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ABSTRACT: The direct enantioselective copper hydride (CuH)-catalyzed synthesis of β-chiral amides from α,β-unsaturated
carboxylic acids and secondary amines under mild reaction conditions is reported. The method utilizes readily accessible carboxylic
acids and tolerates a variety of functional groups in the β-position including several heteroarenes. A subsequent iridium-catalyzed
reduction to γ-chiral amines can be performed in the same flask without purification of the intermediate amides.

Amides are an integral part of the backbone of all biological
systems, as well as important elements of many

pharmaceutical agents. Consequently, amide bond formation
is of great importance in organic chemistry and methods for
the direct catalytic amidation of carboxylic acids under mild
conditions are highly desirable.1 In addition, β-chiral amides
are found in many natural products and are considered to be
important pharmacophores.2 Furthermore, this substructure
can be regarded as a useful intermediate for the synthesis of
additional pharmaceutically relevant molecules, such as γ-chiral
amines.3

The synthesis of amides bearing stereogenic centers at the β-
position generally requires multiple steps.4 Currently available
strategies include copper-catalyzed asymmetric conjugate
additions,5 asymmetric conjugate reductions,6 and transition-
metal-catalyzed hydrogenation reactions7 of unsaturated
carbonyl compounds (Figure 1A). Each of these approaches
requires a final amidation reaction, typically involving the use
of stoichiometric coupling reagents.8

The enantioselective CuH-catalyzed 1,4-reduction of un-
saturated esters,9 in which a chiral bisphosphine-ligated CuH-
species is generated by a hydrosilane as a stoichiometric
reducing agent can be used to asymmetrically reduce a variety
of α,β-unsaturated alkenes under mild reaction conditions.10

The analogous reduction of lactams has been successfully
implemented;11 however, acyclic amides are not reduced under
CuH-catalysis conditions. In general, the alternative access to
β-chiral amides via direct enantioselective conjugate trans-
formation of unsaturated amides is more challenging due to
their lower reactivity compared to other Michael acceptors.12

Despite these advances that have been made in the
preparation of β-chiral amides, a general approach that enables

the catalytic amidation of carboxylic acids and the formation of
a stereogenic center in a single operation under mild
conditions would allow the expedited synthesis of substruc-
tures found in many biologically active molecules. Our group
recently reported the direct asymmetric CuH-catalyzed
hydroacylation13 and 1,4-reduction14 of α,β-unsaturated
carboxylic acids to generate α-chiral ketones (Figure 1B).
Mechanistic investigations suggested that these reactions may
proceed through a ketene intermediate. Thus, we considered
whether this ketene might be intercepted by an exogenous
nucleophile, rather than undergoing reaction with LCuH or
LCuR. Specifically, whether by performing the 1,4-reduction
reaction in the presence of an amine nucleophile might allow
for the formation of an amide product with a chiral center at
the β-position (Figure 1C).
When we attempted such a reaction using secondary amines

as nucleophiles, we indeed observed clean conversion of α,β-
unsaturated acid substrates (1) to the desired β-chiral amides
(3, Figure 2).15 Optimization revealed that several β,β-
disubstituted unsaturated carboxylic acids were effectively
converted using low quantities of the precatalyst mixture (S)-
CuCatMix16 (see Supporting Information (SI) for details).
The use of dimethoxy(methyl)silane (DMMS) as the hydride
source permitted efficient amidation at room temperature in
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THF, while with 1,1,3,3-tetramethyldisiloxane (TMDS)17

similar conversions were observed at 40 °C.
Next, we examined the substrate scope for the direct CuH-

catalyzed amidation reaction at 1.0 mmol scale. Using either of
the optimized protocols, DMMS at rt or TMDS at 40 °C,
amide 3a was obtained in similar yields and stereoselectivity
(Figure 3). Product 3b, which is structurally similar to recently
investigated Ubiquitin-specific protease 7 inhibitors,2a could be
prepared directly from unprotected 4-hydroxypiperidine. In
this case, the procedure employing TMDS at 40 °C was found
to be superior.
The reaction of (E)-3-phenylbut-2-enoic acid with α-

disubstituted and chiral (S)-(−)-N,α-dimethylbenzyl-amine
gave amide 3c in a yield of 61% and with excellent
stereoselectivity. Reactions involving tetrazole- or quinoline/
diamine-containing acids gave similar yields with high
enantiomeric ratio (3d and 3e). A ferrocene substituted acid,
as well as α,β-unsaturated carboxylic acids bearing heterocycles
including pyrimidine, indole, pyrazole, pyrrole, benzothiazole,
and dimethylthiazole, at the β-position was efficiently coupled
with different amines in good to excellent yields and with high
enantioselectivity (3g−l). In addition, an alkyl chloride in β-

position was well-tolerated under the reaction conditions,
although diminished enantioselectivity was observed (3m).

Figure 1. (A) Common multistep strategies to synthesize β-chiral
amides from unsaturated carbonyls. (B) CuH-catalyzed silyl ester
formation and 1,4-reduction allows the reduction and hydroacylation
of unsaturated carboxylic acids presumably via ketene intermediates.
(C) The direct formation of β-chiral amides in one step from
unsaturated carboxylic acids (this work).

Figure 2. Preliminary screen of CuH catalyzed reductive coupling
reactions of α,β-unsaturated acids and a secondary amine. (S)-
CuCatMix = Cu(OAc)2, (S)-DTBM-SEGPHOS, PPh3 (1:1.1:1.1
ratio, precomplexed, air-stable free-flowing powder). Silanes:
Dimethoxy(methyl)silane (DMMS) or 1,1,3,3-tetramethyldisiloxane
(TMDS).

Figure 3. Scope of the CuH catalyzed reductive amidation of β,β-
disubstituted α,β-unsaturated carboxylic acids with secondary amines.
aReaction performed with 1.0 mmol of carboxylic acid and 5.0 mol %
(S)-CuCatMix. Reported yields are isolated yields and are the average
of two runs. Enantiomeric ratios were determined by SFC. bReaction
performed with 1.0 mol % (S)-CuCatMix. cReaction performed with
TMDS at 40 °C and 1.0 mol % (S)-CuCatMix. dReaction performed
with TMDS at 40 °C and at a concentration of 0.06 M, followed by
deprotection with TBAF. eReaction performed at a concentration of
0.06 M. fLow conversions were observed with ortho-substituted
substrates. Conversion determined by 1H NMR on 0.10 mmol scale
(see SI for more examples).
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Moreover, the β-alkenyl β-alkyl acid derived from β-ionone
could be coupled with a furan-containing amine (3n). The
procedure for the β-(hetero)aryl,β-alkyl-substituted substrates
also worked well for β,β-diaryl substituted acids. In particular,
acids containing a bromoarene and a thiophene were efficiently
converted to the desired products (3o and 3p). However,
under these conditions, only low conversions were observed
for the reactions of more sterically hindered acids (see 3q and
SI for more structures), as well as using sterically hindered
amines such as diisopropylamine. We also examined substrates
with heteroatoms at the β-position. Silane 3r was obtained in
good yield from the corresponding Z-olefin, although with
diminished enantiopurity (75:25). In contrast, boronic ester 3s
and N-substituted indole 3t were obtained with excellent levels
of enantiomeric purity. In the cases of more complex
substrates, including nitrogen-rich heterocycles and functional
group containing amines, a 5 mol % catalyst loading was
employed to ensure full conversion of the unsaturated
carboxylic acids.
Based on recent work of transition-metal-catalyzed reduction

of amides to enamines and amines with hydrosilanes,18 we also
saw an opportunity to develop a one-pot synthesis of γ-chiral
amines based on our reaction (Figure 4). Amines with

stereocenters in the γ-position are frequently encountered
structural components in bioactive molecules.19 However,
these remote stereocenters are in general challenging to form
directly and are usually installed in a stepwise process from a β-
chiral aldehyde followed by reductive amination reactions.14

After a CuH-catalyzed reductive amidation reaction, 0.5 mol %
IrCl(CO)(PPh3)2 (Vaska’s complex) was added to the crude
reaction mixture, upon which the enamine 4a was efficiently
formed. Subsequent addition of methanesulfonic acid (MsOH)
induced further reduction, presumably via iminium ion
formation, delivering γ-chiral amine 5a in excellent yield and
enantiomeric ratio.
We next investigated some aspects of the mechanism of Cu

catalyzed reductive amidation of α,β-unsaturated acids (Figure
5). Based on our previous investigations, we considered path A
as a possibility, in which the CuH-catalyzed 1,4-reduction of a
silyl ester delivers a copper enolate that could eliminate to a
ketene intermediate. Addition of the amine to the ketene
would then give the observed β-chiral amide product. An
alternative mechanism is illustrated as path B, involving the
direct amidation of the intermediate silyl ester,20 followed by
conjugate reduction of the resulting unsaturated amide.
Several experiments in THF-d8 were performed and

analyzed by 1H NMR spectroscopy. To identify and character-
ize the silyl ester intermediates, (E)-3-phenyl-but-2-enoic acid
(1a), 0.5 mol % of (S)-CuCatMix, and 1 equiv of DMMS were

combined. Full conversion to a mixture of silylated
intermediates 6a, 6b, and 6c (Figure 6A) in a ratio of 4:1:1
was observed after 60 h. Furthermore, neither 1,4-reduction of
the activated silyl esters nor interconversion between the
intermediates was observed.

Next, we monitored reactions using the conditions described
in Figure 3 (Figure 6B), using acid 1a and Et2NH as model
substrates. Initially, the same silylated intermediates (6a, 6b,
6c) as observed previously were formed, although their
generation was accelerated (36 min vs 60 h), possibly by the
presence of the basic amine.21 After complete consumption of
the acid, first the more activated22 dimeric intermediate 6b is
converted to product 7, followed by the conversion of
monomer 6a. No other intermediates resulting from 1,4-

Figure 4. One-pot synthesis of γ-chiral amines.

Figure 5. Two reaction pathways are considered after initial silylation
of the carboxylic acid.

Figure 6. (A) Intermediary silyl ester intermediates identified and
characterized by NMR spectroscopy and high-resolution mass
spectrometry. (B) The CuH-catalyzed amidation was monitored by
1H NMR-spectroscopy. (C) The CuH-catalyzed reduction of an
unsaturated amide is not efficient under the described conditions.
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reduction, such as Cu-enolates or ketenes, were observed.
Furthermore, the unsaturated amide 8 was not detected.
When we independently prepared and isolated unsaturated

amide 8 and subjected it to the standard reaction conditions,
less than 10% of 7 was observed, even with a 7 day reaction
time, suggesting that path B plays at most a minor role (Figure
6C) in the CuH-catalyzed asymmetric reductive amidation of
unsaturated carboxylic acids.
In conclusion, we have developed a one-step CuH-catalyzed

method to access β-chiral amides starting from readily available
unsaturated carboxylic acids. The mild reaction conditions
tolerate various functional groups and heterocycles. Subse-
quent one-pot reduction with Vaska’s complex allowed the
direct reduction to form γ-chiral amines. The formation and
consumption of reaction intermediates was monitored, and
several silyl ester intermediates were identified.
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