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Abstract A halide salt, hydroperoxide and AcOH catalyst system was
applied to the oxidation of secondary benzylic alcohols. This simple sys-
tem can be applied to a variety of secondary benzylic alcohols and
scaled up for gram-scale preparation. High secondary benzylic alcohol
selectivity of the present method is demonstrated in hydroxyketone
synthesis. Based on several experimental results, a catalytic cycle for
our oxidation is proposed.

Key words sodium bromide, bromine, oxidation, hydrogen peroxide,
alcohol

In the course of our continuing studies on the use of in-
expensive and abundant elements and materials for organic
synthesis1 aiming at green sustainable chemistry,2 we re-
cently focused on the catalysis using redox property of ha-
lide ion for oxidative coupling reaction. In 2010, we have re-
ported n-Bu4NBr-catalyzed oxidative α-acetoxylation of ke-
tones, where formal cross-dehydrogenative coupling (CDC)
between ketone and acetic acid proceeded (Scheme 1, a).3
More recently, we have also reported n-Bu4NI-catalyzed in-
tramolecular CDC reaction for the synthesis of indole deriv-
atives, which is one of the rare examples of iodide-cata-
lyzed oxidative carbon–carbon bond-forming reactions
(Scheme 1, b).4 Since non-metal-catalyzed oxidative trans-
formations are quite attractive, other research groups have
also focused on iodide-catalyzed reactions, and increasing
reports have appeared in the last five years.5,6 In our previ-
ous reports, we proposed that oxidation of halide ion in MX
to X2 in the presence of an organic substances with a suffi-
ciently acidic hydrogen (Nu-H) co-generated the corre-
sponding conjugate base (Nu–M+), as shown in Scheme 1 (c).
In the case of α-acetoxylation of ketones, this Nu–M+

(AcOn-Bu4N) reacts as a nucleophile with intermediate S–X

(α-bromo ketone) to give the product. On the other hand, in
the case of indole synthesis, we demonstrated the use of
Nu–M+ as a base instead of nucleophile made it possible for
our catalyst system to create the carbon–carbon bond. This
finding also suggests the possibility that various traditional
oxidative transformations using stoichiometric amounts of
X2 and base would become catalytic.7 Therefore, we next
tried to develop oxidation of alcohols because stoichiomet-
ric oxidation reactions of hydroxyl functionality using com-
bination of X2 and base have already been known in litera-

Scheme 1  Halide salt catalyzed oxidative transformation
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ture8 and would become catalytic according to our working
hypothesis. Herein, we report that alkali bromide salt in
acetic acid can catalyze oxidation of secondary benzylic al-
cohols in combination with aqueous hydrogen peroxide as
terminal oxidant. Although numerous methods have been
reported for catalytic oxidation of alcohols,9 such a simple
combination (NaBr, H2O2 and AcOH) has never been report-
ed to the best of our knowledge, surprisingly.10–14

Initially, we optimized the reaction conditions by using
1-phenyl-1-nonanol (1a) as a model substrate (Table 1). Ox-
idation of 1a with five equivalents of aqueous TBHP (tert-
butyl hydroperoxide) in the presence of 10 mol% of NaBr in
AcOH at 80 °C proceeded to afford the corresponding ke-
tone 2a in 61% yield (Table 1, entry 1). Interestingly, more
environmentally benign aqueous hydrogen peroxide also
worked well as an oxidant to give the ketone 2a with slight-
ly higher yield (Table 1, entry 2).15 In order to increase the
yield of 2a, we performed the reaction with longer reaction
time. However, the yield decreased to 62% because overoxi-
dation of the product, which gave α-bromo and α-acetoxy
ketone, took place (Table 1, entry 3). Since no improvement
of conversion was observed even after longer reaction time,
we assumed that the decomposition of H2O2 occurred un-
der the conditions. In fact, stepwise addition of H2O2 was
clearly effective to give 2a in high yield (Table 1, entry 4).16

Higher catalyst loading resulted in low yield (Table 1, entry
5). By fine-tuning of the reaction conditions, we gratifying-
ly found that two equivalents of H2O2 were enough to pro-
mote the reaction effectively at 60 °C. Lower reaction tem-
perature might suppress the undesired decomposition of
H2O2 (Table 1, entry 6). Although use of 5 mol% of NaBr cat-
alyst also gave the product in synthetically acceptable high
yield (Table 1, entry 7), we adopted the conditions in entry
6 (Table 1) as the optimized one for this preliminary study.
Needless to say, no reaction occurred in the absence of NaBr
catalyst (Table 1, entry 8). Use of KBr instead of NaBr gave
similar result, although n-Bu4NBr was not so effective for
this alcohol oxidation (Table 1, entries 9 and 10).

With the optimized conditions in hand, we then ex-
plored the substrate scope (Scheme 2). A variety of second-
ary benzylic alcohols bearing substituents such as Cl, Br,
NO2 underwent oxidation to give the corresponding ke-
tones in excellent yields (2a–f). Oxidation of substrate pos-
sessing electron-donating group on aromatic ring failed due
to the formation of significant amounts of by-products, giv-
ing the desired alcohol 2g in only 7% yield (vide infra). Sub-
strate having alkyl halide moiety gave the product 2h with-
out any problem. Several diarylmethanol derivatives were
also converted into the corresponding diaryl ketones 2i–k
in excellent yields.

As mentioned above, substrate having p-methoxypenyl
group gave the product 2g in poor yield. In this case, 4-me-
thoxy-α-methylbenzyl acetate (3) and 4-methoxy-α-meth-
ylbenzyl hydroperoxide (4) were major products. Because

formation of compounds 3 and 4 were also observed in the
reaction without NaBr catalyst,17 formation of these prod-
ucts occurred independently from the oxidation reaction
pathway. Since an electron-donating group on aromatic
ring stabilizes the benzylic cation, these products seem to
originate from the reaction of the cationic species with
AcOH and H2O2. In order to overcome this issue, we again
carried out the optimization of the conditions for substrate
1g (Table 2). After testing several co-solvents, we found that
a mixture of acetic acid and ethyl acetate was effective to

Table 1  Optimization of Reaction Conditionsa

Entry Cat. (mol%) Oxidant (equiv) Temp (°C) Yield (%)b

 1 NaBr (10) aq TBHP (5) 80 61 (63)

 2 NaBr (10) aq H2O2 (5) 80 71 (71)

 3c NaBr (10) aq H2O2 (5) 80 62d (70)

 4 NaBr (10) aq H2O2 (5)e 80 98 (100)

 5 NaBr (30) aq H2O2 (5) 80 56 (56)

 6f NaBr (10) aq H2O2 (2)g 60 98h (100)

 7f NaBr (5) aq H2O2 (2)g 60 96 (99)

 8f none aq H2O2 (2)g 60  0 (0)

 9f KBr (10) aq H2O2 (2)g 60 97h (100)

10f n-Bu4NBr (10) aq H2O2 (2)g 60 71 (78)
a Reaction was carried out with 1a (0.5 mmol) in AcOH (0.5 mL).
b Determined by 1H NMR analysis. Conversions of 1a are shown in paren-
theses.
c Reaction was carried out for 6 h.
d Corresponding α-bromo and α-acetoxy ketones were also detected as by-
products in 3% and 1% yields, respectively.
e 2.5 equiv of H2O2 were added at the beginning, and then an additional 
2.5 equiv of H2O2 were added after 1 h.
f AcOH (1.0 mL) was used as solvent.
g 1.0 equiv of H2O2 was added at the beginning, and then an additional 1.0 
equiv of H2O2 was added after 1 h.
h Isolated yield.
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Scheme 2  Substrate scope under optimized conditions
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suppress the undesired reaction via benzylic cation. The
best result was obtained when the reaction was performed
in AcOH–EtOAc (3:7, 0.25 M), giving the desired ketone 2g
in 86% isolated yield (entries 1–5). This reaction condition
was applied to a variety of substrates such as 1-o-methoxy-
phenyl-1-ethanol (1l), cyclopropylphenylmethanol (1m),
and various cyclic substrates 1n–p to afford the corre-
sponding ketones 2l–p in good yields (Figure 1).18

Table 2  Optimization of Conditions for Substrate 1ga

We next tried the gram-scale preparation. Thus the oxi-
dation reaction using 15 mmol of 1-phenyl-1-ethanol (1q)
gave 91% yield (1.64 g) of acetophenone (2q) without any
technical trouble (Scheme 3).19

Scheme 3  Gram-scale preparation of acetophenone

During our studies on this halide ion catalysis, it was
found that aliphatic primary alcohols are not reactive to-
ward NaBr-catalyzed oxidation.20 Taking advantage of this
finding, a chemoselective oxidation was realized for the
substrate 1r which possesses both secondary benzylic alco-
hol and primary alcohol moieties. Thus the reaction of 1r
under standard optimized conditions gave 83% yield of hy-
droxy ketone 2r, leaving primary hydroxy group intact.
Present catalyst system and primary-alcohol-selective oxi-
dation reported previously in literature21 are regarded as
complementary methods as demonstrated in Scheme 4.

Scheme 4  Preliminary study on chemoselective oxidation of diol sub-
strate

In order to gain insight on the reaction mechanism, we
performed several experiments (Scheme 5). Combination of
one equivalent of Br2 and two equivalents of NaOAc oxi-
dized the alcohol 1a to afford 2a in good yield (Scheme 5,
eq. 1). On the other hand, use of Br2 in the absence of NaOAc
gave no desired ketone (Scheme 5, eq. 2). In this case,
2-bromo-1-phenylnonan-1-one, 1-phenyl-1-nonene and
1,2-dibromo-1-phenylnonane were observed in crude mix-
ture, suggesting that HBr-catalyzed dehydration of benzylic
alcohol 1a and subsequent bromination of the resulting
olefin occurred along with α-bromination of initially
formed 2a.22 These experiments clearly indicated the im-
portance of NaOAc. Addition of one equivalent of TEMPO
resulted in low yield of oxidation product (Scheme 5, eq. 3).
It should be noted here that formation of organic radical
species might be ruled out because radical clock substrate
possessing cyclopropyl ring underwent the oxidation to af-
ford the corresponding ketone 2m without skeletal rear-
rangement (vide supra, Figure 1).23 Moreover, Br2/NaOAc
oxidation was not inhibited by TEMPO as shown in Scheme
5, eq. 4. We then investigated the effect of adding TEMPO in
more detail (Scheme 5, eqs. 5–7). The reaction of 0.90 mmol
of NaBr with 0.45 mmol of H2O2 in AcOH at 60 °C for one
hour gave pale brown solution containing 0.12 mmol of
Br2.24,25 To the resulting mixture was added 0.45 mmol of
1a, and the mixture was stirred for two hours at that tem-
perature. From this experiment, 0.11 mmol of 2a was iso-
lated, that means the yield of 2a was 92% based on generat-
ed Br2 (Scheme 5, eq. 5). As a control experiment, when
TEMPO was added at an early stage, the yield of 2a was dra-
matically decreased as shown in Scheme 5, eq. 6. On the
other hand, addition of TEMPO after the formation of Br2

Entry Solvent Yield of 2g 
(%)b

Yield of 3 
(%)b

Yield of 4 
(%)b

1 AcOH  7 27 15

2 AcOH–EtOAc (7:3) 31 31 10

3 AcOH–EtOAc (5:5) 47 13  7

4 AcOH–EtOAc (3:7) 60  5  4

5c AcOH–EtOAc (3:7) 86d trace trace
a Reaction was carried out with 1g (0.5 mmol) and NaBr (10 mol%) in sol-
vent (1.0 mL) at 60 °C for 2 h.
b Determined by 1H NMR analysis of crude material.
c Volume of solvent used was 2.0 mL.
d Isolated yield.
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Figure 1  Substrate scope under the conditions in Table 2, entry 5
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not only did not inhibit but also promoted the reaction
(Scheme 5, eq. 7). Formation of 267% of 2a based on initially
formed Br2 means that some re-oxidation step with TEMPO
exists in this reaction although the detail is not clear at this
stage. Anyway, the low yield observed in Scheme 5, eq. 3
was undoubtedly attributed to inhibition of the formation
of Br2 from NaBr by TEMPO.26

Scheme 5  Mechanistic study

Based on the above-mentioned experimental results, a
plausible catalytic cycle for the present oxidation is illus-
trated in Scheme 6. Thus the oxidation of NaBr with H2O2 in
the presence of AcOH as proton source gives Br2 along with
the corresponding conjugate base NaOAc (step A). Then the
reaction of Br2 with benzylic alcohol proceeds in ionic man-
ner to afford the corresponding hypobromite intermediate
(step B), from which dehydrobromination (step C) occurs to

give ketone.27 Hydrogen bromide formed at steps B and C
are ambushed by initially formed NaOAc to furnish the cat-
alytic cycle (step D).28

In summary, we have developed a simple NaBr-cata-
lyzed oxidation of secondary benzylic alcohols.29 A wide va-
riety of functional groups are tolerated under the condi-
tions and the reaction is scalable. This oxidation is highly
chemoselective toward a secondary hydroxy group at the
benzylic position. Further applications of this halide ion ca-
talysis are in progress in our laboratory.
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