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Abstract
Nitrobenzoic derivatives are chemically and biologically significant molecules, recently listed as active ingredients in the

medical-pharmaceutic field. A series of p-nitrobenzoic acid salts were synthesized with different substituted alkanolamine

(ethanolamine, diethanolamine and triethanolamine) via proton exchange reactions and characterized. Fourier transform

infrared spectroscopy—FTIR-UATR, and a combination of thermal techniques (differential scanning calorimetry—DSC,

and thermogravimetric analysis—TGA) with hot-stage microscopy were used in order to demonstrate the formation of salts

and to analyse thermal stability and phase transitions. The aim of this study is to investigate thermal behaviour and kinetics

of this class of compounds, previously poorly examined, which offers interesting phase transformations in the solid state.

DSC indicated that the synthesized salts had very distinct melting points. Diethanolamine and triethanolamine used as

cation in the formation of multicomponent systems with 4-nitrobenzoic acid lead to melting points near 100 �C, compared

to compound based on ethanolamine. Calorimetric and thermogravimetric data indicate the absence of solvate forms in all

studied compounds. TGA and kinetic experiments allowed the calculation of the activation energy, revealing that tri-

ethanolammonium salt has the highest stability in this studied series of compounds.

Keywords Alkanolammonium salts of 4-nitrobenzoic acid � Thermal stability � TG/DTG � DSC � Non-isothermal kinetics �
Modified NPK method � Protic alkanolammonium ionic liquids (APILs)

Introduction

The interest in nitroaromatic compounds over the years as

important structural elements for the synthesis of industrial

chemicals, dyes, pigments or herbicides is well recognized

[1–4]. These compounds, despite the potential toxicity

issues [5, 6], have been known as therapeutics for

Parkinson’s disease, angina and insomnia [7–9], and

recently their use in infectious diseases has been devel-

oped. Among these compounds, 4-nitrobenzoic acid has

been listed as inhibitor agent for recognition of Mycobac-

terium tuberculosis complex and differentiation from non-

tuberculous mycobacteria [10, 11]. Considering the present

and future prospects of nitro drugs based on the unique

properties of nitro group and its ability to form hydrogen

bonds, there is a compelling need for complex researches

in this controversial topic.

In pharmaceutical industry, the salts represent about a

half of all active pharmaceutical ingredients on the market,

bringing an improvement in drug’s physicochemical

properties (e.g. melting point, chemical and physical sta-

bility, solubility, bioavailability and dissolution rate). In

addition, selection of the appropriate anion/cation combi-

nation, keeping anion constant and changing the counterion

or introduction of specific functional groups on the cation

or anion can affect the physicochemical and biological

properties of salt. An increasing number of 4-nitrobenzoate

multicomponent complexes formed with organic cations

such as aliphatic amines [12], guanidine [13, 14], 8-hy-

droxyquinoline [15], amino acids [16, 17], piperazine [18],

pyridine [19], imidazole [20] are developed and studied
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recently in the literature as promising NLO materials or

active pharmaceutical ingredients.

In the last years, searching for new compounds with

potent biological activity and low toxicity seems to be a

new trend in biosciences. Our previous studies highlighted

the alkanolamines as promising molecules used as salt-

forming agents and revealed the structural complexity and

low toxicity of the system represented by alkanolamine

salts with different aromatic carboxylic acids. These salts

have provided interesting supramolecular networks with

different topologies according to structural variation of

counterions [21, 22], lower toxicity comparatively with

aliphatic amines and heterocyclic amine salts [23] and

biological activity in plants [24–26].

In this work we have focused on investigation of thermal

behaviour and kinetics by thermal analysis techniques

(DSC and TG/DTA) of alkanolammonium salts of 4-ni-

trobenzoate in order to highlight the nature of their solid

state. Both counterions have active pharmaceutical prop-

erties and are economically, commercially available, which

makes them promising for the design of new dual active

compounds.

Materials and methods

All reagents, 4-nitrobenzoic acid—4-NBA, and the bases

(ethanolamine—MEA, diethanolamine—DEA, tri-

ethanolamine—TEA) were purchased in analytical purity

grade from Fluka AG (Buchs SG) and used as received.

The salts were prepared in a 1:1 molar ratio, dissolving

the acid and the appropriate alkanolamine in acetone and

then mixing the two solutions. The reaction was completed

after 2 h of continuous stirring at room temperature, the

salts precipitating in a crystalline state according to their

solubility in acetone. The compounds were collected by

filtration, washed with acetone and then dried in a vacuum

for 3 h. The salts were recrystallized from acetone or

ethanol. The suitable crystals for single-crystal X-ray

diffraction analysis were obtained by slow evaporation at

room temperature.

The purity of all studied salts was established via an UV

spectrophotometric method, which consisted in determin-

ing the specific extinction (absorbance at kmax of a solution

1 gl-1 in a cell of 1 cm width) of the free acid (ea) and the

corresponding salt (es), by measuring the UV absorbance in

NaOH 0.1 M at kmax.

Purity ¼ es �Ms

ea �Ma

� 100 ð1Þ

where Ms and Ma are the molecular weights for the salt and

free acid, respectively.

FTIR spectra were performed using PerkinElmer Spec-

trum 100 FTIR spectrometer with UATR, in the range

4000–650 cm-1 (see Fig. 1). Single-crystal X-ray diffrac-

tion analyses for all studied compounds were done at room

temperature on a Xcalibur ‘‘Oxford Diffraction’’ diffrac-

tometer equipped with CCD area detector and a graphite

monochromator utilizing MoKa radiation. Thermal beha-

viour was determined using a Diamond TG/DTA Perk-

inElmer in dynamic air atmosphere (synthetic air 5.0 Linde

Gas with flow 100 mL min-1). The experiments were

carried out from 25 �C up to 500 �C, at heating rates

b = 5, 7, 10, 12 and 15 �C min-1, using open Al crucible

(see Fig. 2). The phase transitions of the microcrystalline

solids were observed using an Olympus BX53M polarizing

microscope (POM) equipped with Linkam hot stage. Ima-

ges of the various crystalline phases were recorded with an

Olympus UC90 camera, using a filter with k = 530 nm.

Differential scanning calorimetry study was performed

with one PerkinElmer Diamond DSC using aluminium

closed pans with heating and cooling rate of 10 �C min-1

in nitrogen 20 mL min-1 (5.0 Linde Gas).

Results and discussion

Synthesis and physicochemical characterization

A series of alkanolammonium salts of 4-nitrobenzoic acid

were prepared according to ‘‘rule of three’’, via proton

exchange reaction, each base having a sufficiently high pKa

to react with 4-nitrobenzoic acid (Table 1). In this princi-

ple, the degree of ionization is considered to be a critical

parameter, the DpKa (pKa of base - pKa of acid) value

being important for predicting salt or co-crystal formation.

DpKa value greater than 3 leads to salt formation, while

DpKa less than 0 lead to co-crystal formation [27].

The reaction has occurred rapidly, with high yields

(90–92%). The compounds are water soluble and with well-

defined melting points not exceeding ca. 0.5 �C, which is an

indicative of their high purity. All synthesized alkanolamine

salts have showed lower melting points compared with

4-NBA. The values of purity determined by spectrophoto-

metric method were between 99.12 and 99.36% (Table 2).

UV spectroscopic data showed similar kmax values for salt

and acid (4-NBA kmax = 273.6 nm) that confirm the exis-

tence of the same anion in both compounds.

The evidence of proton transfer and molecular interac-

tions between alkanolammonium cation and 4-nitroben-

zoate anion is illustrated in the FTIR-UATR spectra

(Fig. 1). The formation of salts was identified by: (a) the

presence of asymmetric and symmetric m(COO-) vibrations

occurring at 1650–1540 and 1450–1360 cm-1, (b) N–H

vibrations attributable to –NH3
?, –NH2

? and –NH?,
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stretching of solid ammonium salts mNH3?= 3200–2700 cm-1,

mNH2?= 3100–2700 cm-1, mNH?= 2800–2400 cm-1 and

(c) the absence of stretching band mC=O = 1710–

1680 cm-1, characteristic for the carboxyl group [29, 30].
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Fig. 1 FTIR-UATR of 4-nitrobenzoic acid salts prepared with

ethanolamine (A), diethanolamine (B) and triethanolamine (C). A—

C9H12N2O5 (228.20); FTIR-UATR (1950mmax/cm
-1): 2930, 2689

(–NH3
?), 1646, 1612, 1556, 1385 (–COO-), 1102, 1068, 1021, 1009

(C–OH); B—C11H16N2O6 (272.26); FTIR-UATR (1942 mmax/cm
-1):

3031, 2738 (–NH2
?), 1615, 1567, 1377 (–COO-), 1098, 1066, 1035,

1007 (C–OH); C—C13H20N2O7 (316.31); FTIR-UATR (1980 mmax/

cm-1): 2722 (-NH?), 1615, 1560, 1548, 1376 (–COO-), 1095, 1071,

1037, 1008 (C–OH)

(a) (b) 105
100

90

80

70

60

50

40

30

20

10

0
35 100 150 200 250 300 350 400 450 510

8

7

6

5

4

3

2

1

0

–2

–1

–3

–4

Temperature/°C

Normalized heat flow

TG

DTG

N
or

m
al

iz
ed

 h
ea

t f
lo

w
 E

nd
o 

do
w

n/
W

g–1

5

0

–5

–10

–15

–20

–25

–30

M
as

s 
lo

ss
/%

D
er

iv
at

iv
e 

m
as

s 
lo

ss
/%

m
in

–1

105

100

90

80

70

60

50

40

30

20

D
er

iv
at

iv
e 

m
as

s 
lo

ss
/%

m
in

–1

–5

1

10

15

–20

–25

–30
35 100 150 200 250 300 350 400 450 505

Temperature/°C

Normalized heat flow

DTGTG

M
as

s 
lo

ss
/%

D
er

iv
at

iv
e 

m
as

s 
lo

ss
/%

m
in

–1

M
as

s 
lo

ss
/%

N
or

m
al

iz
ed

 h
ea

t f
lo

w
 E

nd
o 

do
w

n(
W

/g
)8

7

6

5

4

3

2

1

0

–2

–1

9

10

105

100

90

80

70

60

50

40

30

20
35 100 150 200 250 300 350 400 450 505

Temperature/°C

Normalized heat flow

–5

1

10

15

–20

–25

–30

DTGTG
8

7

6

5

4

3

2

1

0

–2

–1

9

10

–3

N
or

m
al

iz
ed

 h
ea

t f
lo

w
 E

nd
o 

do
w

n/
W

g–
1

(c)

Fig. 2 TG/DTG/feat flow (in air) of 4-nitrobenzoic acid salts prepared with ethanolamine (a), diethanolamine (b) and triethanolamine (c) (in air

at heating rates b = 10 �C min-1)
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The absorption bands reflected in FTIR-UATR spectra

confirmed the conversion of carboxyl group of 4-NBA and

amino group of alkanolamine into carboxylate and

ammonium groups, indicating the complete proton transfer

in studied compounds.

The crystallographic data of A–C compounds have

revealed that the salt unit serves as building block for

supramolecular architecture. The anions and cations are

self-assembled via ionic N–H���O and normal O–H���O
hydrogen bonds, compound A showing stronger inter-

molecular interactions [21], which leads to a higher

melting point compared to compounds B and C. Therefore,

the force of attraction between the molecules affects the

melting point of a compound.

Thermogravimetric analysis of compounds A–C

The TG/DTG/DTA curves of studied compounds recorded

in air at a heating rate of 10 �C min-1, and thermoana-

lytical data are presented in Fig. 2 and Tables 3 and 4,

respectively. The thermoanalytical data obtained at 5

heating rates, b = 5, 7, 10, 12 and 15 �C min-1 were used

Table 1 Tabulated DpKa of

alkanolammonium salt/protic

ionic liquid of 4-nitrobenzoic

acid

No. Compound name Abbreviation Structure DpKaa

A Monoethanolamine

4-nitrobenzoate

4-NBA MEA

COO

H3N-CH2-CH2-OH
+

NO2

6.06

B Diethanolamine

4-nitrobenzoate

4-NBA DEA
COO

H2N(CH2-CH2-OH)2
+

NO2

5.52

C Triethanolamine

4-nitrobenzoate

4-NBA TEA
COO

HN(CH2-CH2-OH)3
+

NO2

4.32

aDpKa = pKa (base) - pKa (acid) was calculated using pKa data from PubChem Compound Database

[28]. All pKa values have been determined in aqueous solutions

Table 2 The purity values of studied compounds

Sample kmax/nm Average specific extinction acid

ea
Average specific extinction salt

es
Purity, p/%

4-NBA MEA 273.6 58.42 42.45 99.22

4-NBA DEA 273.4 35.59 99.24

4-NBA TEA 273.4 30.67 99.36
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for providing the kinetic parameters of the degradation

process (FR, FWO and modified NPK kinetic methods).

In the thermogravimetric study, similar behaviour for all

samples was found. Samples B and C show one highly

exothermic decomposition stage in the range of

150–300 �C.

Kinetic study

The kinetic analysis was performed using the TG data in air

for the substance’s decomposition at five heating rates: 5,

7, 10, 12 and 15 �C min-1. To perform the kinetic analysis

of the TG experimental data, three isoconversional meth-

ods were used, a differential one and two integral ones,

respectively; fourth method elaborated by Sempere et al.

[31, 32] and modified and developed by Vlase et al.

[33, 34], the nonparametric kinetics method (NPK), in

order to obtain kinetic parameters.

It is generally accepted that the reaction rate can be

expressed as a product of two separable functions, k(T)

dependent only on the reaction temperature T and f(a)
dependent on the reaction degree a, i.e.:

da=dt ¼ k Tð Þ � f að Þ ð2Þ

where t is the reaction time. Under non-isothermal condi-

tion usually the reaction temperature depends linearly on

time, T = Ti ? bt, where b is the constant heating rate, so

Eq. (1) becomes:

b � da=dT ¼ k Tð Þ � f að Þ ð3Þ

Equation (3) is the starting point for all the data pro-

cessing methods used in kinetic analysis. The TG/DTG

curves furnish directly the da/dT, a and T for different

conversion degrees determined.

We used four different kinetic methods:

• Differential isoconversional by Friedman [35] (FR)

ln b � da=dTð Þa¼ ln A � f að Þ½ �a�E=RT ð4Þ

• Integral isoconversional by Flynn–Wall [36] and

Ozawa [37] (FWO)

ln b ¼ lnA= R � g að Þ½ � � 5:331� 1:052 � E=R � T ð5Þ

where g(a) =
Ra

0

[da/f(a)] is the integral form of the

conversion function.

• The Kissinger–Akahira–Sunose [38, 39] method (KAS)

with Eq (6):

ln b=T2
� �

¼ ln A � R=E � g að Þ½ � �E=R � T ð6Þ

By these three methods, the plotting of the left member

of Eqs. (4), (5) and (6) versus 1/T, the value of the acti-

vation energy will be obtained from the line slope. The f(a)
remain implicit, so these methods are ‘‘model free’’.

By plotting the values of the activation energy E versus

the conversion degree, the diagrams in Fig. 3 were

obtained. Variations of E versus a exceed 10%, and these

variations are non-monotonous. Therefore, a mean value of

the activation energy is reasonable only for comparison

(see Table 6).

• The modified NPK method [40–48]

According to Eq. (3), the experimental data are plotted

in a 3D coordinate system (da/dT, T, a) and then interpo-

lated for obtaining the reaction rate surface. This surface is

partitioned as a i 9 j matrix M.

M ¼ mij

� �
¼ f Tið Þ:g aj

� �� �
ð7Þ

The NPK method uses the singular value decomposition

(SVD) algorithm to decompose matrix M into two vectors

[49]. The matrix M is decomposed as follows:

M ¼ U diag sð ÞVT ð8Þ

and the first columns of U and V matrix, respectively, u1
and v1 are analysed for determining the kinetic model, i.e.:

u1 ¼ g að Þ ð9Þ

and a temperature dependence, i.e.:

v1 ¼ f Tð Þ ð10Þ

Table 3 TG data of compounds A–C

Compound Process Tonset/�C Tend/�C Dm/%

A a 189.7 229.75 55.4

b 229.75 274.9 39.24

B a 202.2 288.7 50.6

C a 206.5 291.9 54.1

Table 4 Heat flow data of compounds A–C

Compound Process Tonset/

�C
Tend/

�C
Tpeak DH/J g-1

A a 165.0 176.1 171.4 166.1 ± 4.3

b 194.9 234.3 216.2 66.7 ± 2.2

c 251.7 282.9 270.7 85.1 ± 3.8

B a 79.5 87.4 82.6 5.2 ± 0.9

b 103.3 114.1 106.2 97.8 ± 4.3

c 225.1 302.4 277.2 - 825.1 ± 5.7

C a 88.5 94.5 90.83 10.7 ± 0.7

b 97.4 111.2 103.0 91.2 ± 4.6

c 217.7 302.1 272.7 - 849.9 ± 18.8
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For the temperature dependence, the Arrhenius equation

is selected, whereas for the kinetic model, we suggest the

use of Śestak–Berggren equation [50]:

g að Þ ¼ am 1� að Þn ð11Þ

where am describes the influence of physical phenomenon

related with the presence of reaction product and (1 - a)n

describes the chemical phenomenon which involves the

remainder reactant (1 - a).
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Fig. 3 Activation energy with errors bar versus conversion degree, determined by three different isoconversional methods for compounds A–C

Table 5 Mean activation

energy according to modified

NPK method

Compound Process k/% A/s-1 E/kJ mol-1 n m Corr. E /kJ mol-1

A Main 78.7 3.35 9 1010 92.1 ± 15.1 1 – 0.996 91.6 ± 20.5

Secondary

a

18.8 1.47 9 109 86.6 ± 5.1 – 1 0.996

Secondary

b

2.4 5.69 9 1013 113.8 ± 0.2 1 1 0.997

B Main 75.2 4.47 9 109 73.1 ± 11.1 1 – 0.994 73.1 ± 17.1

Secondary

a

24.5 1.03 9 109 73.1 ± 6.0 – 1 0.993

C Main 86.1 1.31 9 1012 112.4 ± 19.8 1 – 0.998 111.3 ± 26.8

Secondary

a

11.8 2.66 9 1010 106.4 ± 6.2 – 1 1

2.2 1.19 9 1010 93.3 ± 0.8 1 1 0.999
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If the decomposition process is a result of two or more

simultaneous steps, it means that r = R ri and conse-

quently the matrix M becomes:

M ¼ RMi ð12Þ

The contribution of each step to the observed process is

expressed by its variance, k, so that Rki = 100%. By the

data processing with the NPK method, kinetic parameters

were obtained (Table 5).

Activation energy value, presented in Table 6, indicates

a reasonable agreement between the E values obtained by

four different kinetic methods. The advantages of the NPK

methods are: no supplementary approximations necessary

for solving the temperature, and the respective conversion

integrals and the kinetic description were complete.

Calorimetric analysis of compounds A–C

DSC curves and melting characteristics of A–C compounds

under N2 atmosphere are illustrated in Fig. 4 and Table 7.

DSC curves of compounds A are characterized by the

presence of one endotherm peak associated with melting

with decomposition and the absence of solvate forms

(Fig. 4), while for compounds B and C, a phase transition

crystal–crystal was observed before the endotherm peak

associated with melting. The transition between different

phases was examined under Olympus BX53M polarizing

microscope (POM) equipped with Linkam hot stage

(Fig. 5).
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Fig. 4 DSC curves showing different situations at heating solid line, respectively, at cooling dashed line for A–C alkanolammonium salts

Table 6 Mean activation

energy (E /kJ mol-1)

determined by the four different

kinetic analysis methods

Sample Method

FR FWO KAS NPK

A 91.4 ± 5.1 97.3 ± 6.9 94.0 ± 6.7 91.6 ± 20.5

B 90.7 ± 15.0 77.5 ± 7.3 72.9 ± 7.6 73.1 ± 17.2

C 114.4 ± 12.9 120.2 ± 12.6 111.4 ± 13.1 113.0 ± 27.2
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Conclusions

New alkanolammonium salts based on pharmaceutical acid

4-NBA have been synthesised, and their thermal behaviour

were compared. The studied compounds display various

phase transitions in the solid state, which have been

examined by thermal analysis, differential scanning

calorimetry and hot-stage microscopy. Since in this study

the 4-nitrobenzoate anion is a constant, differences of the

solid state can be attributed to the alkyl and hydroxyl

groups of the cation. When the cation possesses only one

hydroxyl group (4-NBA MEA), the salt shows one endo-

therm peak associated with melting and decomposition.

Substitution of H atoms linked to N atom in alkanolamines,

with hydroxyl and ethyl groups, leads to different hydro-

gen-bonding network in final compounds and exhibits a

phase transition crystal–crystal below the melting point.

Compounds B and C show low melting points near 100 �C,
compared to compound A which melts at 175 �C. The

activation energies of the decomposition reactions were

determined using four different methods, the values

obtained by KAS and NPK being in good agreement.

Kinetic results showed differences in activation energy

between the studied compounds which increased in the

order of C[A[B.
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