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ABSTRACT: An efficient transformation of dibenzoxaborins to dibenzofurans
by deborylative ring contraction was achieved under mild conditions using a
copper catalyst. The method showed a broad substrate scope enabling the
preparation of various dibenzofurans, including those bearing a functional group.
The ready availability of various dibenzoxaborins enhances the utility of this
method, as demonstrated by the regiodivergent synthesis of dibenzofurans.

Dibenzofuran is a heterocyclic core structure found in
various bioactive compounds1 and organic materials.2

Dibenzofuran derivatives have been synthesized via numerous
methods that can be mainly categorized as intramolecular C−
C bond formation3 and intramolecular C−O bond formation
(Figure 1).1d,2b,4 As many of previous methods require high

reaction temperatures (>100 °C) and suffer from substrate
scope, a novel method to synthesize a diverse range of
dibenzofurans under mild conditions is sought-after.
To achieve the synthesis of dibenzofurans under mild

conditions (e.g., weak base, ambient temperature), we focused
on the synthesis of dihydrobenzofuran via Cu-catalyzed
deborylative ring contraction of dihydrobenzoxaborin pre-
viously reported by Sheppard and co-workers (Figure 2A).5

We anticipated that dibenzofuran could be synthesized under
mild conditions by a similar process of Chan−Evans−Lam6-
type intramolecular C−O bond formation (Figure 2B). In this
context, we previously developed a concise synthetic method
for 6-hydroxy-6H-dibenz[c,e][1,2]oxaborins, which we referred
to as dibenzoxaborins, via boron-selective Suzuki−Miyaura
cross-coupling of o-borylphenols with aryl halides or triflates
bearing an o-boryl group protected by 1,8-diaminonaphthalene
(dan)7 group.8 Herein, we report an efficient synthetic method
for diverse dibenzofuran derivatives that was achieved under
gentle and aerobic conditions.

Initially, we screened the conditions for preparing
dibenzofuran (2a) from dibenzoxaborin 1a (Table 1).9

Under the reported conditions for the synthesis of
dihydrobenzofuran from dihydrobenzoxaborin,5 dibenzofuran
(2a) was obtained in 20% yield from dibenzoxaborin 1a (entry
1). However, a significant amount of 2-phenylphenol was also
formed as a major product via protodeborylation. This result
showed that the C−O bond-forming step, which is apparently
the final step of the catalytic cycle, is sluggish compared to that
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Figure 1. Representative methods for dibenzofuran synthesis.
Figure 2. Deborylative ring contraction reactions. (A) Pioneering
work reported by Sheppard and co-workers synthesizing dihydro-
benzofuran via the Cu-catalyzed deborylative ring contraction of
dihydrobenzoxaborin. (B) Concept of the proposed study: synthesis
of dibenzofurans via deborylative ring contraction of readily
synthesizable dibenzoxaborins.
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of benzoxaborin formation. In an early optimization study, we
identified that performing the reaction in 1,2-dichloroethane
(1,2-DCE) by using 1,10-phenanthroline as a ligand with the
addition of an oxidant such as benzoyl peroxide or benzoyl tert-
butyl peroxide improved the yield of 2a (entries 2 and 3).
However, this entailed relatively harsh conditions involving the
use of a strong oxidant and high reaction temperatures. Since
the addition of an organic or inorganic base is often effective
for promoting the cross-coupling of phenols with organo-
boronic acids through activation of the boron center,10 we
further screened for bases and found that the reaction
proceeded at 40 °C in ethanol by adding cesium carbonate
(entry 4). The addition of silver carbonate gave the best result,
affording 2a almost quantitatively (entry 5). A comparable
result was obtained when conducting the reaction over a
prolonged period of time at room temperature (entry 6).
Performing the reaction in wet ethanol was significant as the
yield of 2a decreased when the reaction was performed in
dehydrated ethanol (entry 7). Intriguingly, 2a was obtained in
good yield when the reaction was carried out in degassed
ethanol and water under argon (entry 8). This result indicates
that silver carbonate works as an oxidant, although its potential
as a base cannot be excluded. Among other silver sources
examined, silver acetate and silver nitrate were less effective
(entries 9 and 10), whereas silver oxide showed comparable
activity to silver carbonate (entry 11). When the reaction was
performed using 15 mol % of silver carbonate, 2a was obtained
in 51% yield (entry 12), indicating that both the silver(I)
species and molecular oxygen (O2) works as oxidants.
Additionally, this transformation was scalable without further
optimization, as demonstrated in a reaction using 1.0 g (5.1
mmol) of 1a, affording 2a in a reasonable yield (entry 13).
We propose that a catalytic cycle for this reaction could

involve a single-electron oxidation step of aryl copper (Figure

3).11 The proposed catalytic cycle starts from the deborylative
transmetalation of dibenzoxaborin with copper(II), which

affords oxa-cupra cycle intermediate A. Intermediate A is
oxidized by either a silver(I) species or oxygen to form
trivalent copper intermediate B that undergoes facile C−O
bond formation to afford dibenzofuran and a copper(I)
species. Finally, reoxidation of the copper(I) species with
either a silver(I) species or oxygen regenerates the divalent
copper(II) species to complete the catalytic cycle.
To assess the validity of the proposed catalytic mechanism,

two reactions using stoichiometric amounts of the reagents
with and without silver carbonate were conducted (Figure 4).

After the mixtures were stirred at 0 °C for 18 h, the reactions
were quenched by aqueous HCl. Although only trace amounts
of the protodeborylated product, 2-phenylphenol, were
produced in the reaction performed in the presence of silver
carbonate (Figure 4A), significant amounts of 2-phenylphenol
were obtained from the silver carbonate-free reaction (Figure
4B). This indicates that the silver reagent dramatically
facilitated the oxidation of divalent copper intermediate A
and the resting state of the catalytic cycle is neither oxa-cupra
intermediate A nor B.
We also investigated the relationship between the product

yield and the amount of silver carbonate or the copper catalyst

Table 1. Optimization of Reaction Conditions

entry additive solvent
temp
(°C)

time
(h) yielda (%)

1b none MeOH 40 40 20
2c BzOOBzd 1,2-DCE 60 20 32
3c t-BuOOBzd 1,2-DCE 80 20 77
4 Cs2CO3 EtOH 40 19 56
5 Ag2CO3 EtOH/H2O

e 40 19 quant (95)f

6 Ag2CO3 EtOH/H2O
e rt 46 quant (96)f

7 Ag2CO3 dehyd. EtOH 40 16 71
8g Ag2CO3 EtOH/H2O

e 40 16 89
9 AgOAc EtOH/H2O

e 40 19 21
10 AgNO3 EtOH/H2O

e 40 19 4
11 Ag2O EtOH/H2O

e 40 16 93 (90)f

12 Ag2CO3
h EtOH/H2O

e 40 16 51
13 Ag2CO3

h EtOH/H2O
e 40 19 86i

aYields were determined by 1H NMR analysis unless otherwise noted.
bNo ligand was added. cUnder argon. d2.5 equiv of additive was used.
eThe ratio of EtOH/H2O was 20:1. fIsolated yields shown in
parentheses. gThe reaction was performed in degassed EtOH and
H2O under argon. h0.15 equiv of additive was used. iThe reaction was
performed using 1.0 g (5.1 mmol) of 1a. 1,10-phen = 1,10-
phenanthroline.

Figure 3. Proposed catalytic cycle.

Figure 4. Stoichiometric reactions. Yields were determined by 1H
NMR analysis.
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(Figure 5). Analyses of the reaction stoichiometry with silver
carbonate in the Cu-catalyzed reaction showed no significant

changes in the product yield after 5 h using more than 50 mol
% of silver carbonate (Figure 5A). The yield of 2a was slightly
lower when 25 mol % of silver carbonate was employed, which
is consistent with the idea that the reaction requires a
stoichiometric amount of silver carbonate as an oxidant.
Contrastingly, with increased amounts of the copper catalyst,
an increase in the product yield was observed (Figure 5B). In
addition, the reaction using a stoichiometric amount of
Cu(OAc)2 without the ligand under an inert atmosphere
afforded only trace amounts of the product, while the reaction
partially proceeded in the presence of the ligand,9 indicating
that the optimized catalytic conditions facilitated the trans-
metalation step. These results suggest that the transmetalation
of the starting substrate with copper is likely the turnover-
limiting step, although the possibility for the reoxidation step
cannot be ruled out.
The optimized reaction conditions were applicable to the

deborylative ring contraction of a wide range of dibenzox-
aborins that were prepared according to our previously
reported method8 (Figure 6). Substrates bearing electron-
donating or -withdrawing groups at different positions of either
of their two benzene rings efficiently afforded the correspond-
ing dibenzofurans 2b−2j. The reaction of dibenzoxaborin with
substituents at both benzene rings similarly afforded
disubstituted dibenzofuran 2k. The method was also applicable
to multisubstituted substrates as demonstrated by the synthesis
of trisubstituted 2l, tetrasubstituted 2m, and more structurally
complicated naphtho[1,2-b]benzofuran 2n. Pyridine-fused
benzofuran 2o was also accessible using this method, although
stoichiometric amounts of copper catalyst were needed to
promote the reaction. Unfortunately, an attempt to prepare
dihydrobenzofuran 2p from dihydrobenzoxaborin under the
conditions was unsuccessful.
The prior functionalization of unsubstituted dibenzoxaborin

1a followed by the deborylative ring contraction enabled facile
synthesis of various functionalized dibenzofurans (Scheme 1).
For example, bromination and iodination of 1a afforded the
corresponding 2-halogenated products 1q and 1r, respectively,
with high regioselectivity. The brominated position of 1q was
confirmed by X-ray crystallography and NMR analyses. The
halogenated dibenzoxaborins 1q and 1r were further
derivatized by Pd-catalyzed cross-coupling reactions to afford
the corresponding cross-coupling products such as 1s and 1t

while leaving the C−B bonds untouched. All functionalized
dibenzoxaborins 1q−1t were efficiently transformed to
dibenzofurans 2q−2t by the deborylative ring contraction,
evidencing the broad scope of the method.
Using the deborylative ring contraction in combination with

the dibenzoxaborin synthesis,8 regiodivergent synthesis of
dibenzofurans was achieved starting from the same o-borylated
phenol. For example, o-borylated estradiol derivative 5,12 easily
prepared by Ir-catalyzed o-borylation of phenols,13 was
converted to dibenzoxaborin 1u by the boron-selective

Figure 5. Reaction stoichiometry analyses.

Figure 6. Substrate scope. a100 mol % of Cu(OAc)2 and 120 mol %
of 1,10-phenanthroline were used. bComplex mixture.

Scheme 1. Functionalization of Dibenzoxaborinsa

aKey: (a) NBS (1.1 equiv), CH2Cl2, rt, 2 h; (b) I2 (1.0 equiv),
Ag2SO4 (0.50 equiv), EtOH, rt, 30 min; (c) Pd(OAc)2 (5.0 mol %),
SPhos (10 mol %), 3 (1.1 equiv), K3PO4·nH2O (1.5 equiv), toluene,
65 °C, 18 h; (d) PdCl2(PPh3)2 (5.0 mol %), CuI (10 mol %), 4 (3.0
equiv), toluene/Et3N (1/1), rt, 3 h; (e) Cu(OAc)2 (10 mol %), 1,10-
phenanthroline (12 mol %), Ag2CO3 (1.5 equiv), EtOH/H2O (20/1),
40 °C, 15 h.
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Suzuki−Miyaura coupling with dan-protected o-borylphenyl
triflate 6 (Scheme 2). On the other hand, o-borylated estradiol

derivative 5 was transformed to dan-protected o-borylaryl
triflate 7 by triflylation and subsequent protecting group
exchange.14 Suzuki−Miyaura cross-coupling of 7 with (2-
hydroxyphenyl)boronic acid (8) afforded dibenzoxaborin 1v,
which is a regioisomer of 1u. The deborylative ring contraction
of 1u and 1v afforded regioisomeric dibenzofurans 2u and 2v,
respectively.
In summary, we have developed an efficient method for

synthesizing dibenzofurans via Cu-catalyzed deborylative ring
contraction of dibenzoxaborins. The mild reaction conditions
used for the method, coupled with the ready availability of
dibenzoxaborins, allows for the synthesis of diverse dibenzo-
furans including those with functional groups. Further studies
regarding the application of this method, including the
synthesis of bioactive dibenzofurans, are currently in progress.
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