Bi}(0)$ with TESCl catalyzed the DRA to some extent. Further mechanistic studies and applications of the developed DRA are now underway and will be reported in due course.

Table 8

Entry	Catalyst	Yield $^{\text {a }}$ (\%)
1	$\operatorname{Bi}(0)(3 \mathrm{~min})^{*}(100 \mathrm{~mol} \%)^{\mathrm{b}}$	27
2	$\operatorname{Bi}(0)(1 \mathrm{~h})^{*}(100 \mathrm{~mol} \%)^{\mathrm{b}}$	98
a Isolated yield.		
b		

Acknowledgments

This work was financially supported in part by Waseda University Grant for Special Research Projects, The Grant-in-Aid for Scientific Research on Innovative Areas 'Organic Synthesis based on Reaction Integration, Development of New Methods and Creation of New Substances' (No. 2105), Grant for Scientific Research (B) (25293003), and Grants for Excellent Graduate Schools (Practical Chemical Wisdom), MEXT, Japan.

Supplementary data

Supplementary data (full characterization of new compounds) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2014.01.132.

References and notes

1. For recent reviews see: (a) Margaretha, P. Sci. Synth. 2008, 40a, 65; (b) Tripathi, R. P.; Verma, S. S.; Pandey, J.; Tiwari, V. K. Curr. Org. Chem. 2008, 12, 1093; (c) Abdel-Magid, A. F.; Carson, K. G.; Haris, B. D.; Maryanoff, C. A.; Shah, R. D. J. Org. Chem. 1996, 61, 3849-3862.
2. (a) Emerson, W. S. Org. React. (N.Y.) 1948, 4, 174-255; (b) Johnson, H. E.; Crosby, D. G. J. Org. Chem. 1962, 27, 2205; (c) Klyuev, M. V.; Khidekel, M. L. Russ. Chem. Rev. (Engl. Transl.) 1980, 49, 14-27.
3. (a) Baxter, E. W.; Reitz, A. B. Org. React. 2002, 59, 1; (b) Lewin, G.; Schaeffer, C. Heterocycles 1998, 48, 171-174.
4. (a) Abdel-Magid, A. F.; Maryanoff, C. A.; Carson, K. G. Tetrahedron Lett. 1990, 31, 5595-5598; (b) Kim, H.-O.; Carrol, B.; Lee, M. S. Synth. Commun. 1997, 27,

2505-2515; (c) Abdel-Magid, A. F.; Mehrman, S. J. Org. Process Res. Dev. 2006, 10, 971-1031; (d) Markey, M. D.; Fu, Y.; Kelly, T. R. Org. Lett. 2007, 9, 32553257.
5. Nagaiah, K.; Kumar, V. N.; Rao, R. S.; Reddy, B. V. S.; Narsaiah, A. V.; Yadav, J. S. Synth. Commun. 2006, 36, 3345-3352.
6. (a) Lane, C. F. Synthesis 1975, 135-147.
7. (a) Heydari, A.; Khaksar, S.; Esfandyari, M.; Tajbakhsh, M. Tetrahedron 2007, 63, 3363-3366; (b) Kotsuki, H.; Yoshimura, N.; Kadota, I.; Ushio, Y.; Ochi, M. Synthesis 1990, 401-402; (c) Bhattacharyya, S.; Chatterjee, A.; Williamson, J. S. Synth. Commun. 1997, 27, 4265-4274; (d) Ranu, B. C.; Majee, A.; Sarkar, A. J. Org. Chem. 1998, 63, 370-373.
8. Itsuno, S.; Sakurai, Y.; Ito, K. Chem. Commun. 1988, 995.
9. (a) Pelter, A.; Rosser, R. M.; Mills, S. J. Chem. Soc., Perkin Trans. 1 1984, 717-720; (b) Moorman, A. E. Synth. Commun. 1993, 23, 789-795; (c) Parker, J. S.; Bowden, S. A.; Firkin, C. R.; Moseley, J. D.; Murray, P. M.; Welham, M. J.; Wisedale, R.; Young, M. J.; Moss, W. O. Org. Process Res. Dev. 2003, 7, 67-73; (d) Moseley, J. D.; Moss, W. O.; Welham, M. J. Org. Process Res. Dev. 2001, 5, 491-497; (e) Bomann, M. D.; Guch, I. C.; DiMare, M. J. Org. Chem. 1995, 60, 5995-5996.
10. (a) Sato, S.; Sakamoto, T.; Miyazawa, E.; Kikugawa, Y. Tetrahedron 2004, 60, 7899-7906; (b) Uchiyama, S.; Inaba, Y.; Matsumoto, M.; Suzuki, G. Anal. Chem. 2009, 81, 485-489.
11. Nose, A.; Kudo, T. Chem. Pharm. Bull. 1986, 34, 4817-4820.
12. Heydari, A.; Tavakol, H.; Aslanzadeh, S.; Azarnia, J.; Ahmadi, N. Synthesis 2005, 627-633.
13. Brown, H. C.; Kanth, J. V. B.; Dalvi, P. V.; Zaidlewicz, M. J. Org. Chem. 1999, 64, 6263-6274.
14. Burkhardt, E. R.; Coleridge, B. M. Tetrahedron Lett. 2008, 49, 5152-5155.
15. Peterson, M. A.; Bowman, A.; Morgan, S. Synth. Commun. 2002, 32, 443-448.
16. Yoon, N. M.; Kim, E. G.; Son, H. S.; Choi, J. Synth. Commun. 1993, 23, 1595-1599.
17. Micovic, I. V.; Ivanovic, M. D.; Piatak, D. M.; Bojic, V. D. Synthesis 1991, 10431045.
18. Brussee, J.; van Benthem, R. A. T. M.; Kruse, C. G.; Van der Gen, A. Tetrahedron: Asymmetry 1990, 1, 163-166.
19. Bhattacharyya, S.; Chatterjee, A.; Duttachowdhury, S. K. J. Chem. Soc., Perkin Trans. 1 1994, 1-2.
20. (a) Shibata, I.; Suwa, T.; Sugiyama, E.; Baba, A. Synlett 1998, 1081-1082; (b) Shibata, I.; Moriuchi-Kawakami, T.; Tanizawa, D.; Suwa, T.; Sugiyama, E.; Matsuda, H.; Baba, A. J. Org. Chem. 1998, 63, 383-385; (c) Kangasmetsä, J. J.; Johnson, T. Org. Lett. 2005, 7, 5653-5655.
21. Bhattacharyya, S.; Fan, L.; Vo, L.; Labadie, J. Comb. Chem. High Throughput Screening 2000, 3, 117-124.
22. (a) Webb, R. R.; Barker, P. L.; Baier, M.; Reynolds, M. E.; Robarge, K. D.; Blackburn, B. K.; Tischler, M. H.; Weese, K. J. Tetrahedron Lett. 1994, 35, 21132116; (b) Dube, D.; Scholte, A. A. Tetrahedron Lett. 1999, 40, 2295-2298; (c)

Chen, B.-C.; Sundeen, J. E.; Guo, P.; Bednarz, M. S.; Zhao, R. Tetrahedron Lett. 2001, 42, 1245-1246.
23. Miura, K.; Ootsuka, K.; Suda, S.; Nishikori, H.; Hosomi, A. Synlett 2001, 1617-1619.
24. (a) Apodaca, R.; Xiao, W. Org. Lett. 2001, 3, 1745-1748; (b) Kato, H.; Shibata, I.; Yasaka, Y.; Tsunoi, S.; Yasuda, M.; Baba, A. Chem. Commun. 2006, 4189-4191.
25. Chandrasekhar, S.; Reddy, C. R.; Ahmed, M. Synlett 2000, 1655-1657.
26. (a) Mizuta, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2005, 70, 2195-2199; (b) Lai, R.-Y.; Lee, C.-I.; Liu, S.-T. Tetrahedron 2008, 64, 1213-1217.
27. Prakash, G. K. S.; Do, C.; Mathew, T.; Olah, G. A. Catal. Lett. 2010, 137, 111-117.
28. (a) Lee, O.-Y.; Law, K.-L.; Ho, C.-Y.; Yang, D. J. Org. Chem. 2008, 73, 8829-8837; (b) Lee, O.-Y.; Law, K.-L.; Yang, D. Org. Lett. 2009, 11, 3302-3305.
29. Shibata, I.; Kato, H.; Ishida, T.; Yasuda, M.; Baba, A. Angew. Chem., Int. Ed. 2004, 711-714.
30. Nakajima, M.; Takahashi, H.; Sasaki, M.; Kobayashi, Y.; Awano, T.; Irie, D.; Sakemi, K.; Ohno, Y.; Usami, M. Teratogen. Carcin. Mut. 1998, 18, 231-238.
31. For examples: Organic Chemical Drugs and Their Synonyms (an international survey); Negwer, M., Ed., 7th ed.; Akademie GmbH: Berlin, 1994.
32. For examples: (a) Dao, L. H.; Nguyen, M. T.; Paynter, R. Synth. Mat. 1991, 41-43, 649-653; (b) Hayashi, S.; Asano, A.; Koizumi, T. RSC Adv. 2013, 3, 7375-7380.
33. Our recent studies using organosilanes, see: (a) Matsumura, T.; Niwa, T.; Nakada, M. Tetrahedron Lett. 2012, 53, 4313-4316; (b) Matsumura, T.; Nakada, M. Tetrahedron Lett. 2014, 55, 1412-1415.
34. Gaspard-Iloughmane, H.; Le Roux, C. In Acid Catalysis in Modern Organic Synthesis; Yamamoto, H., Ishihara, K., Eds.; Wiley-Interscience: New York, 2008; Vol. 2, pp 551-588.
35. Smith, C. A.; Cross, L. E.; Hughes, K.; Davis, R. E.; Judd, D. B.; Merritt, A. T. Tetrahedron Lett. 2009, 50, 4906-4911.
36. Das, B. G.; Ghorai, P. Chem. Commun. 2012, 8276-8278.
37. (a) Bajwa, J. S.; Jiang, X.; Slade, J.; Prasad, K.; Repič, O.; Blacklock, T. J. Tetrahedron Lett. 2002, 43, 6709-6713; (b) Evans, P. A.; Cui, J.; Gharpure, S. J. Org. Lett. 2003, 5, 3883-3885.
38. Wada, M.; Ohki, H.; Akiba, K.-Y. Bull. Chem. Soc. Jpn. 1990, 63, 1738-1747.
39. General Procedure: To a stirred suspension of BiCl_{3} (0.018 mmol) in $\mathrm{CH}_{3} \mathrm{CN}$ $(1 \mathrm{~mL})$ was added TESH $(0.53 \mathrm{mmol})$ at room temperature, and after 3 min , to the reaction mixture were added a solution of aldehyde (0.177 mmol) and a solution of aniline $(0.177 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ successively. The reaction mixture was stirred at room temperature under argon atmosphere. After starting material disappeared, to the reaction mixture was added saturated aqueous NaHCO_{3} solution, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The residue was purified by flash silica gel column chromatography.
40. Wada, M.; Nagayama, S.; Mizutani, K.; Hiroi, R.; Miyoshi, N. Chem. Lett. 2002, 248-249.

[^0]: * Corresponding author. Tel./fax: +81 352863240.

 E-mail address: mnakada@waseda.jp (M. Nakada).

[^1]: ${ }^{\text {a }}$ Isolated yield.
 ${ }^{\text {b }} \mathrm{BiCl}_{3}(5 \mathrm{~mol} \%)$ was used.

