Optimization of Phenyl-Substituted Benzimidazole Carboxamide Poly(ADP-Ribose) Polymerase Inhibitors: Identification of (S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492), a Highly Potent and Efficacious Inhibitor

Thomas D. Penning,,${ }^{\dagger}{ }^{\dagger}$ Gui-Dong Zhu, ${ }^{\dagger}$ Jianchun Gong, ${ }^{\dagger}$ Sheela Thomas, ${ }^{\dagger}$ Viraj B. Gandhi, ${ }^{\dagger}$ Xuesong Liu, ${ }^{\dagger}$ Yan Shi, ${ }^{\dagger}$ Vered Klinghofer, ${ }^{\dagger}$ Eric F. Johnson, ${ }^{\dagger}$ Chang H. Park, ${ }^{\dagger}$ Elizabeth H. Fry, ${ }^{\dagger}$ Cherrie K. Donawho, ${ }^{\dagger}$ David J. Frost, ${ }^{\dagger}$ Fritz G. Buchanan, ${ }^{\dagger}$ Gail T. Bukofzer, ${ }^{\dagger}$ Luis E. Rodriguez, ${ }^{\dagger}$ Velitchka Bontcheva-Diaz, ${ }^{\dagger}$ Jennifer J. Bouska, ${ }^{\dagger}$ Donald J. Osterling, ${ }^{\dagger}$ Amanda M. Olson, ${ }^{\dagger}$ Kennan C. Marsh, ${ }^{\S}$ Yan Luo, ${ }^{\dagger}$ and Vincent L. Giranda ${ }^{\dagger}$
${ }^{\dagger}$ Cancer Research, ${ }^{\star}$ Structural Biology, and ${ }^{\text {§ }}$ Pharmacokinetics Global Pharmaceutical Research \& Development, Abbott Laboratories 100 Abbott Park Road, Abbott Park, Illinois 60064

Received November 30, 2009

Abstract

We have developed a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide poly(ADP-ribose) polymerase (PARP) inhibitors with excellent PARP enzyme potency as well as single-digit nanomolar cellular potency. These efforts led to the identification of (S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1 H -benzimidazole-4-carboxamide (22b, A-966492). Compound 22b displayed excellent potency against the PARP-1 enzyme with a K_{i} of 1 nM and an EC_{50} of 1 nM in a whole cell assay. In addition, 22b is orally bioavailable across multiple species, crosses the blood-brain barrier, and appears to distribute into tumor tissue. It also demonstrated good in vivo efficacy in a B16F10 subcutaneous murine melanoma model in combination with temozolomide and in an MX-1 breast cancer xenograft model both as a single agent and in combination with carboplatin.

Introduction

The poly(ADP-ribose) polymerases (PARPs) ${ }^{a}$ are an 18-member family of nuclear enzymes that share a common catalytic PARP homology domain and are involved in the detection and repair of DNA damage. Only PARP-1 and PARP-2 contain a DNA-binding domain, which facilitates localization to the site of DNA damage. ${ }^{\text {1a }}$ PARP-1 and PARP-2 catalyze the transfer of ADP-ribose units from intracellular nicotinamide adenine dinucleotide $\left(\mathrm{NAD}^{+}\right)$to nuclear acceptor proteins, leading to the formation of ADPribose polymers. This is a key process for the repair of DNA damage caused by DNA-damaging chemotherapeutic agents and radiation via base-excision repair (BER)-mediated single strand break repair. ${ }^{1}$ Thus, PARP-1 (and to a lesser extent, PARP-2) contributes to the resistance that often develops after cancer therapy. ${ }^{2}$ Recent preclinical as well as clinical data have now been reported for several inhibitors of PARP-1, ${ }^{3-12}$ including clinical compounds 2-[(R)-2-methyl-pyrrolidin-2-yl]-1 H -benzimidazole-4-carboxamide (ABT-888, veliparib, 1b), ${ }^{4 \mathrm{a}, 12 \mathrm{~b}}$ 4-(4-(4-(cyclopropanecarbonyl)piperazine-1-carbonyl)-3-fluorobenzyl)phthalazin-1(2H)-one (AZD2281, olaparib, 2a), ${ }^{9}$ 8-fluoro-5-(4-((methylamino)methyl)phenyl)-2,3,4,6-tetrahydro-1 H -azepino[5,4,3-cd]indol-1-one (AG014699, 2b), ${ }^{10}$ and $2-\{4-[(3 S)$-piperidin-3-yl]phenyl $\}-2 H$-indazole-7-carboxamide (MK-4827, 2c), ${ }^{8}$ demonstrating the ability

[^0]of these inhibitors to not only enhance the efficacy of multiple chemotherapeutics but also demonstrate single agent efficacy in cancers with deficiencies in DNA-repair genes such as BRCA1 and BRCA2. BRCA1 and BRCA2 mutations are associated with homologous recombination (HR)-mediated double strand break repair defects, and inhibition of single strand break repair via PARP inhibition results in a synthetic lethality. ${ }^{13}$ In addition to utility in oncology indications, hyperactivation of PARP-1 as a response to more extensive DNA damage has been associated with several other diseases, including stroke, myocardial ischemia, arthritis, colitis, and allergic encephalomyelitis. ${ }^{1 \mathrm{a}}$ We have previously described optimization efforts on a series of potent benzimidazole-containing PARP inhibitors, including 1a, ${ }^{12 \mathrm{a}}$ culminating in the identification of a clinical candidate $\mathbf{1 b} .^{12 b}$ This compound demonstrated significant oral efficacy in a number of preclinical rodent tumor models, potentiating the efficacy of cytotoxic agents such as temozolomide (TMZ), cisplatin, carboplatin, and cyclophosphamide, and has currently progressed into human phase II clinical trials. In this report, we describe a series of phenylpyrrolidine- and phenylpiperidine-substituted benzimidazole carboxamide PARP-1/2 inhibitors. These efforts resulted in the identification of benzimidazole analogue $\mathbf{2 2 b}$, a potent inhibitor of both PARP- 1 and PARP-2 enzymes ($K_{\mathrm{i}}=1$ and 1.5 nM) with excellent potency in C 41 whole cells $\left(\mathrm{EC}_{50}=1 \mathrm{nM}\right)$. In addition, 22b has excellent pharmaceutical properties and has demonstrated in vivo efficacy in preclinical mouse tumor models in combination with TMZ and carboplatin,

Scheme 1^{a}

${ }^{a}$ Reagents and conditions: (a) CDI, pyridine, DMF or $(\mathrm{CO})_{2} \mathrm{Cl}_{2}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{TEA}$. (b) (1) HOAc , heat; (2) $\mathrm{HCl}, \mathrm{MeOH}$ or $\mathrm{TFA}, \mathrm{CH}_{2} \mathrm{Cl}{ }_{2}$. (c) $\mathrm{NaBH}_{3} \mathrm{CN}$ or $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{C}(\mathrm{O}), \mathrm{MeOH}, \mathrm{AcOH}$. (d) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$. (e) $\mathrm{H}_{2}, \mathrm{PtO}_{2}$ or Pt / C, AcOH . (f) Compound 36, Pd (dba) , $\mathrm{Pd}(\text { o-tol })_{3}, \mathrm{DMF}, \mathrm{Et}_{3} \mathrm{~N}$, heat or $37, \mathrm{PdCl}_{2}(\mathrm{dppf})_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$, dioxane, heat.
as well as single agent activity in a BRCA1-deficient MX-1 tumor model.

2a (olaparib)

2c (MK-4827)

Chemistry

The benzimidazole ring system was constructed as described previously. ${ }^{12,14}$ As shown in Scheme 1, a diaminobenzamide 27 was coupled with a pyrrolidine- or piperidine-containing benzoic acid 28 using either carbonyldiimidazole (CDI) or by coupling of the respective acid chloride to give amide 29. Refluxing in AcOH provided the benzimidazole, which was deprotected under acidic conditions to give 30. Reductive amination with an appropriate aldehyde or ketone provided the pyrrolidine or piperidine tertiary amines 31. Alternately, 27 was reacted with pyridine-containing benzaldehyde 32 in the presence of Pd / C to give benzimidazole 33. Reduction of the pyridyl ring using PtO_{2} or Pt / C provided the piperidine $\mathbf{3 0}$. Pyridyl compounds 33 were also synthesized by coupling of bromobenzoic acids 34 with 27, followed by benzimidazole formation in refluxing AcOH . Stille coupling with pyridyl stannanes 36 or Suzuki coupling of the analogous pyridyl boronic acids 37 provided pyridines $\mathbf{3 3}$. Individual enantiomers of 22a,b and 25a,b were synthesized as shown in Scheme 2. Aryl bromide $\mathbf{3 8}$ was coupled with pyrrole boronic acid $\mathbf{3 9}$ under

Suzuki conditions to give pyrrole 40. Reduction using Pt / C provided pyrrolidine 41. Chiral chromatography using a Whelk O column provided, after saponification of the esters, (R) enantiomer 42a and (S)-enantiomer 42b. Coupling of the acids with diamine 27, closure to the benzimidazole in refluxing AcOH , and removal of the tert-butoxycarbonyl (Boc)-protecting group using TFA gave (R)-enantiomer 22a and (S)-enantiomer 22b. A similar route was employed for the synthesis of piperidine analogues 25a,b. Bromide 38 was coupled with pyridyl stannane $\mathbf{4 3}$ under Stille conditions to provide pyridine 44. Reduction of the pyridine ring and carbobenzyloxy (CBZ) protection gave $\mathbf{4 5}$. Chiral chromatography using a Chiralcel OJ column provided, after saponification, (R)-enantiomer 46a and (S)-enantiomer 46b. Benzimidazole ring formation as described above for the pyrrolidine analogues and removal of the CBZ-protecting group under hydrogenolysis conditions gave (R)-enantiomer 25a and (S)-enantiomers 25b. Absolute configurations were determined by alternate asymmetric synthetic routes to be described in a separate publication. ${ }^{15}$

Results and Discussion

We previously described a series of potent benzimidazolecontaining PARP-1 inhibitors, culminating in the identification of clinical candidate $\mathbf{1 b} .^{12}$ In this report, we sought to extend the substituent at the 2-position of the benzimidazole scaffold further into the adenosine-ribose binding pocket in an effort to not only expand upon the structure-activity relationship (SAR) of the benzimidazole class and modify associated physiochemical properties but also to increase potency by exploiting additional binding interactions in this binding pocket as previously described for other series of PARP inhibitors. ${ }^{16}$

The simple phenyl-substituted analogue 3a (Table 1) showed modest enzyme activity, however, relatively poor cellular potency. As we have described previously in the benzimidazole class, ${ }^{12}$ cellular penetration could be improved

Scheme $\mathbf{2}^{a}$

42a
42
|

$+$

42b

22a

22b

${ }^{a}$ Reagents and conditions: (a) Compound 39, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}$. (b) $5 \% \mathrm{Pt} / \mathrm{C}, \mathrm{H}_{2}, \mathrm{HOAc}$. (c) (1) Chiral HPLC, Whelk O column; (2) LiOH. (d) (1) CDI, DMF, pyridine, 27; (2) HOAc, heat. (e) TFA. (f) Compound 43, $\mathrm{Pd}_{2}(\mathrm{dba})_{3},(\mathrm{o}-\mathrm{tol})_{3} \mathrm{P}, \mathrm{DMF}$. (g) (1) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{HCl}$; (2) $\mathrm{CBZ}-\mathrm{Cl}, \mathrm{K}_{2} \mathrm{CO} 3$, dioxane, $\mathrm{H}_{2} \mathrm{O}$. (h) (1) Chiralcel OJ column; (2) LiOH . (i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}$.
by introducing basic amine solubilizing groups exemplified by the known ${ }^{17}$ benzylic amine 3b. Therefore, we wanted to expand upon this class by introducing pyrrolidine and piperidine substituents on this phenyl ring in place of simple benzylic amines. We also hoped to increase potency by exploiting additional hydrogen-binding interactions with such residues as Asp766 and Glu763, as has been previously demonstrated. ${ }^{16-18}$ Introduction of a pyridine, although weakly basic, improved both enzyme and cellular potencies significantly (4a-c). (Generally, a 1.5-2-fold difference in K_{i} and IC_{50} values are significant). However, these analogues typically had rather poor solubility properties; thus, we focused our attention on saturated, nitrogen-containing ring systems. 2-Pyrrolidine analogue 5 showed excellent enzyme potency and improved cellular potency vs pyridines $\mathbf{4 a}-\mathbf{c}$. However, the 3-pyrrolidine analogue $\mathbf{6}$ demonstrated rather poor cellular activity. N-Methylation maintained good potency for 2-pyrrolidine 7, while restoring cellular potency in 3-pyrrolidine 8. Larger N-alkyl groups exemplified by isopropyl analogues $\mathbf{9}$ and $\mathbf{1 0}$ showed a modest decrease in both enzyme and cellular potencies. Within the piperidine series, 2-substituted analogue $\mathbf{1 1}$ demonstrated excellent PARP-1 enzyme and cellular potency, whereas the 3- and 4 -substituted analogues $\mathbf{1 2}$ and $\mathbf{1 3}$ showed only modest cellular activity. As with the pyrrolidines, N-methylation maintained good potency for 2 -substituted analogue 14 , while enhancing the potencies for $\mathbf{1 5}$ and $\mathbf{1 6}$. Also, larger groups such as isopropyl tended to modestly decrease cellular potency
(17-19). Additional SAR investigations focused on the most promising classes, the N -unsubstituted 2-pyrrolidine and 2-piperidine series. Our previous work ${ }^{12 \mathrm{a}}$ demonstrated little tolerance for elaboration at the 5 - or 6 - positions of the benzimidazole scaffold. This was indeed confirmed, with 6-fluoro analogues 20 and 24 (Table 2) maintaining good potency, while 6-chloro analogue 21 showed a significant drop in potency. A fluorine was also incorporated into the 2-position of the phenyl ring and was well-tolerated, with both $\mathbf{2 2}$ and $\mathbf{2 5}$ maintaining good enzyme and cellular potencies. The addition of fluorine to both benzimidazole and phenyl rings typically improved both enzyme and cellular potency, with $\mathbf{2 3}$ and $\mathbf{2 6}$ demonstrating enzyme potencies of 2 nM and cellular potencies of 1 and 2 nM , respectively. The individual enantiomers of the racemic monofluoro pyrrolidine and piperidine analogues $\mathbf{2 2}$ and $\mathbf{2 5}$ were also evaluated. While there was little difference between the two enantiomers of $\mathbf{2 5}$, the (S)-enantiomer of $\mathbf{2 2}(\mathbf{2 2 b})$ showed superior potency in both PARP enzyme and cellular assays as compared to the respective (R)-enantiomer (22a), highlighted by the $1 \mathrm{nM} K_{\mathrm{i}}$ and EC_{50} values that exhibited by $\mathbf{2 2 b}$. This is one of the most potent PARP inhibitors that we have identified to date. To aid in the further differentiation of these enantiomers, the pharmacokinetic properties of 22a,b and 25a,b were studied (Table 3). In the CD-1 mouse, (S)-enantiomers 22b and 25b showed only modestly higher oral exposures, with AUCs of 1.2 and $1.7 \mu \mathrm{~g} \mathrm{~h} / \mathrm{mL}$ vs 1.0 and $1.6 \mu \mathrm{~g} \mathrm{~h} / \mathrm{mL}$ for 22a and 25a, respectively. (S)-Enantiomers 22b and 25b were

Table 1
Compd
${ }^{a}$ Average of ≥ 2 determinations unless noted by *.
further characterized in Sprague-Dawley rats, beagle dogs, and cynomolgus monkeys, with 22b demonstrating oral bioavailabilities of $34-72 \%$ and half-lives of $1.7-1.9 \mathrm{~h}$ and $\mathbf{2 5 b}$ with oral bioavailabilities of $39-80 \%$ and half-lives of $2-5 \mathrm{~h}$. In addition, all four compounds 22a,b and 25a,b were shown to cross the blood-brain barrier in CD-1 mice (Table 4),

Table 2

Compd	R	X	Y	PARP-1 ($\mathrm{K}_{\mathrm{i}}, \mu \mathrm{M}$)	$\begin{gathered} \text { Cellular } \\ \left(E C_{50}, \mu \mathrm{M}\right)^{\mathrm{a}} \end{gathered}$
20		-F	-H	0.002	0.002
21		--Cl	-H	0.009	0.026
22		-H	-F	0.003	0.004
22a		-H	-F	0.004	0.009
22b		-H	-F	0.001	0.001
23		-F	-F	0.002	0.001
24		-F	-H	0.003	0.001
25		-H	-F	0.006	0.006
25a		-H	-F	0.009	0.003
25b		-H	-F	0.006	0.006
26		-F	-F	0.002	0.002*

${ }^{a}$ Average of ≥ 2 determinations unless noted by *.

Table 3. Multispecies Pharmacokinetics of 22a,b and 25a,b

compd	species	dose ${ }^{a}$	\% F	$\begin{aligned} & T_{1 / 2} \\ & (\text { iv) } \end{aligned}$	$\begin{aligned} & \mathrm{AUC} \\ & (\mathrm{po})^{c} \end{aligned}$	$\begin{aligned} & C_{\max } \\ & (\mathrm{po})^{d} \end{aligned}$	$V_{\beta}{ }^{e}$	CL^{f}
22a	mouse	10	36	0.9	1.0	0.5	4.6	3.6
22b	mouse	10	36	0.8	1.2	0.6	3.3	2.9
	rat	5	55	1.9	1.7	0.3	4.1	1.7
	dog	2.5	72	1.7	1.1	0.5	3.6	1.7
	monkey	2.5	34	1.8	0.2	0.03	9.2	4.1
25a	mouse	10	100	1.4	1.6	0.3	15	7.3
25b	mouse	10	63	1.3	1.7	0.5	6.6	3.6
	rat	5	80	4.5	1.8	0.2	14	2.3
	dog	2.5	39	2.0	0.3	0.1	9.3	3.4
	monkey	2.5	61	5.0	0.75	0.1	15	2.2

with 22a,b showing plasma-to-brain ratios of $\sim 2: 1$, while 25a,b demonstrated approximately a $1: 1$ ratio. The ability of these compounds to penetrate the brain was considered a desirable property due to the role that TMZ plays in the treatment of gliomablastomas and the potential ability to enhance the efficacy of TMZ in a human clinical setting.

Selected compounds were also tested against the closely related PARP-2 enzyme, and all had similar K_{i} values (i.e., $1-26 \mathrm{nM})$. This is consistent with what we have previously reported that the majority of compounds within the benzimidazole class showed similar potencies against both enzymes. ${ }^{12}$

An X-ray cocrystal structure of PARP-1 with $\mathbf{2 5 b}$ is shown in Figure 1. The key interactions of the benzimidazole carboxamide core in the PARP-1 active site, consistent with previous
literature reports, are highlighted. Both Ser-904 and Gly-863 are involved in key hydrogen-bond interactions with the carboxamido group of $\mathbf{2 5 b}$, with a π-stacking interaction between the benzimidazole ring and the Tyr-907. In addition, Glu-988 is involved in a water-mediated hydrogen bond with the -NH of the benzimidazole ring system. There is also an interaction of the piperidine nitrogen with Asp-766 and a water molecule, which may contribute to the enhanced potency of some of these analogues. The lack of this interaction

Table 4. Mouse Plasma/Brain PK

		AUC (po) ${ }^{b}$	
compd	dose a	plasma	brain
22a	30	4.2	1.8
22b	30	9.8	4.2
25a	30	5.8	6.3
25b	30	9.9	9.1

${ }^{a} \mathrm{mg} / \mathrm{kg} .{ }^{b} \mu \mathrm{~g} \mathrm{~h} / \mathrm{mL}$.

Figure 1. X-ray cocrystal structure of PARP-1 and $\mathbf{2 5 b}$.

(a)

due to steric interactions may also contribute to the somewhat reduced potency of the more hindered isopropyl substituted analogues. In addition, there are also two water molecules in the vicinity of the fluorine atom, which may result in favorable dipolar interactions.

In vivo, 22a,b both demonstrated significant enhancement of the efficacy of TMZ in a murine B 16 F 10 syngeneic melanoma model (Figure 2A,B), with the 22b combination groups showing superior efficacy. The B16F10 model, while relatively resistant to most chemotherapeutics, is moderately sensitive to TMZ, and this sensitivity can be enhanced with PARP inhibitors. Compounds 22a,b were administered orally on days $6-10$ at doses of 3,10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day, bid, while TMZ was administered orally at $50 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, qd, on days $6 \mathbf{- 1 0}$. Compound 22b significantly enhanced the efficacy of TMZ in a dose-dependent manner. Significant potentiation was observed as early as day 12, with TGI (tumor growth inhibition) values (vs vehicle control) of 35,38 , and 49% for the 3,10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 2 b}$ combination groups, respectively, as compared to 14% for TMZ alone. All three dosing groups continued to differentiate from the TMZ group out to day 18, with TGI values (vs TMZ control) of 43,52 , and 72% for the 3,10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 2 b}$ combination groups, respectively. On the other hand, 22a showed significant potentiation of TMZ at day 18 only with the $30 \mathrm{mg} / \mathrm{kg} /$ day dose, with a TGI value of 40%. Compounds 25a,b also enhanced the efficacy of TMZ in the B16F10 model (Figure 3A,B). Both compounds were administered orally on days administered orally on days $6-10$ at doses of 3,10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day, bid, while TMZ was administered orally at $50 \mathrm{mg} / \mathrm{kg} /$ day, qd, on days $6-10$. Both 25a,b significantly enhanced the efficacy of TMZ in a dose-dependent manner. Significant potentiation was observed as early as day 12, with TGI values (vs vehicle control) of 46,66 , and 66% for the 3 , 10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day 25a combination groups, and 45,68 , and 72% for the 3,10 , and $30 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 5 b}$ combination groups, respectively, as compared to 67% for TMZ alone. The $30 \mathrm{mg} / \mathrm{kg} /$ day 25a combination group and the 10 and $30 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 5 b}$ combination groups continued to differentiate
(b)

compd	$\begin{gathered} \text { dose } \\ (\mathrm{mg} / \mathrm{kg} / \text { day }) \end{gathered}$	$\begin{gathered} \hline \text { tumor volume }{ }^{\text {a }} \\ \text { (day } 12 \text {) } \end{gathered}$	$\begin{gathered} \%^{\% T G I^{b}} \\ \text { (day } 12 \text {) } \end{gathered}$	$\begin{aligned} & \hline \text { tumor volume }{ }^{\mathrm{a}} \\ & \text { (day } 18 \text {) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \% \mathrm{TGI}^{\text {c }} \\ & (\text { day } 18) \end{aligned}$
22b/TMZ	30/50	401 ± 57	49*	565 ± 90	72****
	10/50	493 ± 41	38**	1137 ± 95	$52^{* * * *}$
	3/50	514 ± 67	35***	1351 ± 94	43*****
vehicle/TMZ	0/50	681 ± 63	14	2379 ± 219	--
22b/vehicle	30/0	920 ± 82	0	-	--
combination vehicle	0/0	793 ± 111	--	--	--

Figure 2. B16F10 model: (a) 22a and (b) 22b in combination with TMZ.
(a)

(b)

compd	dose $(\mathrm{mg} / \mathrm{kg} /$ day $)$	$\begin{gathered} \text { tumor volume }^{a} \\ (\text { day } 12) \end{gathered}$	$\begin{gathered} \%_{\text {\%TGI }}{ }^{\text {a }} \\ (\text { (day 12) } \end{gathered}$	$\begin{gathered} \text { tumor volume }{ }^{\mathrm{a}} \\ (\text { day } 16) \end{gathered}$	$\begin{gathered} \text { \%TGI } \\ (\text { day } 16) \end{gathered}$
25a/TMZ	30/50	386 ± 67	66*	710 ± 140	44****
	10/50	390 ± 47	66**	952 ± 133	25
	3/50	619 ± 88	46***	--	--
vehicle/TMZ	0/50	491 ± 75	67	1261 ± 161	--
25a/vehicle	30/0	1215 ± 167	0	--	--
combination vehicle	0/0	1147 ± 167	--	--	--

compd	$\begin{gathered} \text { dose } \\ (\mathrm{mg} / \mathrm{kg} / \text { day }) \end{gathered}$	$\begin{gathered} \text { tumor volume }^{\mathrm{a}} \\ \text { (day 12) } \end{gathered}$	$\begin{gathered} \hline \% \mathrm{TGI}^{\mathrm{b}} \\ (\text { day } 12) \end{gathered}$	tumor volume ${ }^{\text {a }}$ (day 16)	$\begin{gathered} \hline \% \mathrm{TGI}^{\mathrm{c}} \\ (\text { (day } 16) \\ \hline \end{gathered}$
25b/TMZ	30/50	318 ± 34	72*	448 ± 54	64*
	10/50	363 ± 35	68**	670 ± 80	47****
	3/50	626 ± 84	45***	1375 ± 190	0
vehicle/TMZ	0/50	491 ± 75	67	1261 ± 161	--
25b/vehicle	30/0	1174 ± 248	0	--	--
combination vehicle	0/0	1147 ± 167	--	--	--

Figure 3. B16F10 model: (a) 25a and (b) 25b in combination with TMZ.

Figure 4. (a) MX-1 model: 22b in combination with carboplatin. (b) MX-1 model: Single agent 22b.
from the TMZ group out to day 16 , with TGI values (vs TMZ control) of 44% for the $30 \mathrm{mg} / \mathrm{kg} /$ day 25 a and 47 and 64% for the 10 and $30 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 5 b}$ combination groups, respectively. The 22a,b and 25a,b TMZ combinations were all welltolerated, with maximum body weight loss for all combination groups similar to the TMZ monotherapy group. Overall, both (S)-enantiomers 22b and $\mathbf{2 5 b}$ showed superior enhancement of the efficacy of TMZ (in terms of $\% \mathrm{TGI}$) in this model relative to their respective (R)-enanatiomers.

Because of a superior profile in the B16 model, 22b was characterized further in vivo. Plasma and tumor levels of 22b were assessed after 5 days of oral dosing in a separate B16F10 study using a $25 \mathrm{mg} / \mathrm{kg} /$ day, bid dose of $\mathbf{2 2 b}$ in combination with TMZ ($50 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, qd). Significant distribution of $\mathbf{2 2 b}$ to the tumor was observed 6 h after the final dose, with a concentration of $21 \mu \mathrm{~g} / \mathrm{mL}$ in the tumor vs $0.38 \mu \mathrm{~g} / \mathrm{mL}$ in the plasma. Similar
concentrations were obtained when 22b was dosed alone (17.2 vs $0.22 \mu \mathrm{~g} / \mathrm{mL}$).

Compound 22b was further characterized in a BRCA1deficient MX-1 breast carcinoma model both in combination with carboplatin (Figure 4A) and as a single agent (Figure 4B), with 22b dosed orally in a once a day dosing regimen in both studies. Female SCID mice were dosed with $\mathbf{2 2 b}$ at doses of $12.5,25$, and $50 \mathrm{mg} / \mathrm{kg} /$ day, $q d$, for 14 days starting on day 14 post-tumor inoculation, while carboplatin was given as a single i.p. dose on days 16,20 , and 24 at $10 \mathrm{mg} /$ kg . Significant potentiation was observed as early as day 34 with TGI values (vs vehicle control) of 93,97 , and 97% for the $12.5,25$, and $50 \mathrm{mg} / \mathrm{kg} /$ day $\mathbf{2 2 b}$ combination groups, respectively, as compared to 69% TGI for carboplatin alone. The three combination groups continued to differentiate from the carboplatin group out to day 48, with TGI values (vs carboplatin control) of 67,89 , and 97% for the $12.5,25$, and
$50 \mathrm{mg} / \mathrm{kg} /$ day 22b combination groups, respectively. In addition, 22b demonstrated significant single agent efficacy in this model (Figure 4B). Compound 22b was dosed orally at 100 and $200 \mathrm{mg} / \mathrm{kg} /$ day, qd, for 5 days starting on day 15 posttumor inoculation. Significant efficacy was observed at day 34 with TGI values (vs vehicle control) of 46 and 92% for the 100 and $200 \mathrm{mg} / \mathrm{kg} /$ day 22b groups, respectively.

Conclusion

In summary, the discovery and characterization of a novel PARP inhibitor, 22b, has been described. This exceptionally potent compound has demonstrated significant efficacy in two tumor models, enhancing the efficacy of both TMZ and carboplatin. In addition, this compound showed significant single agent activity in a BRCA-1-deficient MX-1 breast carcinoma model. This compound has excellent pharmacokinetic properties, is able to cross the blood-brain barrier, and appears to distribute well into tumor tissue. Compound 22b represents a promising, structurally diverse benzimidazole analogue and is being further characterized preclinically.

Experimental Section

NMR spectra were obtained on Varian M-300, Bruker AMX400, Varian U-400, or Varian Unity Inova 500 magnetic resonance spectrometers with indicated solvent and internal standard. Chemical shifts are given in delta (δ) values and coupling constants (J) in Hertz (Hz). The following abbreviations are used for peak multiplicities: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; and br, broadened. Mass spectra were performed as follows: ESI (electrospray ionization) was performed on a Finnigan SSQ7000 MS run as a flow injection acquisition; DCI (desorption chemical ionization) was performed on a Finnigan SSQ7000 MS using a direct exposure probe with ammonia gas; and APCI (atmospheric pressure chemical ionization) was performed on a Finnigan Navigator MS run as flow injection acquisition. Elemental analyses were performed by Quantitative Technologies Inc. (Whitehouse, NJ). All manipulations were performed under nitrogen atmosphere unless otherwise noted. All solvents and reagents were obtained from commercial sources and used without further purification. High-performance liquid chromatography (HPLC) purifications were carried out using a Zorbax C-18, 250×2.54 column and elution with a $0-100 \%$ gradient of mobile phase A [0.1\% trifluoroacetic acid (TFA) in water] and mobile phase B (0.1% TFA in $\left.\mathrm{CH}_{3} \mathrm{CN}\right)$. Analytical liquid chromatography-mass spectrometry (LC-MS) was performed on a Finnigan Navigator mass spectrometer and Agilent 1100 HPLC system operating under positive APCI ionization conditions. The column used was a Phenomenex Luna CombiHTS C8(2) $5 \mu \mathrm{~m} 100 \mathrm{~A}(2.1 \mathrm{~mm} \times 30 \mathrm{~mm})$ with a gradient of $10-100 \%$ acetonitrile and 0.1% TFA in water or a gradient of $10-100 \%$ acetonitrile and $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in water. Analytical LC-MS or combustion analysis indicated that the purity of all compounds was not less than 95%, unless otherwise noted.

PARP Enzyme Assay. ${ }^{4 \mathrm{a}}$ The enzyme assay was conducted in buffer containing 50 mM Tris, $\mathrm{pH} 8.0,1 \mathrm{mM}$ dithiothreitol (DTT), and 4 mM MgCl 2 . PARP reactions contained $1.5 \mu \mathrm{M}$ $\left.{ }^{3} \mathrm{H}\right]-\mathrm{NAD}^{+}(1.6 \mu \mathrm{Ci} / \mathrm{mmol}), 200 \mathrm{nM}$ biotinylated histone H 1 , 200 nM slDNA, and 1 nM PARP-1 or 4 nM PARP-2 enzyme. Autoreactions utilizing SPA bead-based detection were carried out in $100 \mu \mathrm{~L}$ volumes in white 96 -well plates. Reactions were initiated by adding $50 \mu \mathrm{~L}$ of $2 \mathrm{X} \mathrm{NAD}^{+}$substrate mixture to $50 \mu \mathrm{~L}$ of 2 X enzyme mixture containing PARP and DNA. These reactions were terminated by the addition of $150 \mu \mathrm{~L}$ of 1.5 mM benzamide (~ 1000-fold over its IC_{50}). A $170 \mu \mathrm{~L}$ amount of the stopped reaction mixtures was transferred to streptavi-din-coated Flash Plates, incubated for 1 h , and counted using a TopCount microplate scintillation counter. K_{i} data were
determined from inhibition curves at various substrate concentrations.

Cellular PARP Assay. ${ }^{4 \mathrm{a}} \mathrm{C} 41$ cells were treated with test compound for 30 min in a 96 -well plate. PARP was activated by damaging DNA with $1 \mathrm{mM} \mathrm{H} \mathrm{H}_{2} \mathrm{O}_{2}$ for 10 min . Cells were washed with ice-cold phosphate-buffered saline (PBS) once and fixed with prechilled methanol/acetone (7:3) at $-20^{\circ} \mathrm{C}$ for 10 min . After they were air-dried, plates were rehydrated with PBS and blocked using 5\% nonfat dry milk in PBS-tween (0.05%) (blocking solution) for 30 min at room temperature. Cells were incubated with anti-PAR antibody 10 H (1:50) in blocking solution at room temperature for 60 min followed by washing with PBS-Tween 20 five times, and incubation with goat antimouse fluorescein 5(6)-isothiocyanate (FITC)-coupled antibody (1:50) and $1 \mu \mathrm{~g} / \mathrm{mL} 4$ ',6-diamidino-2-phenylindole (DAPI) in blocking solution at room temperature for 60 min . After washing with PBS-Tween20 5 times, analysis was performed using an fmax Fluorescence Microplate Reader set at the excitation and emission wavelength for FITC or the excitation and emission wavelength for DAPI. PARP activity (FITC signal) was normalized with cell numbers (DAPI).

Mouse Pharmacokinetic Analysis. Plasma samples were aliquoted into 96 -well plates, and proteins were precipitated using acidified methanol. Tissue samples were prepared by homogenization with 2 volumes of saline followed by protein precipitation with acetonitrile. Supernatants were stored at $-20^{\circ} \mathrm{C}$. Samples analyses were performed by LC-MS using a Shimadzu 10A-VP chromatography system with a Phenomenex Polar RP5 cm column. The mobile phase consisted of mixtures of acetonitrile and 0.1% acetic acid in water with a flow rate of $0.4 \mathrm{~mL} / \mathrm{min}$. Mass detection was accomplished with an ESI equipped LCQ-Duo by ThermoFinnegan. External standards were prepared from spiked control plasma or tissue homogenate and used to generate a response factor for every study. Limits of detection were between 10 and 30 nM .

B16F10 Tumor Model. ${ }^{4 a}$ For B16F10 syngeneic studies, $6 \times$ 10^{4} cells were mixed with 50% matrigel (BD Biosciences, Bedford, MA) and inoculated by s.c. injection into the flank of 6-8 week old female C57BL/6 mice, 20 g (Charles River Laboratories, Wilmington, MA). Mice were injection-order allocated to treatment groups, and PARP inhibitor therapy was initiated on day 6 following inoculation, with TMZ treatment also starting on day 6 .

MX-1 Tumor Model. ${ }^{4 \mathrm{a}}$ A 0.2 cc amount of a 1:10 dilution of tumor brei in 45% Matrigel and 45% Spinner MEM (Life Technologies) was injected subcutaneously into the flank of female SCID mice (Charles River Laboratories) on study day 0 . Tumors were allowed to grow to the indicated size and then randomized to therapy groups ($N=10$ mice/group). PARP inhibitor therapy began on day 14 , with cisplatin treatment starting on day 16. At various intervals following tumor inoculation, the individual tumor dimensions were serially measured using calibrated microcalipers, and the tumor volumes were calculated according to the formula $V=L \times W^{2} / 2$ (V, volume; L, length; and W, width). Effects on tumor growth rate were assessed by determining $\% \mathrm{~T} / \mathrm{C}[($ mean tumor volume of treated group on day $X /$ mean tumor volume of control group on day X) $\times 100]$ and $\% \mathrm{TGI}(100-\% \mathrm{~T} / \mathrm{C})$ for a given treatment relative to vehicle or monotherapy treatment.

X-ray Crystallography Data. A crystallization attempt of apo-PARP-1 with a GST fusion h-PARP-1 (654-1014) expressed in Escherichia coli was not successful. Because crystals of PARP-1/ 2-(trifluoromethyl)-1 H -benzimidazole-4-carboxamide complex could be obtained relatively easily, a ligand-exchange soaking technique was adopted for the structure of PARP- $1 / \mathbf{2 5 b}$ complex. The fact that the equilibrium constant K_{i} of 2-(trifluoro-methyl)- 1 H -benzimidazole-4-carboxamide is $0.58 \mu \mathrm{M}$ and that of $\mathbf{2 5 b}$ is $0.006 \mu \mathrm{M}$ helped the ligand-exchange experiment. Crystals of PARP-1/2-(trifluoromethyl)- 1 H -benzimidazole-4-carboxamide complex were obtained by the hanging drop
method at $17^{\circ} \mathrm{C}$. The protein solution was $60 \mathrm{mg} / \mathrm{mL}(0.874$ mM) of PARP in 50 mM , pH 7.5, Tris buffer containing 150 mM NaCl and 1.5 mM DTT. The ligand (2-(trifluoromethyl)- 1 H -benzimidazole-4-carboxamide) concentration in the protein solution was 2 mM . The well solution had 0.8 M NaCl and 1.8 M ammonium sulfate in water, and the hanging drop was a 1:1 mixture of protein solution and well solution. The space group of PARP-1/2-(trifluoromethyl)- 1 H -benzimidazole-4-carboxamide complex crystal is $P 321$ with cell dimensions of $a=b=94.21 \AA, c=68.86 \AA, \alpha=\beta=90^{\circ}$, and $\gamma=120^{\circ}$. The bound compound, 2-(trifluoromethyl)- 1 H -benzimidazole-4-carboxamide, in the crystal could be displaced with $\mathbf{2 5 b}$ by addition of $1 \mathbf{m M} \mathbf{2 5 b}$ into the crystal drop overnight. X-ray diffraction data were collected at Advanced Photon Source Beamline 17-ID of Argonne National Laboratory with ADSC CCD detector Quantum 210. Ethylene glycol (20\%) in 1.2 M NaCl and 1.6 M ammonium sulfate solution was used as a cryoprotectant for data collection at 110 K . The complex crystal of PARP-1/25b diffracted up to 2.5 A , and 12464 unique reflections were collected and scaled using HKL2000. The overall $R_{\text {sym }}(I)$ is 0.096 , and $I / \sigma(I)$ is 12.0 with the overall completeness of 99%. The structure was solved using CCP4 molrep program with an in-house search model of PARP complex and refined with CNX2002 and BUSTER. The conventional and free R-factors after refinement were 0.205 and 0.275 . The coordinates of the PARP- $1 / \mathbf{2 5 b}$ complex are deposited in the Protein Data bank with the code 3L3M.

General Procedure A. Preparation of 2-(4-Piperidin-4-ylphenyl)1 H -benzimidazole-4-carboxamide (13). A solution of tert-butyl 4-(4-carboxyphenyl)piperidine-1-carboxylate ($1 \mathrm{~g}, 3.3 \mathrm{mmol}$) in pyridine (3 mL) and DMF (3 mL) at $40^{\circ} \mathrm{C}$ was stirred for 30 min . Carbonyl diimidazole (CDI, $0.55 \mathrm{~g}, 3.4 \mathrm{mmol}$) was added, and the mixture was stirred for $1 \mathrm{~h} .2,3$-Diaminobenzamide dihydrochloride $^{12}(0.73 \mathrm{~g}, 3.3 \mathrm{mmol})$ was added, and the mixture was stirred for 1 h at ambient temperature. Isopropanol $(10 \mathrm{~mL})$ was added, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 18 h and filtered. The solid was dissolved in water $(10 \mathrm{~mL})$, treated with 50% aqueous NaOH $(0.26 \mathrm{~mL})$, stirred for 3 h at ambient temperature, and filtered to give crude tert-butyl 4-(4-(2-amino-3-carbamoylphenylcarba-moyl)phenyl)piperidine-1-carboxylate ($0.965 \mathrm{~g}, 69 \%$). A solution of this solid ($0.175 \mathrm{~g}, 0.4 \mathrm{mmol}$) in acetic acid (2 mL) was stirred at reflux for 90 min and concentrated. The concentrate was dissolved in water, treated with 50% aqueous $\mathrm{NaOH}(0.2 \mathrm{~mL})$, and filtered. The filtrate was concentrated and purified by HPLC to give the title compound (87%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.84$ (qd, $J=13.0$, $3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 2 \mathrm{H}), 2.97$ (ddd, $J=12.0,8.6,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.01-3.09$ (m, 2H), 3.42 (d, $J=12.5 \mathrm{~Hz}, 2 \mathrm{H}$), $7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 9.25$ (s, 1 H). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O} \cdot 3.2\right.$ TFA) C, H, N.

General Procedure B. Preparation of 2-(4-(1-Methylpiperi-din-2-yl)phenyl)-1 H-benzimidazole-4-carboxamide (14). To a solution of $11(0.05 \mathrm{~g}, 0.2 \mathrm{mmol})$ and 36% formaldehyde in water $(0.012 \mathrm{~mL})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ were added sodium cyanoborohydride ($0.01 \mathrm{~g}, 0.2 \mathrm{mmol}$) and $\mathrm{AcOH}(0.2 \mathrm{~mL})$, and the mixture was stirred at ambient temperature for 18 h . After concentration, the residue was stirred with TFA in dichloromethane and concentrated. Purification by flash chromatography on silica gel using $10 \% \mathrm{MeOH} /$ dichloromethane afforded the title compound $(0.043 \mathrm{mg}, 83 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): δ $1.39(\mathrm{~m}, 1 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 5 \mathrm{H})$, $2.82(\mathrm{~s}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.5 \mathrm{~Hz} 1 \mathrm{H}), 8.20(\mathrm{~m}, 2 \mathrm{H})$, $9.35(\mathrm{~s}, 1 \mathrm{H})$. Anal. ($\left.\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O} \cdot 1.15 \mathrm{TFA}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Piperidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (4a). A mixture of 2,3-diaminobenzamide dihydrochloride ${ }^{12}$ ($1 \mathrm{~g}, 4.5$ mmol), 4-pyridin-2-ylbenzaldehyde ($0.82 \mathrm{~g}, 4.5 \mathrm{mmol}$), and 10% $\mathrm{Pd} / \mathrm{C}(0.3 \mathrm{~g})$ in $\mathrm{MeOH}(30 \mathrm{~mL})$ was stirred at reflux for 18 h , cooled, filtered through Celite, and concentrated. The residue was crystallized from MeOH to provide the title compound $(1.2 \mathrm{~g}, 86 \%)$.
${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=6.9$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{br}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dt}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.73(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 9.39(\mathrm{br}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \cdot 1.9 \mathrm{HCl} \cdot 4.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, $\mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

2-(4-Piperidin-3-ylphenyl)-1 H -benzimidazole-4-carboxamide (4b). Step 1. Preparation of 2-(4-Bromophenyl)-1 H -benzimida-zole-4-carboxamide. The title compound was prepared from 4-bromobenzaldehyde using the procedure described for 4a ($158 \mathrm{mg}, 52 \%$).

Step 2. Preparation of 2-(4-Pyridin-3-ylphenyl)-1 H -benzimi-dazole-4-carboxamide. A mixture of the product of step $1(150 \mathrm{mg}$, 0.47 mmol), pyridin-3-ylboronic acid ($70 \mathrm{mg}, 0.57 \mathrm{mmol}$), Pd(dppf) $)_{2} \mathrm{Cl}_{2}(40 \mathrm{mg})$, and $\mathrm{Na}_{2} \mathrm{CO}_{3}(55 \mathrm{mg})$ in dioxane $(4 \mathrm{~mL})$ was heated at $90^{\circ} \mathrm{C}$ for 18 h . After it was cooled, filtered through Celite, and concentrated, the residue was purified by HPLC to give the title compound. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.76 (br, 1H), 7.79 (dd, $J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.87$ (dd, $J=8.1,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=7.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H})$, 8.41 (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.60(\mathrm{dt}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.79(\mathrm{dd}$, $J=5.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.20(\mathrm{~d}, J=2.2 \mathrm{~Hz} .1 \mathrm{H}), 9.21(\mathrm{br}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \cdot 1.6\right.$ TFA $) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-(Pyridin-4-yl)phenyl)-1 H -benzimidazole-4-carboxamide (4c). The title compound was prepared from 4-pyridin-4ylbenzaldehyde using the procedure described for $\mathbf{4 a}(0.40 \mathrm{~g}$, 29%). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.41(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{br}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.48(\mathrm{~d}, J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.96$ (d, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 9.23 (br, 1H). MS (ESI): $m / z 315(\mathrm{M}+\mathrm{H})^{+}$

2-(4-Pyrrolidin-2-ylphenyl)-1 H-benzimidazole-4-carboxamide (5). Step 1. Preparation of tert-Butyl 2-(4-(4-carbamoyl-1H-benzimidazol-2-yl)phenyl)pyrrolidine-1-carboxylate. The title compound was prepared from N-Boc-4-pyrrolidin-2-ylbenzoic acid using general procedure A ($0.24 \mathrm{~g}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ DMSO- d_{6}): $\delta 1.12(\mathrm{~s}, 5 \mathrm{H}), 1.41(\mathrm{~s}, 4 \mathrm{H}), 1.80(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~m}$, $1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{br}$ d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{br}, 1 \mathrm{H}), 7.87$ (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{br} \mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 9.35(\mathrm{br}, 1 \mathrm{H})$, 13.35 (br, 1H).

Step 2. Preparation of 2-(4-Pyrrolidin-2-ylphenyl)-1 \mathbf{H}-benzi-midazole-4-carboxamide (5). The product of step $1(0.23 \mathrm{~g})$ in 1 M HCl in $\mathrm{EtOH}(5 \mathrm{~mL})$ was stirred for 19 h . TLC analysis indicated incomplete reaction, so the mixture was treated with $12 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$, stirred for 19 h , and then treated with additional $12 \mathrm{M} \mathrm{HCl}(0.5 \mathrm{~mL})$ and stirred for 6 h . After it was concentrated, the residue was purified by flash chromatography on silica gel using a gradient of 95:5:1 to 80:20:1 dichloromethane $/ \mathrm{MeOH} / \mathrm{NH}_{4} \mathrm{OH}$ to provide the title compound $(0.10 \mathrm{~g}, 63 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.56(\mathrm{~m}, 1 \mathrm{H})$, $1.80(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{br}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 9.34(\mathrm{br}, 1 \mathrm{H})$.

3-(4-Pyrrolidin-2-ylphenyl)- $\mathbf{~ H}$-benzimidazole-4-carboxamide (6). The title compound was prepared as described for the synthesis of 5 , using N-Boc-4-pyrrolidin-3-ylbenzoic acid in place of N-Boc-4-pyrrolidin-2-ylbenzoic acid $(0.112 \mathrm{~g}, 37 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.86(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~m}$, $1 \mathrm{H}), 3.09(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.46(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.75(\mathrm{br}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 9.29 (br, 1H). Anal. ($\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{FN}_{4} \mathrm{O} \cdot 2.1$ TFA) C, H, N.

2-(4-(1-Methylpyrrolidin-2-yl)phenyl)- \mathbf{H}-benzimidazole-4carboxamide (7). The title compound was prepared from 5 and formaldehyde using general procedure B $(66 \mathrm{mg}$, $56 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.36(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H})$, $2.84(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 7.46$ $(\mathrm{m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}):$ $m / z 321(\mathrm{M}+\mathrm{H})^{+}$

2-(4-(1-Methylpyrrolidin-3-yl)phenyl)-1 \boldsymbol{H}-benzimidazole-4carboxamide (8). The title compound was prepared from 6 and formaldehyde using general procedure B ($80 \mathrm{mg}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right): \delta 2.29(\mathrm{~m}, 1 \mathrm{H}), 2.61(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$, $3.29(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$. MS (DCI): $m / z 321$ $(\mathrm{M}+\mathrm{H})^{+}$

2-(4-(1-Isopropylpyrrolidin-2-yl)phenyl)-1 H -benzimidazole-4-carboxamide (9). The title compound was prepared from 5 and acetone using general procedure $\mathrm{B}(34 \mathrm{mg}, 30 \%) .{ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}$): $\delta 1.34$ (dd, $J=6.6,2.0 \mathrm{~Hz}, 6 \mathrm{H}$), 2.30 (m, $3 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~m}, 1 \mathrm{H})$, $7.49(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~m}, 3 \mathrm{H}), 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$. MS (DCI): $m / z 349(\mathrm{M}+\mathrm{H})^{+}$

2-(4-(1-Isopropylpyrrolidin-3-yl)phenyl)-1 H -benzimidazole-4-carboxamide (10). To a solution of $\mathbf{5}(100 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ was added acetone ($38 \mathrm{mg}, 0.54 \mathrm{mmol}$), and the mixture was stirred at ambient temperature for 40 min . Sodium triacetoxyborohydride ($253 \mathrm{mg}, 1.2 \mathrm{mmol}$) and $\mathrm{AcOH}(100 \mu \mathrm{~L})$ were added, and the mixture was stirred at ambient temperature for 18 h . Dichloromethane and water were added, and the organic layer was washed with dilute NaOH and water and concentrated. Purification by HPLC provided the title compound (30 mg , 27%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.44$ (d, $J=6.7 \mathrm{~Hz}, 6 \mathrm{H}$), 2.25 $(\mathrm{m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.77-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=10.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O} \cdot 2.5 \mathrm{TFA}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-(4-Piperidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (11). A mixture of $4 \mathbf{a}(0.905 \mathrm{~g}, 2.9 \mathrm{mmol})$ and $\mathrm{PtO}_{2}(180 \mathrm{mg})$ in AcOH $(20 \mathrm{~mL}$) under hydrogen (60 psi) was stirred at ambient temperature for 4.5 h , filtered through a nylon membrane, and concentrated. The residue was purified by flash chromatography on silica gel using $10 \% \mathrm{MeOH}$ /dichloromethane to provide the title compound $(0.56 \mathrm{~g}, 55 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.64(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{~m}$, $6 \mathrm{H}), 3.03(\mathrm{td}, J=12.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.17$ (s, 1 H), 4.27 (dd, $J=11.7$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 9.33 ($\mathrm{s}, 1 \mathrm{H}$). MS (ESI): m / z $321(\mathrm{M}+\mathrm{H})^{+}$

2-(4-Piperidin-3-ylphenyl)-1 H -benzimidazole-4-carboxamide (12). The title compound was prepared from 3 using the procedure described for $11(0.96 \mathrm{~g}, 95 \%)$) ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.52$ (d, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{dd}, J=12.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~m}, 1 \mathrm{H}), 1.91$ $(\mathrm{s}, 1 \mathrm{H}), 2.57(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz} 1 \mathrm{H}), 8.16(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.33(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 321(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-(1-Methyl-piperidin-3-yl)phenyl)-1 H -benzimidazole-4carboxamide (15). The title compound was prepared from 12 and formaldehyde using general procedure $\mathrm{B}(10 \mathrm{mg}, 22 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.43$ (dd, $J=12.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 1.62 $(\mathrm{m}, 1 \mathrm{H}), 1.71(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 2 \mathrm{H}), 1.96(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.4 \mathrm{~Hz} 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}\right.$. 4.35TFA) C, H, N.

2-(4-(1-Methyl-piperidin-4-yl)phenyl)-1 \boldsymbol{H}-benzimidazole-4carboxamide (16). The title compound was prepared from 13 and formaldehyde using general procedure B ($7 \mathrm{mg}, 8 \%$). MS (ESI): $m / z 335(\mathrm{M}+\mathrm{H})^{+}$. ${ }^{1}$ H NMR (DMSO- d_{6}): $\delta 1.23(\mathrm{~s}, 1 \mathrm{H})$, $1.95(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~m}, 2 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H}), 3.11(\mathrm{~m}$, $1 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.76$ (m, 2H), 7.87 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.22$ (d, $J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(4-(1-Isopropyl-piperidin-2-yl)phenyl)-1 H -benzimidazole-4-carboxamide (17). The title compound was prepared using
general procedure B , using acetone in place of formaldehyde ($9 \mathrm{mg}, 13 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.76$ (s, 2H), 0.95 (s, $2 \mathrm{H}), 1.11(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 2 \mathrm{H}), 1.73$ $(\mathrm{s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H})$, $7.73(\mathrm{~s}, 3 \mathrm{H}), 7.86(\mathrm{~d}, J=7.7 \mathrm{~Hz} 1 \mathrm{H}), 8.17(\mathrm{~m}, 2 \mathrm{H}), 9.35(\mathrm{~s}, 1 \mathrm{H})$. MS (ESI): $m / z 363(\mathrm{M}+\mathrm{H})^{+}$.

2-(4-(1-Isopropyl-piperidin-3-yl)phenyl)-1 H -benzimidazole-4carboxamide (18). The title compound was prepared from $\mathbf{1 2}$ and acetone using general procedure B ($41 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.27(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}$, $2 \mathrm{H}), 2.98(\mathrm{~m}, 1 \mathrm{H}), 3.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 9.32(\mathrm{~s}$, 1H). MS (ESI): $m / z 363(\mathrm{M}+\mathrm{H})^{+}$

2-(4-(1-Isopropyl-piperidin-4-yl)phenyl)-1 H -benzimidazole-4carboxamide (19). The title compound was prepared from 13 and acetone using general procedure B ($86 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.95(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~d}$, $J=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 3.00(\mathrm{ddd}, J=12.1,8.8,3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.26(\mathrm{~s}, 1 \mathrm{H}), 3.13(\mathrm{~m}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~m}, 2 \mathrm{H}), 7.87(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 363$ $(\mathrm{M}+\mathrm{H})^{+}$

6-Fluoro-2-(4-pyrrolidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (20). The title compound was prepared as described for the synthesis of 21, using 2,3-diamino-5-fluorobenzamide ${ }^{12}$ in place of 2,3-diamino-5-chlorobenzamide ($120 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 2.12(\mathrm{~m}, 3 \mathrm{H}), 2.47(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{~m}, 2 \mathrm{H})$, $4.69(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H})$, $8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.96(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 9.77(\mathrm{~s}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O} \cdot 2.2\right.$ TFA $) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-Chloro-2-(4-pyrrolidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (21). Step 1. Preparation of tert-Butyl 2-(4-(4-Carbamoyl-6-chloro-1 H -benzimidazol-2-yl)phenyl)pyrrolidine-1-carboxylate. To a solution of tert-butyl 2-(4-carboxyphenyl)-pyrrolidine-1-carboxylate ($500 \mathrm{mg}, 1.7 \mathrm{mmol}$) in dichloromethane (10 mL) were added oxalyl chloride ($0.15 \mathrm{~mL}, 1.7 \mathrm{mmol}$) and DMF (1 drop), and the mixture was stirred at ambient temperature for 1 h . After concentration, the residue was dissolved in dichloromethane (20 mL), and the solution was added to a solution of 2,3-diamino-5-chlorobenzamide $^{12}(316 \mathrm{mg}, 1.7 \mathrm{mmol})$ in THF (10 mL), followed by triethylamine (2 mL). The mixture was stirred at ambient temperature for 18 h and concentrated. The residue was dissolved in $\mathrm{AcOH}(10 \mathrm{~mL})$, heated at $80^{\circ} \mathrm{C}$ for 2 h , and concentrated. The residue was dissolved in EtOAc , washed with sodium bicarbonate solution and brine, and concentrated. Purification by flash chromatography on silica gel using EtOAc afforded the title compound ($370 \mathrm{mg}, 55 \%$).

Step 2. Preparation of 6-Chloro-2-(4-pyrrolidin-2-ylphenyl)$\mathbf{1 H}$-benzimidazole-4-carboxamide (21). To a solution of the product of step $1(410 \mathrm{mg}, 0.93 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ was added TFA (4 mL), and the mixture was stirred at ambient temperature for 1 h . After concentration, the residue was purified by HPLC to provide the title compound (40 mg , 32%). ${ }^{1}$ H NMR (DMSO- d_{6}): $\delta 2.12(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~m}, 2 \mathrm{H}), 3.39$ $(\mathrm{m}, 2 \mathrm{H}), 4.68(\mathrm{~m}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~m}, 1 \mathrm{H})$, 7.95 (s, 1H), 8.34 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.94(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~s}, 1 \mathrm{H})$, 9.73 (s, 1H). Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O} \cdot 2 \mathrm{TFA}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

2-(4-(1-Ethylpyrrolidin-2-yl)-2-fluorophenyl)-1 H -benzimida-zole-4-carboxamide (22). Step 1. Preparation of tert-Butyl 2-(3-fluoro-4-methoxycarbonylphenyl)pyrrole-1-carboxylate. A mixture of methyl 4-bromo-2-fluorobenzoate ($4 \mathrm{~g}, 17.2 \mathrm{mmol}$), 1-(Boc)pyrrole-2-boronic acid ($5.44 \mathrm{~g}, 25.8 \mathrm{mmol}$), and dichlorobis(triphenylphosphine)palladium(II) $(1.2 \mathrm{~g}, 1.72 \mathrm{mmol})$ in 7:3:2 DME/water/EtOH $(300 \mathrm{~mL})$ and 2 M aqueous sodium carbonate (17.2 mL) was stirred for 140 min at $80^{\circ} \mathrm{C}$. The mixture was cooled and concentrated, and the residue was dissolved in EtOAc. The solution was washed with brine and concentrated, and the residue was purified by flash chromatography on silica gel using 1:4 EtOAc/hexane to afford the title compound ($5.51 \mathrm{~g}, 100 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.41(\mathrm{~s}, 9 \mathrm{H})$,
$3.94(\mathrm{~s}, 3 \mathrm{H}), 6.22-6.31(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{dd}$, $J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z$ $320(\mathrm{M}+\mathrm{H})^{+}$.

Step 2. Preparation of tert-Butyl 2-(3-fluoro-4-methoxycarbo-nylphenyl)pyrrolidine-1-carboxylate. A mixture of the product of step $1(5.5 \mathrm{~g}, 17.2 \mathrm{mmol})$ and $5 \% \mathrm{Pt} / \mathrm{C}(20 \mathrm{mg})$ in acetic acid $(200 \mathrm{~mL})$ was hydrogenated at 60 psi for 12 h and filtered. The filtrate was concentrated, and the residue was partitioned between EtOAc and sodium bicarbonate solution. The organic phase was separated and concentrated, and the residue was purified by flash chromatography on silica gel using a gradient of $10-30 \% \mathrm{EtOAc} /$ hexanes to give the title compound $(5.5 \mathrm{~g}$, $98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H})$, $1.75-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$, $4.73-4.82(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 324(\mathrm{M}+\mathrm{H})^{+}$.

Step 3. Preparation of tert-Butyl 2-(4-carboxy-3-fluorophe-nyl)pyrrolidine-1-carboxylate. A mixture of the product of step 2 $(5.5 \mathrm{~g}, 17 \mathrm{mmol})$ and lithium hydroxide monohydrate $(1.43 \mathrm{~g}$, $34 \mathrm{mmol})$ in THF $(50 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ was titrated with MeOH until transparent. After it was stirred at ambient temperature for 2 h , the mixture was brought to pH 2 with 2 M HCl , concentrated to $\sim 40 \mathrm{~mL}$, and filtered to provide the crude product ($4.87 \mathrm{~g}, 92 \%$). MS (DCI): $m / z 310(\mathrm{M}+\mathrm{H})^{+}$.

Step 4. Preparation of tert-Butyl 2-(4-(4-carbamoyl-1 \boldsymbol{H}-benzi-midazol-2-yl)-3-fluorophenyl)pyrrolidine-1-carboxylate. To a solution of the product of step $3(1.48 \mathrm{~g}, 4.8 \mathrm{mmol})$ in pyridine $(5 \mathrm{~mL})$ and DMF (5 mL) was added CDI $(0.856 \mathrm{~g}, 5.28 \mathrm{mmol})$, and the mixture was stirred at $45{ }^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .2,3$-Diaminobenzamide dihydrochloride ${ }^{12}(1.08 \mathrm{~g}, 4.8 \mathrm{mmol})$ was added, and the mixture was stirred at ambient temperature for 18 h and concentrated. The residue was dissolved in $\mathrm{AcOH}(30 \mathrm{~mL})$, heated at $80^{\circ} \mathrm{C}$ for 3 h , and concentrated. The residue was dissolved in EtOAc, washed with sodium bicarbonate solution and brine, and concentrated. Purification by flash chromatography on silica gel using a gradient of $0-15 \% \mathrm{MeOH}$ in $2: 1 \mathrm{EtOAc} /$ hexane provided the title compound $(1.56 \mathrm{~g}, 77 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.25(\mathrm{~s}, 6 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}), 1.80-1.96(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.45(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~m}$, $2 \mathrm{H}), 4.81-4.98(\mathrm{~m}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 6.98-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}$, $1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}$ (APCI): $m / z 425(\mathrm{M}+\mathrm{H})^{+}$

Step 5. Preparation of 2-(2-Fluoro-4-pyrrolidin-2-ylphenyl)$\mathbf{1 H}$-benzimidazole-4-carboxamide (22). To a solution of the product of step $4(1.5 \mathrm{~g}, 3.5 \mathrm{mmol})$ in dichloromethane (50 $\mathrm{mL})$ was added TFA $(10 \mathrm{~mL})$, and the mixture was stirred at ambient temperature for 1 h . After it was concentrated, the residue was purified by HPLC to provide the title compound $(1.42 \mathrm{~g}, 73 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.28(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 1 \mathrm{H})$, $3.53(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=9.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.42(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{APCI}): m / z 325(\mathrm{M}+\mathrm{H})^{+}$.
(\boldsymbol{R})-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1 \boldsymbol{H}-benzimidazole-4-carboxamide (22a). Step 1. Preparation of (S)-tert-Butyl 2-(3-fluoro-4-(methoxycarbonyl)phenyl)pyrrolidine-1-carboxylate. The racemic product of 22, step $3(6.3 \mathrm{~g})$, was resolved by chiral HPLC (Whelk O, 95:2.5:2.5 hexane/EtOH/MeOH) to give the 2.6 g of the title compound as the faster-eluting fraction $(100 \%$ e.e., S-enantiomer), MS (DCI): $m / z 324(\mathrm{M}+1)^{+}$, and 2.7 g of a slower-eluting fraction (97.5% e.e., R-enantiomer), MS (DCI): $m / z 324(\mathrm{M}+1)^{+}$.

Step 2. Preparation of (\boldsymbol{R})-4-(1-(Boc)pyrrolidin-2-yl)-2-fluorobenzoic Acid. To a solution of the slower-eluting fraction (R-enantiomer) of step $1(2.65 \mathrm{~g}, 8.2 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added a solution of lithium hydroxide monohydrate ($688 \mathrm{mg}, 16.4 \mathrm{mmol}$) in 20 mL of water. $\mathrm{MeOH}(10 \mathrm{~mL})$ was added until a transparent solution formed, and the solution was stirred at room temperature for 2 h . The mixture was brought to pH 2 with 2 N HCl and concentrated to $\sim 10 \mathrm{~mL}$, diluted with water, and allowed to stand at room temperature for 16 h . The white solid was collected by filtration, washed
with water, and dried to give the crude title compound (2.21 g , 87%). Recrystallization from MeOH and water gave the title compound ($1.61 \mathrm{~g}, 63 \%$). MS (DCI): $m / z 310(\mathrm{M}+\mathrm{H})^{+}$.

Step 3. Preparation of (R)-2-(2-Fluoro-4-(pyrrolidin-2-yl)-phenyl)- $\mathbf{H} \boldsymbol{H}$-benzimidazole-4-carboxamide (22a). The title compound was prepared using the product of step 2 according to the procedure for $\mathbf{2 2}$, step 6 . To a solution of the TFA salt in MeOH and dichloromethane was added 1 M HCl in ether. Concentration afforded the title compound as the HCl salt. $[\alpha]^{589}=+7.3$ $(c=0.6$ in MeOH$) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.29(\mathrm{~m}, 3 \mathrm{H}), 2.63$ $(\mathrm{m}, 1 \mathrm{H}), 3.54(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~m}, 1 \mathrm{H}), 7.73(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS (DCI): $m / z 325(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O} \cdot 2.6 \mathrm{HCl}\right) \mathrm{C}$, H, N; calcd, 13.37; found, 12.96.
(S)-2-(2-Fluoro-4-(pyrrolidin-2-yl)phenyl)-1 \boldsymbol{H}-benzimidazole-4-carboxamide (22b). The title compound was prepared as described for 22a, using the faster-eluting fraction (S-enantiomer) from step 1. $[\alpha]^{589}=-6.8(c=0.7$ in MeOH$)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.30(\mathrm{~m}, 3 \mathrm{H}), 2.62(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{~m}$, $1 \mathrm{H}), 7.74(\mathrm{~m}, 3 \mathrm{H}), 8.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.26(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 325(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{4} \mathrm{O} \cdot 2.3 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-Fluoro-2-(2-fluoro-4-pyrrolidin-2-ylphenyl)-1 H -benzimida-zole-4-carboxamide (23). Step 1. Preparation of tert-Butyl 2-(4-(4-carbamoyl-6-fluoro-1 H -benzimidazol-2-yl)-3-fluorophe-nyl)pyrrolidine-1-carboxylate. To a solution of 22, step 4 $(700 \mathrm{mg}, 2.26 \mathrm{mmol})$, in dichloromethane (8 mL) were added oxalyl chloride $(296 \mu \mathrm{~L}, 3.5 \mathrm{mmol})$ and DMF (1 drop), and the mixture was stirred at ambient temperature for 1 h . The mixture was concentrated, and the residue was dissolved in dichloromethane $(8 \mathrm{~mL})$. This solution was added to a solution of 2,3-diamino-5-fluorobenzamide ${ }^{12}(382 \mathrm{mg}, 2.26 \mathrm{mmol})$ and triethylamine ($378 \mu \mathrm{~L}, 2.71 \mathrm{mmol}$) in THF (8 mL), and the mixture was stirred at ambient temperature for 18 h . The mixture was concentrated, and the residue was dissolved in $\mathrm{AcOH}(15 \mathrm{~mL})$, heated at $80^{\circ} \mathrm{C}$ for 3 h , and concentrated. The residue was partitioned between EtOAc and sodium bicarbonate solution, and the organic layer was washed with sodium bicarbonate solution and concentrated. The residue was purified by flash chromatography on silica gel using 3:2 EtOAc/ hexanes to afford the title compound ($367 \mathrm{mg}, 37 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.86-1.97(\mathrm{~m}, 3 \mathrm{H}), 2.41-2.48(\mathrm{~m}$, $1 \mathrm{H}), 3.57-3.69(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.98(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.27(\mathrm{~m}, 2 \mathrm{H})$, $7.49(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{APCI}):$ $m / z 443(\mathrm{M}+\mathrm{H})^{+}$

Step 2. Preparation of 6-Fluoro-2-(2-fluoro-4-pyrrolidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (23). A solution of the product of step $1(360 \mathrm{mg}, 0.81 \mathrm{mmol})$ in dichloromethane $(25 \mathrm{~mL})$ and TFA $(5 \mathrm{~mL})$ was stirred at ambient temperature for 1 h and concentrated. The residue was purified by HPLC to provide the title compound ($326 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 2.20-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.62(\mathrm{~m}, 1 \mathrm{H}), 3.47-3.57(\mathrm{~m}, 2 \mathrm{H})$, $4.76(\mathrm{dd}, J=9.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.54(\mathrm{~m}, 3 \mathrm{H}), 7.71(\mathrm{dd}, J=$ $10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~F}_{2} \mathrm{~N}_{4} \mathrm{O}\right.$. 2.1TFA) C, H, N.

6-Fluoro-2-(4-piperidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (24). The title compound was prepared from tert-butyl 2-(4-carboxyphenyl)piperidine-1-carboxylate and 2,3-diamino-5fluorobenzamide ${ }^{12}$ using general procedure $\mathrm{A}(89 \mathrm{mg}, 54 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.68(\mathrm{~s}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.91$ $(\mathrm{m}, 2 \mathrm{H}), 1.98(\mathrm{~s}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 7.61$ $(\mathrm{m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{ESI}): m / z 339(\mathrm{M}+\mathrm{H})^{+}$

2-(2-Fluoro-4-piperidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (25). Step 1. Preparation of 2-(4-Bromo-2-fluorophenyl)-1 H-benzimidazole-4-carboxamide. The title compound was prepared from 4-bromo-2-fluorobenzoic acid using general procedure A $(91 \%) .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right): \delta 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~m}, 3 \mathrm{H}), 7.96(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.29$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.29(\mathrm{~s}, 1 \mathrm{H}), 13.15(\mathrm{~s}, 1 \mathrm{H})$.

Step 2. Preparation of 2-(2-Fluoro-4-pyridin-2-ylphenyl)-1 \mathbf{H} -benzimidazole-4-carboxamide. To the product of step 1 (200 $\mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(55 \mathrm{mg}, 0.06 \mathrm{mmol})$, and tri- o-tolylphosphine ($55 \mathrm{mg}, 0.028 \mathrm{mmol}$) were added DMF (10 mL), 2-(tri- n-butylstannyl)pyridine ($220 \mathrm{mg}, 0.6 \mathrm{mmol}$), and triethylamine ($238 \mu \mathrm{~L}, 1.7 \mathrm{mmol}$). The mixture was purged with nitrogen, heated at $75^{\circ} \mathrm{C}$ for 18 h , cooled, and concentrated. The residue was purified by flash chromatography on silica gel using $5 \% \mathrm{MeOH} / 20 \% \mathrm{EtOAc} / 75 \%$ hexanes, followed by recrystallization from MeOH to give the title compound $(110 \mathrm{mg}, 55 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.40(\mathrm{~m}, 2 \mathrm{H}), 7.51$ $(\mathrm{m}, 2 \mathrm{H}), 7.78(\mathrm{~m}, 1 \mathrm{H}), 7.93(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~m}, 1 \mathrm{H})$, $8.20(\mathrm{~m}, 3 \mathrm{H}), 8.43(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, 9.15 (s, 1H).

Step 3. Preparation of 2-(2-Fluoro-4-piperidin-2-ylphenyl)$\mathbf{1 H}$-benzimidazole-4-carboxamide (25). The product of step 2 ($80 \mathrm{mg}, 0.25 \mathrm{mmol}$) and catalytic $5 \% \mathrm{Pt} / \mathrm{C}(53 \mathrm{mg}, 0.025 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{~mL})$ were hydrogenated under 60 psi of hydrogen until starting material was consumed. After filtration, the filtrate was concentrated, and the residue was purified by HPLC to afford the title compound (95%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$: $\delta 1.82$ (m, 2H), $2.03(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{t}, J=$ $10.0,1 \mathrm{H}), 3.54(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~m}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=10.0,2 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 339$ $(\mathrm{M}+\mathrm{H})^{+}$.
(R)-2-(2-Fluoro-4-piperidin-2-yl-phenyl)-1 H -benzimidazole-4carboxamide (25a). Step 1. Preparation of Methyl 2-Fluoro-4-pyridin-2-yl-benzoate. To a mixture of methyl 4-bromo-2-fluorobenzoate ($5.0 \mathrm{~g}, 21.5 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(1.5 \mathrm{~g}, 1.6 \mathrm{mmol})$, and tri-2-furylphosphine ($1.5 \mathrm{~g}, 6.4 \mathrm{mmol}$) in DMF (100 mL) were added 2-trimethylstannyl pyridine ($9.5 \mathrm{~g}, 25.75 \mathrm{mmol}$) and triethylamine $(2 \mathrm{~mL})$ under nitrogen, and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 10 h . After it was cooled, the mixture was partitioned between EtOAc and brine, and the organic phase was concentrated. The residue was purified by flash chromatography using $1 / 5 \mathrm{EtOAc} /$ hexane to give the title compound ($2.6 \mathrm{~g}, 52 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 3.93(\mathrm{~s}, 3 \mathrm{H}), 7.40(\mathrm{~m}, 1 \mathrm{H}), 7.88(\mathrm{~m}, 4 \mathrm{H}), 8.05(\mathrm{~m}$, $1 \mathrm{H}), 8.65(\mathrm{~m}, 1 \mathrm{H})$. MS (DCI): $m / z 232(\mathrm{M}+\mathrm{H})^{+}$.

Step 2. Preparation of Benzyl 2-(3-Fluoro-4-(methoxycarbonyl)-phenyl)piperidine-1-carboxylate. The product of step $1(7.0 \mathrm{~g}$, 30 mmol) was stirred under 60 psi of hydrogen with $5 \% \mathrm{Pt} / \mathrm{C}$ $(350 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 100 mL of MeOH for 10 h to give 7.0 g of crude product. This was dissolved in dioxane $(100 \mathrm{~mL})$ and water $(50 \mathrm{~mL})$ and treated with potassium carbonate (5 g) and benzyl chlorofomate ($5.2 \mathrm{~mL}, 35 \mathrm{mmol}$). After the mixture was stirred at ambient temperature for 4 h , piperazine ($86 \mathrm{mg}, 1 \mathrm{mmol}$) was added, and the mixture was stirred for 30 min . The mixture was concentrated, and the residue was partitioned between EtOAc and dilute HCl . The organic phase was washed with water and concentrated, and the residue was purified by flash chromatography using $1 / 4 \mathrm{EtOAc} /$ hexane to give the title compound (7.5 g , $93 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~m}$, $1 \mathrm{H}), 2.32(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{~m}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS (DCI): $m / z 372(\mathrm{M}+\mathrm{H})^{+}$

Step 3. Preparation of Benzyl (R)-3-(4-Methoxycarbonyl-3-fluorophenyl)piperidine-1-carboxylate. The product of step 2 ($1 \mathrm{~g}, 3.7 \mathrm{mmol}$) was resolved by chiral HPLC (Chiralcel OJ, 85:7.5:7.5 hexane $/ \mathrm{EtOH} / \mathrm{MeOH}$) to afford a faster-eluting fraction ($448 \mathrm{mg}, 48 \% ; 100 \%$ e.e., R-enantiomer) and a slowereluting fraction ($460 \mathrm{mg}, 46 \%$; 98% e.e., S-enantiomer). ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right): \delta 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{~m}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 2.32$ $(\mathrm{d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H})$, $5.17(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 5 \mathrm{H}), 7.89(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H})$. MS (DCI): $m / z 372(\mathrm{M}+\mathrm{H})^{+}$

Step 4: Preparation of Benzyl (R)-2-(4-Carboxy-3-fluorophe-nyl)piperidine-1-carboxylate. The title compound was prepared
according to the procedure for $\mathbf{2 2}$, step 4 , using the fast-eluting fraction (R-enantiomer) of step $3(390 \mathrm{mg}, 88 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.63(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 3 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=12.9,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H})$, $7.14(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 5 \mathrm{H}), 7.87(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 358(\mathrm{M}+\mathrm{H})^{+}$.

Step 5. Preparation of $\operatorname{Benzyl}(R)$-2-[4-(2-Amino-3-carbamoyl-phenylcarbamoyl)-3-fluorophenyl]piperidine-1-carboxylate. The title compound was prepared from the product of step 4 using general procedure A $(440 \mathrm{mg}, 85 \%)$. MS $\left(\mathrm{DCI} / \mathrm{NH}_{3}\right): m / z 473$ $(M+H)^{+}$

Step 6. Preparation of (R)-2-(2-Fluoro-4-piperidin-2-yl-phenyl)$\mathbf{1 H}$-benzimidazole-4-carboxamide (25a). The title compound was prepared as described for the synthesis of 37 , step 3, using the product of step $5(305 \mathrm{mg}, 73 \%) .[\alpha]^{589}=+3.0(c=1.0$ in $\mathrm{MeOH}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$): $\delta 1.87(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 3 \mathrm{H})$, $2.20(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 3 \mathrm{H}), 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 373$ $(\mathrm{M}+\mathrm{H})^{+}$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O} \cdot 3 \mathrm{HCl}\right) \mathrm{C}, \mathrm{N}, \mathrm{H}$; calcd, 4.95; found, 5.39.
(S)-2-(2-Fluoro-4-piperidin-2-yl-phenyl)-1 H -benzimidazole-4carboxamide (25b). The title compound was prepared as described for 25a, using the slower-eluting fraction (S-enantiomer) produced in 25a, step 3. $[\alpha]^{589}=-3.03\left(c=1.0\right.$ in MeOH). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.84(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 4 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.56$ $(\mathrm{d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 3 \mathrm{H})$, $8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{4} \mathrm{O} \cdot 3 \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-Fluoro-2-(2-fluoro-4-piperidin-2-ylphenyl)-1 H -benzimidazole-4-carboxamide (26). The title compound was prepared as described for the synthesis of $\mathbf{2 5}$, using 2,3-diamino-5-fluorobenzamide 12 in place of 2,3-diaminobenzamide ($400 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta 1.83(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H})$, $3.21-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=12.2$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 3 \mathrm{H}), 7.70(\mathrm{dd}, J=10.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) . \mathrm{MS}(\mathrm{DCI}): m / z 357(\mathrm{M}+\mathrm{H})^{+}$.

Supporting Information Available: PARP-2 data for select compounds and microanalytical data for compounds $\mathbf{4 a}, \mathbf{b}, \mathbf{6}, \mathbf{1 0}$, $\mathbf{1 3 - 1 5}, \mathbf{2 0}, \mathbf{2 1}, \mathbf{2 2 a}, \mathbf{b}, \mathbf{2 3}$, and 25a,b. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Virág, L.; Szabó, C. The therapeutic potential of poly(ADPribose) polymerase inhibitors. Pharmacol. Rev. 2002, 54, 375-429. (b) Jagtap, P.; Szabó, C. Poly(ADP-Ribose) polymerase and the therapeutic effects of its inhibitors. Nat. Rev. Drug Discovery 2005, 4, 421-440. (c) Amé, J.-C.; Spenlehauer, C.; de Murcia, G. The PARP superfamily. BioEssays 2004, 26, 882-893. (d) Burkle, A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. BioEssays 2001, 23, 795-806.
(2) (a) Munoz-Gamez, J. A.; Martin-Oliva, D.; Aguilar-Quesada, R.; Canuelo, A.; Nunez, M. I.; Valenzuela, M. T.; Ruiz de Almodovar, J. M.; de Murcia, G.; Oliver, F. J. PARP inhibition sensitizes p53deficient breast cancer cells to doxorubicin-induced apoptosis. Biochem. J. 2005, 386, 119-125. (b) Tentori, L.; Graziani, G. Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol. Res. 2005, 52, 25-33. (c) Shirou, S.; Nomura, F.; Tomonaga, T.; Sunaga, M.; Noda, M.; Ebara, M.; Saisho, H. Expression of poly(ADP-ribose) polymerase in human hepatocellular carcinoma and analysis of biopsy specimens obtained under sonographic guidance. Oncol. Rep. 2004, 12, 821-825. (d) Griffin, R. J.; Curtin, N. J.; Newell, D. R.; Golding, B. T.; Durkacz, B. W.; Calvert, A. H. The role of inhibitors of poly(ADPribose) polymerase as resistance-modifying agents in cancer chemotherapy. Biochemie 1995, 77, 408-422.
(3) (a) Plummer, E. R. Inhibition of polyADP-ribose polymerase in cancer. Curr. Opin. Pharmacol. 2006, 6, 364-368. (b) Horváth, E. M.; Szabó, C. Poly(ADP-ribose)polymerase as a drug target for cardiovascular disease and cancer. Drug News Perspect. 2007, 20, 171-181. (c) Ratnam, K.; Low, J. A. Current development of clinical inhibitors of poly(ADP-ribose)polymerase in oncology. Clin. Cancer Res. 2007, 13, 1383-1388.
(4) (a) Donawho, C. K.; Luo, Y.; Luo, Y.; Penning, T. D.; Bauch, J. L.; Bouska, J. J.; Bontcheva-Diaz, V. D.; Cox, B. F; DeWeese, T. L.; Dillehay, L. E.; Ferguson, D. C.; Ghoreishi-Haack, N. S.; Grimm, D. R.; Guan, R.; Han, E. K.; Holley-Shanks, R. .; Hristov, B.; Idler, K. B.; Jarvis, K.; Johnson, E. F.; Kleinberg, L. E.; Klinghofer, V.; Lasko, L. M.; Liu, X.; Marsh, K. C.; McGonigal, T. P.; Meulbroek, J. A.; Olson, A. M.; Palma, J. P.; Rodriguez, L. E.; Shi, Y.; Stavropoulos, J. A.; Tsurutani, A. C.; Zhu, G.-D.; Rosenberg, S. H.; Giranda, V. L; Frost, D. J. ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin. Cancer Res. 2007, 13, 2728-2737. (b) Albert, J. M.; Cao, C.; Kim, K. W.; Willey, C. D.; Geng, L.; Xiao, D.; Wang, H.; Sandler, A.; Johnson, D. H.; Colevas, A. D.; Low, J.; Rothenberg, M. L.; Lu, B. Inhibition of poly(ADP-ribose) polymerase enhances cell death and improves tumor growth delay in irradiated lung cancer models. Clin. Cancer Res. 2007, 13, 3033-3042.
(5) Lapidus, R. G.; Tentori, L.; Graziani, G.; Leonetti, C.; Scarsella, M.; Vergati, M.; Muzi, A.; Zhang, J. Oral administration of PARP inhibitor GPI 18180 increases the anti-tumor activity of temozolamide against intracranial melanoma in mice. J. Clin. Oncol. 2005, 23 (16 Suppl.), 3136.
(6) Calabrese, C. R.; Almassy, R.; Barton, S.; Batey, M. A.; Calvert, A. H.; Canan-Koch, S.; Durkacz, B. W.; Hostomsky, Z.; Kumpf, R. A.; Kyle, S.; Li, J.; Maegley, K.; Newell, D. R.; Notarianni, E.; Stratford, I. J.; Skalitsky, D.; Thomas, H. D.; Wang, L.-Z.; Webber, S. E.; Williams, K. J.; Curtin, N. J. Anticancer chemosensitization and radiosensitization by the novel poly(ADP-ribose) polymerase-1 inhibitor AG14361. J. Natl. Cancer Inst. 2004, 96, 56-67.
(7) (a) Tentori, L.; Leonetti, C.; Scarsella, M.; d'Amati, G.; Vergati, M.; Portarena, I.; Xu, W.; Kalish, V.; Zupi, G.; Zhang, J.; Graziani, G. Systemic administration of GPI 15427, a novel poly(ADPribose) polymerase-1 inhibitor, increases the antitumor activity of Temozolomide against intracranial melanoma, glioma, lymphoma. Clin. Cancer Res. 2003, 9, 5370-5379. (b) Ratnam, K.; Low, J. A. Current development of clinical inhibitors of poly(ADP-Ribose) polymerase in oncology. Clin. Cancer Res. 2007, 13, 1383-1388.
(8) Jones, P.; Altamura, S.; Boueres, J.; Ferrigno, F.; Fonsi, M.; Giomini, C.; Lamartina, S.; Monteagudo, E.; Ontoria, J. M.; Orsale, M. V.; Palumbi, M. C.; Pesci, S.; Roscilli, G.; Scarpelli, R.; Schultz-Fademrecht, C.; Toniatti, C.; Rowley, M.. Discovery of 2-\{4-[(3S)-piperidin-3-yl]phenyl $\}$-2H-indazole-7-carboxamide (MK-4827): A novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J. Med. Chem. 2009, 52, 7170-7185.
(9) Menear, K. A.; Adcock, C.; Boulter, R.; Cockcroft, X.; Copsey, L.; Cranston, A.; Dillon, K. J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V. M.; Matthews, I. T. W.; Moore, S.; O'Connor, M. J.; Smith, G. C. M.; Martin, N. M. B. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J. Med. Chem. 2008, 51, 6581-6591.
(10) Thomas, H. D.; Calabrese, C. R.; Batey, M. A.; Canan, S.; Hostomsky, Z.; Kyle, S.; Maegley, K. A.; Newell, D. R.; Skalitzky, D.; Wang, L.-Z.; Webber, S. E.; Curtin, N. J. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol. Cancer Ther. 2007, 6, 945-956.
(11) (a) Jagtap, P. G.; Baloglu, E.; Southan, G. J.; Mabley, J. G.; Li, H.; Zhou, J.; van Duzer, J.; Salzman, A. L.; Szabo, C. Discovery of potent poly(ADP-ribose) polymerase-1 inhibitors from the modification of indeno[1,2-c]isoquinolinone. J. Med. Chem. 2005, 48, 5100-5103. (b) Mason, K. A.; Valdecanas, D.; Hunter, N. R.; Milas, L. INO-1001, a novel inhibitor of poly(ADP-ribose) polymerase, enhances tumor response to doxorubicin. Invest. New Drugs 2008, 26, 1-5.
(12) (a) Penning, T. D.; Zhu, G.-D.; Gandhi, V. B.; Gong, J.; Thomas, S.; Lubisch, W.; Grandel, R.; Wernet, W.; Park, C. H.; Fry, E. H.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Frost, D. J.; Donawho, C. K.; Bontcheva-Diaz, V.; Bouska, J. J.; Olson, A. M.; Marsh, K. C.; Rosenberg, S. H.; Giranda, V. L. Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: A potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg. Med. Chem. 2008, 16, 6965-6975. (b) Penning, T. D.; Zhu, G.-D.; Gong, J.; Gandhi, V. B.; Luo, Y.; Liu, X.; Shi, Y.; Klinghofer, V.; Johnson, E. F.; Frost, D.; Donawho, C.; Rodriguez, L.; Bukofzer, G.; Jarvis, K.; Bouska, J.; Osterling, D. J.; Olson, A.; Marsh, K. C.; Rosenberg, S. H.; Giranda, V. Discovery of the poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J. Med. Chem. 2009, 52, 514-523.
(13) (a) Ashworth, A. A synthetic lethal therapeutic approach: Poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol. 2008, 26, 3785-3790. (b) Iglehart, J. D.; Silver, D. P. Synthetic lethality-A new direction in cancer-drug development. N. Engl. J. Med. 2009, 361, 123-134. (c) Fong, P. C.; Boss, D. S.; Yap, T. A.; Tutt, A.; Wu, P.; Mergui-Roelvink, M.; Mortimer, P.; Swaisland, H.; Lau, A.; O'Connor, M. J.; Ashworth, A.; Carmichael, J.; Kaye, S. B.; Schellens, J. H. M.; de Bono, J. S. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 2009, 361, 123-134.
(14) Barkalow, J. H.; Breting, J.; Gaede, B. J.; Haight, A. R.; Henry, R.; Kotecki, B.; Mei, J.; Pearl, K. B.; Tedrow, J. S.; Viswanath, S. K. Process development for ABT-472, a benzimidazole PARP inhibitor. Org. Process Res. Dev. 2007, 11, 693-698.
(15) Zhu, G.-D.; Hannick, S. M.; Gong, J.; Gandhi, V. B.; Shelat, B.; Penning, T. D. Asymmetric syntheses of substituted 2-arylpyrrolidines and piperidines, and application to the synthesis of A-966492, a potent and efficacious PARP inhibitor. Manuscript in preparation. Briefly, chiral intermediates used in an alternate preparation of 22a and $\mathbf{2 5 a}, \mathbf{b}$ were synthesized using an approach that produces chiral compounds of known absolute stereochemistry, as generally described in ref 19.
(16) Ishida, J.; Yamamoto, H.; Kido, Y.; Kamijo, K.; Murano, K.; Miyake, H.; Ohkubo, M.; Kinoshita, T.; Warizaya, M.; Iwashita, A.; Mihara, K.; Matsuoka, N.; Hattori, K. Discovery of potent and selective PARP-1 and PARP-2 inhibitors: SBDD analysis via a combination of X-ray structural study and homology modeling. Bioorg. Med. Chem. 2006, 14, 1378-1390.
(17) White, A. W.; Curtin, N. J.; Eastman, B. W.; Golding, B. T.; Hostomsky, Z.; Kyle, S.; Li, J.; Maegley, K. A.; Skalitzky, D. J.; Webber, S. E.; Yu, X.-H.; Griffin, R. J. Potentiation of cytotoxic drug activity in human tumour cell lines, by amine-substituted 2-arylbenzimidazole-4-carboxamide PARP-1 inhibitors. Bioorg. Med. Chem. Lett. 2004, 14, 2433-2437.
(18) Canan-Koch, S. S.; Thoresen, L. H.; Tikhe, J. G.; Maegley, K. A.; Yu, X.-H.; Zook, S. E.; Kumpf, R. A.; Zhang, C.; Boritzki, T. J.; Mansour, R. N.; Zhang, K. E.; Ekker, A.; Calabrese, C. R.; Curtin, N. J.; Kyle, S.; Thomas, H. D.; Wang, L.-Z.; Calvert, A. H.; Golding, B. T.; Griffin, R. J.; Newell, D. R.; Webber, S. E.; Hostomsky, Z. Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: Design, synthesis, and X-ray cocrystal structure. J. Med. Chem. 2002, 45, 4961-4974.
(19) (a) Campos, K. R.; Klapars, A.; Waldman, J. H.; Dormer, P. G.; Chen, C. Enantioselective, palladium-catalyzed α-arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc. 2006, 128, 3538-3539. (b) Zhu, G.; Zhang, X. Additive effects in Ir-BICP catalyzed asymmetric hydrogenation of imines. Tetrahedron: Asymmetry 1998, 9, 24152418.

[^0]: *To whom correspondence should be addressed. E-mail: thomas. penning@abbott.com.
 ${ }^{a}$ Abbeviations: PARP, poly(ADP-ribose) polymerase; TMZ, temozolomide; HR, homologous recombination; BER, base-excision repair; Boc, tert-butoxycarbonyl, CBZ, carbobenzyloxy; TGI, tumor growth inhibition.

