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Abstract The 2 most commonly used oxazaphosphorines are cyclophosphamide and
ifosfamide, although other bifunctional mustard analogues continue to be inves-
tigated. The pharmacology of these agents is determined by their metabolism,
since the parent drug is relatively inactive. For cyclophosphamide, elimination
of the parent compound is by activation to the 4-hydroxy metabolite, although
other minor pathways of inactivation also play a role. Ifosfamide is inactivated
to a greater degree by dechloroethylation reactions. More robust assay methods
for the 4-hydroxy metabolites may reveal more about the clinical pharmacology
of these drugs, but at present the best pharmacodynamic data indicate an inverse
relationship between plasma concentration of parent drug and either toxicity or
antitumour effect.
The metabolism of cyclophosphamide is of particular relevance in the appli-

cation of high dose chemotherapy. The activation pathway of metabolism is sat-
urable, such that at higher doses (greater than 2 to 4 g/m2) a greater proportion
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of the drug is eliminated as inactive metabolites. However, both cyclophosph-
amide and ifosfamide also act to induce their own metabolism. Since most high
dose regimens require a continuous infusion or divided doses over several days,
saturation of metabolism may be compensated for, in part, by auto-induction.
Although a quantitative distinction may be made between the cytochrome P450
isoforms responsible for the activating 4-hydroxylation reaction and those which
mediate the dechloroethylation reactions, selective induction of the activation
pathway, or inhibition of the inactivating pathway, has not been demonstrated
clinically.
Mathematical models to describe and predict the relative contributions of

saturation and autoinduction to the net activation of cyclophosphamide have been
developed. However, these require careful validation and may not be applicable
outside the exact regimen in which they were derived. A further complication is
the chiral nature of these 2 drugs, with some suggestion that one enantiomer may
have a favourable profile of metabolism over the other.
That the oxazaphosphorines continue to be the subject of intensive investiga-

tion over 30 years after their introduction into clinical practice is partly because
of their antitumour activity. Further advances in analytical and molecular phar-
macological techniques may further optimise their use and allow rational design
of more selective analogues.

Cyclophosphamide and ifosfamide are the most
widely used oxazaphosphorines and among the first
alkylating agents to be used therapeutically. Be-
cause phosphoramidase enzymes were thought to
be more abundant in tumours compared with nor-
mal tissue, cyclophosphamide was designed to be
cleaved by these enzymes to deliver nitrogen mus-
tard selectively to malignant cells.[1] Oxazaphos-
phorines are now known to act as prodrugs, but the
pharmacological route to DNA alkylation does not
involve phosphoramidase activation and the exact
sequence of events is still not clear.
Cyclophosphamide and ifosfamide can have se-

rious toxicities, however, there are interesting dif-
ferences between the 2 agents.[2] In particular, ne-
phrotoxicity and neurotoxicity are more common
with ifosfamide. Nevertheless, they continue to be
used in a wide variety of therapeutic settings be-
cause of their valuable antitumour activity. Recent-
ly, several high dose regimens have been developed
which include cyclophosphamide followed by autol-
ogous haematological support.
Other oxazaphosphorine agents have been de-

veloped (these include trofosfamide,[3,4] mafosfa-
mide,[5] various sugar derivatives[6] and the activated
4-hydroperoxy form of cyclophosphamide[7,8]), but

the clinical use of these agents is limited. Trofos-
famide, which has 3 chloroethyl groups, may be
metabolised to a 4-hydroxy metabolite or either
cyclophosphamide or ifosfamide and is a substrate
for the same cytochrome P450 (CYP)3Aenzymes.[9]
The pharmacokinetics of cyclophosphamide[10]

and ifosfamide[11,12] have been reviewed separately
and together.[13] The current review will concen-
trate on recent developments of these 2 agents.

1. Mechanisms of Action 
and Resistance

Most of the information concerning the mech-
anisms of action of oxazaphosphorines has been
gained by studying cyclophosphamide. However,
there are sufficient elements in common that these
factors can be considered for the 2 agents together.
Following metabolic activation and subsequent for-
mation of mustards (fig. 1), oxazaphosphorines act
as bifunctional alkylating agents. The mustards are
thought to react with the N7 atom of purine bases,
especially when they are flanked by adjacent guan-
ines.[14] TheseDNAadducts goon to formcross-links
through reaction of the second arm of themustard.[15]
The different intramolecular distance between the
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chloroethyl groups in cyclophosphamide or ifos-
famide mustards results in a different range of cross-
linked DNA.
Despite an understanding of the chemical reac-

tions between alkylating species and DNA,[16] the
nature of the mechanisms linking adduct and cross-
link formation with cell death remain unclear.
It is now accepted that cyclophosphamide, aswith

other alkylating agents, kills tumour cells by apop-
tosis, a process regulated downstream to DNA dam-
age.[17,18] Several mechanisms of resistance have
been proposed including increased levels of intra-
cellular thiols and upregulated glutathione S-trans-
ferase activity.[19,20] More specifically, cyclophos-
phamide resistance has been linked to deficient DNA
repair[21,22] and increased aldehyde dehydrogenase
activity.[23-26] Lastly, transfection of anti-apoptotic

proteins belonging to the Bcl2 family inhibits cy-
clophosphamide-induced cell death in vitro con-
firming the importance of downstream events in
determining the outcome of chemotherapy.[27] Many
of these elegant systems await confirmation of their
clinical importance, prior to the development of
strategies to circumvent them.
Recent studies have pointed to a role for the

enzyme alkylguanine alkyltransferase (AGAT) in
resistance to cyclophosphamide,[28] which opens
up the possibility that the O6 atom of guanine may
also be a target for oxazaphosphorines. This has
important implications for other possible mecha-
nisms of resistance, as the repair enzymes associ-
ated with O6 lesions differ from those relevant to
the N7 atom. Also, inhibitors of AGATmay be clin-
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ically useful to augment the activity of oxazaphos-
phorines.

2. Cyclophosphamide

2.1 Clinical Use

The oxazaphosphorine cyclophosphamide remains
one of the most widely used cytotoxic agents in both
adults and children. While its role in the treatment
of patients with small cell lung cancer and ovarian
cancer is declining, cyclophosphamide continues
to be used in the treatment of breast carcinomawhere
it forms a critical component of the cyclophospha-
mide, methotrexate, fluorouracil (CMF) regimen[29]
and is used in combination with doxorubicin (adri-
amycin).[30] Both ifosfamide and cyclophosphamide
are widely used in the treatment of patients with
nonHodgkin’s lymphoma and a variety of bone and
soft tissue sarcomas.[31] In addition to its role in the
treatment of solid tumours, cyclophosphamide is
included in many multinational protocols for the
treatment of acute lymphoblastic leukaemia.[32]
In comparison withmany other anticancer drugs

cyclophosphamide exhibits relatively little nonhae-
matopoeitic toxicity. This feature and experimental
reports of a steep dose-response curve[33] have led to
the widespread use of escalated doses (up to 7 g/m2)
of cyclophosphamide in an effort to overcome re-
sistance in clinical practice. Other potential advan-
tages of cyclophosphamide include the absence of
cross-resistance with other alkylating agents, such
as melphalan and nitrosoureas, in addition to poten-
tial synergy with topoisomerase II inhibitors.[34,35]
High dose therapy forms a component ofmost bone
marrow transplant conditioning regimens in both
adults and children.[36]
Cyclophosphamide is usually administered in-

travenously in either 5% dextrose or 0.9% saline.
There is no clear evidence of clinical benefit result-
ing from more prolonged infusions[37] and the drug
is usually given as a single dose over a period of
up to 1 hour, although a number of paediatric pro-
tocols favour fractionating the total dose over sev-
eral days. Oral administration of cyclophosphamide
is usually restricted to its use as an immunosup-

pressive and in some adjuvant breast cancer regi-
mens. It is customary to use hydration and simulta-
neousmesna administration to prevent haemorrhagic
cystitis when the total dose of cyclophosphamide
per course exceeds 1 g/m2.

2.2 Analytical Methodology

Arange of techniques has been described for the
analysis of cyclophosphamide and its metabolites.
While gas-chromatography is the most sensitive
means of detecting the parent compound,[38,39] de-
chloroethylcyclophosphamide and ketocyclophos-
phamide in biological fluids, high performance
liquid chromatography (HPLC) has also been em-
ployed to determine cyclophosphamide concen-
trations in vivo.[40,41] Assay methods for the more
reactive metabolites have been described,[42-44] but
these species are unstable and thus require complex
derivatisation prior to quantitation. Recently, liq-
uid chromatography-mass spectrometry (LC-MS)
methods for parent and metabolites have been des-
cribed[45] and nuclear magnetic resonance (NMR)
has been used to determine concentrations in ur-
ine.[46]
Methods for the separate analysis of the stereo-

isomers of cyclophosphamide have been develop-
ed, including chiral derivatisation and chiral chro-
matography.[47,48]

2.3 Absorption and Distribution

Cyclophosphamide is well absorbed following
oral administration,[49-51] although the reported bio-
availability of the parent compound may mask dif-
ferences in the production of individual metabo-
lites following first-pass metabolism. The parent
compound is widely distributed throughout the
body[52] with a low degree of plasma protein bind-
ing (20%).[10] There is some evidence that distribu-
tion is increased in obese patients, resulting in a
longer half-life of the parent drug.[53]
Several studies have provided differing estim-

ates of the ability of cyclophosphamide to cross the
blood-brain barrier with reported cerebrospinal
fluid : plasma ratios varying between 0.2 and 4.[54,55]
It is likely that the blood-brain barrier is less per-
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meable to individual metabolites which are more
polar and increasingly bound to plasma proteins.[56]
The relevance of these findings is unclear as a pro-
portion of paediatric intracranial tumours are intrin-
sically sensitive to cyclophosphamide therapy.[57]

2.4 Elimination and Metabolism

Less than 20% of a dose of cyclophosphamide
is excreted unchanged in the urine,[58,59] and only
4% is excreted in the bile.[60] The majority of drug
elimination occurs by metabolic transformation. Al-
though this may occur predominantly in the liver,
activating or inactivating metabolismmay occur in
other sites, including the erythrocytes[61] and tu-
mour itself. Gene transfer of activating enzymes
into tumour cells has been suggested to improve
selectivity.[62]
Cyclophosphamide is a prodrug which requires

metabolic transformation to generate active alkyl-
ating species.[63] The initial activation reaction of
hydroxylation at the carbon-4 position of the oxaza-
phosphorine ring (fig. 1) is mediated by CYP en-
zymes.[64] This reaction produces 4-hydroxycyclo-
phosphamide, which exists in equilibrium with its
tautomer aldophosphamide.[65] Aldophosphamide
breaks down by spontaneous β elimination to re-
lease phosphoramidemustard and acrolein.[63]While
phosphoramide mustard is thought to be the active

alkylating species, acrolein is an unwanted by-
product responsible for haemorrhagic cystitis.[63]
Alternatively, aldophosphamide may be oxidised
to inactive carboxyphosphamide by aldehyde de-
hydrogenase.[66] The other principal inactive meta-
bolite, dechloroethylcyclophosphamide, is produ-
ced by a separate oxidativeN-dealkylation reaction
which is also catalysed by CYP3A4.[67,68] Previous
studies of urinarymetabolites suggested the presence
of a polymorphism in aldehyde dehydrogenase ca-
talysed production of carboxyphosphamide.[69,70]
However, further investigations indicated that the
observed variation may be secondary to altered sta-
bility at extremes of urinary pH.[46,71] Aminor keto
metabolite has also been identified.[46]
The CYPenzymes responsible for cyclophosph-

amide activation have been identified as CYP2B6,
CYP2C family members and CYP3A4.[64] Analy-
sis of CYP2B6 expression in human liver has sug-
gested that this is the major form contributing to
cyclophosphamide metabolism in vivo,[72] although
a role for CYP2C9 has also been reported.[68]
A high degree of interpatient variation in terms

of the pharmacokinetics of cyclophosphamide has
been reported in both adults[73] and children,[74]
which is likely to reflect differences in the expres-
sion of the individual CYPenzymes. Variation may
also result from concomitant drug therapy with

Table I. Pharmacokinetic parameters for cyclophosphamide. Data are presented as mean ± SD or median (range)

n Dose t1⁄2β (h) AUC (mmol/L • h) CLa (L/h/m2) Vda (L/kg) fe (%) Reference
12 60 mg/kg 5.0 3.2 10
7 120 mg/kg 5.2 ± 1.8a 44
16 150-400 mg/m2 7.6 2.4 0.52 53
19 60 mg/kg (1.9-2.7

g/m2)
1st dose 8.7 ± 4.6
2nd dose 3.6 ± 0.9

1st dose 3.1 ± 1.1
2nd dose 1.6 ± 0.7

16 58

23 1.0 g/m2 6.2 1.6 2.5 0.57 14 59
4 1.6 g/m2 5.5 2.4 2.6 0.52 12
38b 370-2490 mg/m2 3.2 (1.1-16.8) 2.9 (1.2-10.6) 0.63

(0.26-1.48)
74

15 4 g/m2 76
12 500 mg/m2 4.8 0.7 ± 0.1a 2.7 0.49 ± 0.08 19 77

100 mg/kg 6.0 ± 1.0 2.7 0.45 ± 0.12 30
a Assuming 70kg or 1.73m2 as appropriate.
b Ages between 0.17 and 18 years.
AUC = area under the concentration-time curve; CL = total body clearance; fe = fraction of the available drug excreted in the urine; n = number
of participants; SD = standard deviation; t1⁄2β = elimination half-life; Vd = volume of distribution.
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CYP inhibitors, such as systemic antifungals,[75] or
prior treatment with inducers including dexameth-
asone[74] and anticonvulsants.[44] The half-life of
cyclophosphamide is between 6 and 9 hours with
clearance values of approximately 2.5 to 4.0 L/h/m2
(table I).[50,53] Cyclophosphamidemetabolism is pro-
bably more rapid in children as a result of increased
CYP activity.[74] Alterations in renal or hepatic func-
tion have not been clearly shown to alter the phar-
macokinetics of the parent compound in vivo,[78]
and do not result in any clinically-relevant changes
in pharmacology.[79] Autoinduction of cyclophos-
phamide metabolism is well recognised, providing
an increase in clearance and a shortened half-life
following repeated administration at 24-hour inter-
vals.[76,80,81] This is because of an increase in CYP
enzymes.[82]
The increasing use of ‘high dose’ cyclophosph-

amide has led to concerns over the existence of
dose-dependent pharmacokinetics, with an increase
in the production of inactive metabolites as the pre-
dominant activation pathway of metabolism is sat-
urated. The clinical significance of such an effect
remains unclear.[76,77] Interestingly, in a study com-
paring high dose (100 mg/kg) with conventional
dose (500 mg/m2) in the same patients, no diff-
erence in overall pharmacokinetics was observed.
However, the degree of renal excretion and inactive
metabolite formation was increased at the higher
dose, associated with a relative decrease in the for-
mation of the active metabolite.[77]
We have recently reported that the clearance of

cyclophosphamide is reduced in children with Fan-
coni’s anaemia, possibly as a consequence of al-
tered CYP oxidase-reductase cycling.[83] While
hepatic disease might be expected to reduce the
activation of oxazaphosphorines, there are few cli-
nical data available to confirm this.[84]
In a comprehensive study of the pharmacokinet-

ics and metabolism of cyclophosphamide adminis-
tered over 2 days, the area under the concentration-
time curve (AUC) of the parent drug was reduced
on day 2, compared with day 1, and this was ac-
companied by an increase in the AUC of the active
4-hydroxy metabolite.[85]

2.5 Drug Interactions

Because the activation and elimination pathways
of cyclophosphamide are dependent on drug meta-
bolism, there is wide scope for drug interaction. A
large number of drug interactions with cyclophos-
phamide have been reported in humans. In most
cases the underlying mechanism is inhibition of
CYP enzymes (allopurinol, chloramphenicol, chlor-
promazine,[74] fluconazole,[75] ranitidine,[86] pred-
nisolone[87] and thiotepa[88]). Induction of cyclo-
phosphamide metabolism has also been reported
(with dexamethasone[74] and anticonvulsants[44]).
Phenytoin induces the N-dechloroethylation of the
S-enantiomer of cyclophosphamide to a greater ex-
tent than that of the R-enantiomer.[89] The clinical
significance of these interactions is unclear. In ad-
dition, a clinically significant, schedule-dependent
interaction with paclitaxel has been identified.[90]

2.6 Role of Stereochemistry

The oxazaphosphorines possess a chiral centre
at the phosphorus atom. The impact of this on phar-
macokinetics, and more specifically on the meta-
bolism of cyclophosphamide, has been investiga-
ted using enantiospecific assays for the parent and
the optically-active metabolites. Small differences
in terms of clearance are observed in patients,[91,92]
with the S-enantiomer being eliminated more rap-
idly.

2.7 Pharmacokinetic Models

Asingle compartment, linear model is sufficient
to describe the pharmacokinetics of cyclophos-
phamide following a short intravenous infusion at
conventional doses.[73,74] More complex models in-
volving time- and concentration-dependent phar-
macokinetics have been proposed for prolonged or
high dose administration.[44,76,77,93]While thesemore
complex models apply specifically to the concen-
tration of the parent drug in plasma, they also have
implications for the systemic formation of active
and inactive metabolites.[94]
The relationship between the pharmacology of

cyclophosphamide and treatment outcome is incom-
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pletely understood. This is largely because of diffi-
culties in the measurement of reactive alkylating
metabolites and incomplete understanding of which
species are important in mediating cytotoxicity. A
single study has reported an inverse correlation
between the cyclophosphamide AUC and both
treatment-related cardiotoxicity and event-free sur-
vival in women with breast cancer.[95] A study of
cyclophosphamide AUC over 3 days of high dose
treatment (1875 mg/m2/day) reported no relation-
ship between the AUC of the parent drug and either
toxicity or relapse-free survival. A high degree of
intra-individual variability meant that the AUC on
day 1 was not predictive of the overall AUC.[96]

3. Ifosfamide

3.1 Clinical Use

The clinical use of ifosfamide includes adult and
paediatric tumours and both haematological and
nonhaematological disease. In tumours in adults it
is less common in first-line treatment, with the ex-
ception of soft-tissue sarcomas. In the treatment of
paediatric tumours ifosfamide is usually combined
in multi-drug regimens. The clinical use of ifos-
famide in paediatric patients is dose-limited by ne-
phrotoxicity, which cannot be easily related to the
pharmacology and metabolism of the drug.[97]

Like cyclophosphamide, ifosfamide is usually
administered intravenously dissolved in either 5%
dextrose or 0.9% NaCl. A short infusion or bolus
is often used, and does not differ from more pro-
longed infusion in terms of side-chain metabol-
ism.[98] Although there is little clinical evidence for
any benefit from more prolonged administration,
saturation of metabolism at higher doses (greater
than 12 mg/m2) may be of concern.[99] Ifosfamide,
must be given with at least an equimolar dose of
the uroprotective agent mesna. This prevents haem-
orrhagic cystitis, thought to be caused by the toxic
metabolites acrolein and chloroacetaldehyde. Mesna
is usually given intravenously, but an oral formu-
lation is also available.

3.2 Analytical Methodology

Analytical methods for ifosfamide are similar to
those for cyclophosphamide, but with a broader
range of detectable metabolites. HPLC is a possi-
ble method for the detection of most of the stable
metabolites, but with ultraviolet detection suffers
from the lack of a chromophor. Thin-layer chroma-
tography with photographic densitometry can also
be used, but has a relatively limited range of sen-
sitivity.[100] Assay methods for the more relevant
active metabolites have been described, but these

Table II. Pharmacokinetic parameters for ifosfamide. Data are presented as mean ± SD or median (range)

n Dose (mg) t1⁄2β (h) AUC (mmol/L • h) CLa (L/h/m2) Vda (L/kg) fe (%) Reference
15 5 g/m2 (24h) 4.7 ± 2.0 5.4 (3.5-8.7) 3.5 ± 0.9 0.56 ± 0.22 14.4 (5.3-19.4) 101
9 2-3g, IV (20 min) or

PO
2.2-2.4 2.1 ± 0.9 5.3 ± 1.6 108
2.5-3.3 1.8 ± 0.8 4.9 ± 2.7

7 1.5 g/m2 (0.5h) 7.0 ± 2.6 2.4 ± 0.7 3.8 ± 0.9 0.62 ± 0.17 112
8 1.8 g/m2 (60 min) 5.2 (4.4-8.8) 2.0 (1.1-2.7) 3.4 (2.0-6.2) 0.66

(0.41-1.41)
113

12b 9 g/m2 (1h) or 3.2 ± 1.5c 6.2 (4.8-12.2) 3.8 ± 1.1c 1.1 ± 0.4 20 (7-42) 114
9 g/m2 (72h) 2.1 ± 0.7 6.4 (2.3-10.9) 5.5 ± 2.7 0.7 ± 0.4 15 (10-26)

14 3 g/m2/day (1h or
24h)

6.9 ± 2.0 21 ± 9 115
7.0 ± 4.4 25 ± 14

a Assuming 70kg or 1.73m2 as appropriate.
b 0.8-16.2 years.
c Day one of treatment.
AUC = area under the concentration-time curve; CL = total body clearance; fe = fraction of the available drug excreted in the urine; IV =
intravenous; n = number of participants; PO = orally; SD = standard deviation; t1⁄2β = elimination half-life; Vd = volume of distribution.
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species are unstable and so often require complex
derivatisation.[11] Given the uncertainty surround-
ing the site of metabolic activation, the relevance
of systemic concentrations of the active metabo-
lites is questionable.[101,102] Assays for the individ-
ual enantiomers of ifosfamide have been described,
in particular focusing on the dechloroethylation path-
ways and the precise quantitation of the stereoche-
mistry of this metabolic pathway.[103]

3.3 Absorption

Ifosfamide has been administered orally in clin-
ical studies and is reported to have a high bioavail-
ability.[104-108] However, bioavailability measures
based on the parent drug may mask qualitative and
quantitative effects, because of metabolism in the
gastrointestinal tract or first-pass metabolism,[107,109]
and oral administration of ifosfamide is associated
with a higher incidence of neurotoxicity.[110,111]

3.4 Distribution

The distribution of ifosfamide in the body is
thought to be extensive, with a low degree of pro-
tein binding in the plasma.[11] The volume of dis-
tribution is hard to estimate because of the complex
pharmacokinetics of this drug, but is generally
around 0.6 L/kg (table II).[11] There is some evi-
dence that obese patients have a larger volume of
distribution, resulting in a longer half-life for the
parent drug.[116] In paediatric patients, distribution
of the parent drug and metabolites has been deter-
mined in the cerebrospinal fluid. Parent drug con-
centrations were comparable with those seen in plas-
ma, with lower concentrations for the more polar
metabolites.[56]

3.5 Metabolism and Excretion

As a prodrug ifosfamide requires metabolic ac-
tivation to form the DNA reactive mustard species
isophosphoramide mustard (fig. 2).[63] As well as
the activation pathway, via 4-hydroxy and aldehyde
intermediates, ifosfamide predominantly forms in-
activedechloroethylatedmetabolites (fig.2).[101,117,118]
As with cyclophosphamide, the activated form of

ifosfamide can be inactivated by aldehyde dehy-
drogenases to form a carboxy metabolite, with a
small amount of inactivation to the keto metabo-
lite.[101,117,118]
The chiral nature of the phosphorous atom in the

ifosfamide molecule results in a minor degree of
stereoselective metabolism.[119] The pharmacolog-
ical significance of this is not yet clear, although it
has been suggested that one enantiomer of the de-
chloroethylated metabolites is associated with neu-
rotoxicity,[103] and the optically-pure R-isomer is
being investigated as a less neurotoxic form.[120]
Investigations of the activation pathway for ifos-

famide have indicated that CYP enzymes CYP3A4
and 3A5 are able to catalyse the formation of the
4-hydroxy metabolite.[64,121] Although these enzy-
mes are expressed in hepatic and other host tissues,
they may also be expressed in tumours,[122-124] lead-
ing to speculation that intratumoral activation may
contribute significantly to activity.[62]
Dechloroethylation is also mediated by CYP3A

isoforms.[121] This inactivating reaction ismuchmore
significant for ifosfamide than for cyclophospha-
mide, accounting for up to 50% of a dose.[101] Chlor-
oacetaldehyde is formed as a by-product of this
reaction and a causative role for chloroacetalde-
hyde in ifosfamide nephro- or neurotoxicity has
been suggested.[125]
When administered intravenously ifosfamide has

a half-life of 4 to 6 hours,[11] with clearance values
reported to be between 1.8 and 5.5 L/h/m2 (table
II).[11] The majority of elimination is by metabo-
lism, with less than 20% of a dose eliminated un-
changed in the urine. There is no difference in phar-
macokinetics between paediatric and adult patients.
As with cyclophosphamide, ifosfamide induces

its own metabolism following repeated or continu-
ous administration.[126,127] Clearance is increased,
half-life decreased and the formation of metabo-
lites increases. Auto-induction of metabolism oc-
curs within 12 to 24 hours of drug administration,
but is reversed within 3 weeks.[112]
At high doses, saturation of individual pathways

of metabolism may also occur, although the phar-
macokinetics of the parent drug have been shown
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to be dose independent up to 18 g/m2.[99] The com-
bination of auto-induction and nonlinear metabol-
ism of ifosfamide requires complexmodels to fully
describe its pharmacokinetics.

3.6 Pharmacokinetic Drug Interactions

As with cyclophosphamide, drug interactions re-
sulting in modification of metabolism of ifosfa-
mide are potentially important. Drugs which may
inhibit metabolism of ifosfamide include antifun-
gal agents (ketoconazole and fluconazole), allopu-

rinol and chlorpromazine, based on a comparison
with the known inhibitors of cyclophosphamide me-
tabolism[74,75] and on in vitro studies.[64,121] Con-
versely, inducers of hepatic metabolising enzymes
increase the metabolism of ifosfamide[82] and pro-
longed administration of corticosteroids and anti-
convulsants (phenobarbital and carbamazepine) re-
sults in increased clearance.[127] Since these agents
are also substrates for the same metabolising en-
zymes, a complex mixture of competition and in-
duction exists when they are coadministered.
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Since administration of ifosfamide induces drug
metabolising enzymes, prior administration may in-
crease the rate of elimination of other substrates.
However, there are no reports of any clinically sig-
nificant interactions of this type.

3.7 Pharmacokinetic Models

The pharmacokinetics of ifosfamide following
a short, intravenous infusion at conventional doses
may be adequately described by a 1-compartment,
linear model. However, more complex models in-
volving time- and/or concentration-dependent phar-
macokinetics have been proposed for prolonged or
high dose administration.[127] Clearance is descri-
bed as a variable that increases with time[127] or
with concentration.[128] While these more complex
models apply specifically to concentrations of par-
ent drug in the plasma, they also have implications
for the systemic formation of inactive and active
metabolites.

3.8 Pharmacodynamic Implications

Because of the prodrug nature of ifosfamide, phar-
macodynamic models are difficult to formulate in
terms of the parent drug. Furthermore, in multi-
agent chemotherapy regimens, it is difficult to iden-
tify the contribution of any 1 agent to therapeutic
or toxic events. Conversely, attempts to determine
a relationship between pharmacological effect and
systemic concentrations of activated metabolites
have been unsuccessful.[101] An application of the
comet assay to determine the degree of DNA dam-
age[129] or DNA cross-linking has been described
recently and may provide more useful pharmaco-
dynamic information.[130]

4. Conclusion

The oxazaphosphorines have been used since
the advent of modern chemotherapy, and have con-
tributed to the effective treatment of many thou-
sands of patients. However, the enigma of the me-
chanism of action, in terms of antitumour effect and
toxicity, persists. Advances in biochemistry, analy-
tical techniquesandenzymologyhaveprovided further

clues, and it is probable that the tools to successfully
probe the pharmacology of these drugs are now
available.
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