Tetrahedron 68 (2012) 5898-5907

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Facile synthesis of 4-arylidene-5-imidazolinones as synthetic analogs of fluorescent protein chromophore $\stackrel{\star}{\sim}$

Cheng-Yu Lee^a, Yun-Chung Chen^a, Hao-Chun Lin^a, Yuandong Jhong^a, Chih-Wei Chang^a, Ching-Hua Tsai^b, Chai-Lin Kao^{b,*}, Tun-Cheng Chien^{a,*}

^a Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
^b Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

A R T I C L E I N F O

Article history: Received 1 December 2011 Received in revised form 18 April 2012 Accepted 25 April 2012 Available online 3 May 2012

Keywords: Imidazolinone Oxazolinone Acrylamide Fluorescent protein chromophore GFP

ABSTRACT

A facile and effective synthesis for a wide variety of 4-arylidene-5-imidazolinone derivatives was developed. 4-Arylidene-5-oxazolinones were prepared by Erlenmeyer azlactone synthesis from *N*-acylglycines and arylaldehydes. The ring-opening reactions of the 4-arylidene-5-oxazolinones with primary amines afforded 2-acylamino-3-arylacrylamides in excellent yields. A new dehydrative cyclization of the 2-acylamino-3-arylacrylamides in pyridine under reflux furnished the corresponding 4-arylidene-5imidazolinones in good yields.

© 2012 Elsevier Ltd. All rights reserved.

Tetrahedror

1. Introduction

4-Arylidene-5-imidazolinones exhibit a variety of interesting properties in biology, pharmacology,^{1–5} photochemistry and optoelectronics.^{6–10} The most representative structure is 4-(*p*-hydroxybenzylidene)-5-imidazolinone, which constitutes the core chromophore of the green fluorescence protein (GFP).¹¹ The ubiquitous structural motif and their intrinsic photochemical phenomena have made the 4-arylidene-5-imidazolinones intriguing synthetic targets and useful chemical models for investigating the mechanism of the fluorescence proteins.^{6,12–32}

Although numerous structural analogs have been synthesized, a literature perusal revealed that only few synthetic routes have been utilized for the synthesis of 4-arylidene-5-imidazolinones (III).^{12,15,19,22,28,33–36} The previous synthesis mostly started with the Erlenmeyer azlactone synthesis, in which the reaction of *N*-acylglycines (I) with arylaldehydes and sodium acetate in acetic anhydride results in the formation of 4-arylidene-5-oxazolinones (II). A direct condensation of the oxazolinones II with primary amines in the presence of a base has become the most common

approach toward 4-arylidene-5-imidazolinones (III).^{23,30,32,37–42} (*route A* in Scheme 1).

2. Results and discussion

In our initial attempts adopting this approach, a series of 2methyl-4-arylidene-5-oxazolinones (**4**) were reacted with primary amines in the presence of potassium carbonate in ethanol under reflux and the results were summarized in Table 1. Our preliminary studies indicated that this approach requires the use

^{*} Corresponding authors. E-mail address: tcchien@ntnu.edu.tw (T.-C. Chien).

Table 1

Direct condensation of 2-methyl-4-arylidene-5-oxazolinones (4) with primary amines (6a-b) in the presence of K_2CO_3 in ethanol^a

Entry	Ar	R^1	Time (h)	Product (yield) ^b
1		Bn	4	7aa (40%)
2	solution of the second	Me ^d	48	7ba (9%)
3	MeO	Bn	13	7ab (44%)
4	Me ₂ N	Bn	13	7ac (41%)
5 ^{c,e}	RO	Bn	6	7ad (31%)
6	CI	Bn	4	7ae (13%)
7		Me ^d	14	7be (5%)
8	Br	Bn	5	7af (14%)
9 ^c		Me ^d	17	7bf (2%)
10	O ₂ N	Bn	>12	N.D. ^f
11	NC	Bn	>12	N.D. ^f
12 ^{c,g}	RO MeO	Bn	10	7ai (20%)
13	N	Bn	22	7al (38%)

^a General condition: R¹-NH₂ (5 equiv), K₂CO₃ (1.5 equiv), EtOH, reflux.

^b Isolated yield.

^c BnNH₂ (5 equiv), K₂CO₃ (2 equiv), EtOH, reflux.

^d 40% MeNH₂ aqueous solution (6.5 equiv), K₂CO₃ (1.5 equiv), EtOH, reflux.

^e **4d**: R=Ac; **7ad**: R=H.

^f N.D.=no desired product.

^g **4i**: R=Ac; **7ai**: R=H.

of excess amines and is only adequate for simple structures. In addition, the 2-methyl-4-arylidene-5-imidazolinones (7a-b) were obtained in unsatisfactory yields, especially when the aryl groups possessed electron-withdrawing substituents. (entries 6–11 in Table 1).

An alternative approach has received our attention. (*route B* in Scheme 1) Nucleophilic ring opening of 4-arylidene-5-oxazolinones (**II**) with primary amines gave the *N*-alkyl-2-acylamino-3-arylacrylamides (**IV**). Subsequent dehydrative cyclization afforded the corresponding 4-arylidene-5-imidazolinones (**III**). Despite various reaction conditions have been employed in the dehydrative cyclization, including acidic (AcOH,^{2,43-46} Ac₂O,⁴⁷ TFA,⁴⁸ TMSCl,^{49,50} acidic alumina,⁵¹ POCl₃⁵²),^{49,53-55} basic (DBU,⁵⁶ K₂CO₃^{28,57,58}),²⁷ and other special conditions (oxidative,^{59,60} thermal,^{56,61,62} microwave,⁶¹ and aza-Wittig²⁸), these methods are fraught with limitations, such as, harsh conditions or definite scopes. Therefore, we embarked on a study to investigate a feasible synthetic route suitable for a diversity-oriented synthesis of 4-arylidene-5-imidazolinone derivatives.

Our synthetic strategy toward 4-arylidene-5-imidazolinones was based on the *route B* in Scheme 1. *N*-Benzyl-2-acetylamino-3-phenylacrylamide (**9aa**), prepared from the reaction of 2-methyl-4-benzylidene-5-oxazolinone (**4a**) with benzylamine (Scheme 2), was used as a model compound to explore the reaction conditions for the formation of 4-arylidene-5-imidazolinones. In the initial trials, the dehydrative cyclization of *N*-benzyl-2-acetylamino-3-phenylacrylamide (**9aa**) was carried out under several literature conditions but the desired 1-benzyl-2-methyl-4-benzylidene-5-imidazolinone (**7aa**) could only be obtained in low yields (entries 1–5, 13 in Table 2).

 Table 2

 Dehydrative cyclizations of N-benzyl-2-acetylamino-3-phenylacrylamide (9aa)

Entry	Reagent(s) (equiv)	Solvent	Temperature	Time (h)	Yield ^a
1	TFA (3)	Toluene	Reflux	9	19%
2	TFA (2)	o-Xylene	Reflux	7	15%
3	TsOH ^b (2)	Toluene	Reflux	12	17%
4	POCl ₃ (1.5)	CH_2Cl_2	rt	24	Trace
5	POCl ₃ (1.5)	Benzene	Reflux	4	Trace
6	DIAD (2), PPh ₃ (2)	CH_2Cl_2	rt	24	N.R. ^c
7	DIAD (2), PPh ₃ (2)	THF	rt	24	20%
8	DIAD (2), PPh ₃ (2)	THF	−78 °C	24	N.R. ^c
9	DIAD (2), PPh ₃ (2),	THF	−78 °C	11	25%
	DMAP (0.1)				
10	DIAD (2), PPh ₃ (2),	THF	−78 °C	24	Trace
	DMAP (0.1), DIPEA (2)				
11	DIAD (2), PPh ₃ (2),	THF	−78 °C	21	36%
	DMAP (0.1), DBU (2)				
12	DIAD (2), PPh3 (2),	THF	rt	22	80%
	DMAP (0.1), DBU (2)				
13	K_2CO_3 (1.5)	EtOH	Reflux	7	36%
14	-	Pyridine	Reflux	21	64%

^a Isolated yield.

^b Equipped with Dean-Stark apparatus.

^c N.R.=no reaction.

It is notable that Mitsunobu reaction,⁶³ commonly used for dehydration-condensation, has also been examined for the dehydrative cyclization. Under a conventional Mitsunobu condition, the reaction of 3-phenylacrylamide **9aa** with triphenylphosphine, diisopropyl azodicarboxylate (DIAD) in CH₂Cl₂ or THF only gave the desired product in low yields. (entries 6–8 in Table 2) It was found that the addition of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as a base with a catalytic amount of *N*,*N*-dimethylaminopyridine (DMAP) could overcome the pKa limit^{64,65} of the Mitsunobu reaction and resulted in a substantial yield improvement. (entry 12 in Table 2) However, our attempts to apply the optimized Mitsunobu condition to other 3-phenylacrylamides (**9a** and **10a**) showed only partial success. The dehydrative cyclization by the Mitsunobu reaction has a limited reaction scope that was strongly influenced by the substituents on the aryl groups (Table 3).

Table 3

Dehydrative cyclizations of *N*-benzyl-2-acylamino-3-arylacrylamides (**9a** and **10a**) by the Mitsunobu condition

Entry	R ²	Ar	Time (h)	Product (yield) ^a
1	Me		24	7aa (80%)
2	Ph	and the second s	24	8aa (25%)
3	Me	MeO	24	7ab (29%)
4	Ph		24	8ab (74%)
5 ^b	Me	RO	24	N.R. ^d
6 ^c	Ph	La contractor	24	N.R. ^d
7	Me	CI	24	7ae (26%)
8	Ph		24	8ae (54%)
9	Me	O ₂ N	24	N.D. ^e
10	Ph		15	8ag (14%)

^a Isolated yield.

^b **9ad**: R=H.

^c **10ad**: R=Ac.

^d N.R.=no reaction.

^e N.D.=no desired product.

Another optimized condition for the dehydrative cyclization was found to be the reaction of 3-phenylacrylamide **9aa** in pyridine under reflux. (Entry 14 in Table 2) Thus, a variety of N-alkyl-2acylamino-3-arylacrylamides (9a, 9b and 10a as shown in Table 4) was prepared via the Erlenmeyer azlactone synthesis followed by the ring-opening with primary amines to explore the scope and generality of the reaction. In general, the desired 4-arylidene-5imidazolinone derivatives were obtained from the corresponding 3-arylacrylamides in good yields under the tested condition. (Table 4) Although the yields for the 2-phenyl-4-arylidene-5imidazolinone series (R^2 =Ph) appear to be lower (entries 6, 9, 12, 15 and 18 in Table 4), they are still comparable to other reported methods. This reaction condition is well applicable to the 4arylidene-5-imidazolinones bearing with electron-withdrawing groups on the aryl groups (entries 13-23 in Table 4) while the existing methods could only afford minimal yields. ortho-Substituted benzylidene imidazolinones (7aj and 7ak) and heteroarylidene imidazolinone (7bl) could also be prepared in good yields by this methodology. (entries 26-28 in Table 4) Furthermore, the crude *N*-alkyl-2-acylamino-3-arylacrylamides (**9a**, **9b** and **10a**) obtained from the nucleophilic ring-opening of 4-arylidene-5oxazolinones (4 and 5) after a work-up without purification could be subjected to the dehydrative cyclization in pyridine to afford comparable yields. The spectroscopic properties of the 4-arylidene-5-imidazolinone derivatives (7a-b and 8a) were examined and the results were summarized in Table 5.

On the basis of the success in the dehydrative cyclization, the application was extended to more complicated imidazolinone derivatives to demonstrate the versatility of this method. 2-Methyl-4-benzylidene-5-oxazolinone (**4a**) was reacted with glycine methyl ester (Gly–OMe·HCl, **11**) to give the ring-

Table 4

Dehydrative cyclizations of *N*-alkyl-2-acylamino-3-arylacrylamides (**9a**–**b** and **10a**)

Entry	R ²	R ¹	Ar	Time	Product (yield) ^a
1	Me	Bn	€ start	21 h	7aa (64%)
2	Me	Me		22 h	7ba (81%)
3	Ph	Bn		5 d	8aa (54%)
4	Me	Bn	MeO	47 h	7ab (30%)
5	Me	Me		38 h	7bb (86%)
6	Ph	Bn		2 d	8ab (15%)
7	Me	Bn	Me ₂ N	20 h	7ac (63%)
8	Me	Me		24 h	7bc (72%)
9	Ph	Bn		3 d	8ac (42%)
10 ^b	Me	Bn	RO	37 h	7ad (30%)
11 ^b	Me	Me		43 h	7bd (91%)
12 ^b	Ph	Bn		24 h	8ad (40%)
13	Me	Bn	Cl	19 h	7ae (47%)
14	Me	Me		13 h	7be (92%)
15	Ph	Bn		18 h	8ae (20%)
16	Me	Bn	Br	24 h	7af (83%)
17	Me	Me		46 h	7bf (98%)
18	Ph	Bn		2 d	8af (44%)
19	Me	Bn	O ₂ N	19 h	7ag (75%)
20	Me	Me		15 h	7bg (53%)
21	Ph	Bn		36 h	8ag (63%)
22	Me	Bn	NC	12 h	7ah (38%)
23 ^c	Me	Me	s ²	23 h	7bh (43%)
24	Me	Bn	HO	42 h	7ai (41%)
25	Me	Me	MeO	47 h	7bi (70%)
26	Me	Bn	OMe	24 h	7 aj (67%)
27	Ме	Bn	Cl	24 h	7ak (51%)
28	Me	Me	F	23 h	7bl (77%)

^a Isolated yield.

^b **10ad**: R=Ac; **7ad**, **7bd**, **8ad**, **9ad** and **9bd**: R=H.

^c *N*-Methyl-2-acetamido-3-(4-cyanophenyl)-2-(methylamino)propanamide (**9bh**') was used as the linear precursor instead of *N*-methyl-2-acetamido-3-(4-cyanophenyl)acrylamide (**9bh**) (Supplementary data).

opened adduct **13**. Similarly, the reaction of 2-methyl-4-(*p*-acetyloxybenzylidene)-5-oxazolinone (**4d**) with the methyl esters of glycine or alanine (Gly–OMe·HCl, **11**; Ala–OMe·HCl, **12**) afforded the 2-acetylamino-3-(*p*-acetyloxyphenyl)acrylamides **14** and **15**. These 3-phenylacrylamides (**13**–**15**) represented a series of dipeptides containing α , β-unsaturated phenylalanine or tyrosine (dehydrophenylalanine, Δ Phe; dehydrotyrosine, Δ Tyr) derivatives at the *N*-terminal. These dipeptides (**13**–**15**) were subjected to the dehydrative cyclization condition to yield the corresponding 4-arylidene-5-imidazolinones (**16**, 1**7a**–**b** and **18a–b**) in good yields, except the phenolic acetyl groups

Table 5

Spectroscopic properties of 4-arylidene-5-imidazolinones (7a-b and 8a) in THF^a

	7a R ¹ = Bn, R ² = Me 7b R ¹ = Me, R ² = Me 8a R ¹ = Bn, R ² = Ph
R ¹	8a R ¹ = Bn, R ² = Ph

Compound	\mathbb{R}^2	\mathbb{R}^1	Ar	$\lambda_{max} \left(nm \right)$	$\lambda_{em} (nm)^{b}$	$\varepsilon (M^{-1} cm^{-1})$
7aa 7ba 8aa	Me Me Ph	Bn Me Bn	- A A A A A A A A A A A A A A A A A A A	355 357 375	430 428 457	$\begin{array}{c} 2.21 {\times} 10^4 \\ 2.11 {\times} 10^4 \\ 3.01 {\times} 10^4 \end{array}$
7ab 7bb 8ab	Me Me Ph	Bn Me Bn	MeO	370 370 391	423 426 471	$\begin{array}{c} 3.60 {\times}10^4 \\ 3.60 {\times}10^4 \\ 3.51 {\times}10^4 \end{array}$
7ac 7bc 8ac	Me Me Ph	Bn Me Bn	Me ₂ N	417 413 448	477 472 531	$\begin{array}{c} 5.81 {\times} 10^{4} \\ 4.34 {\times} 10^{4} \\ 4.66 {\times} 10^{4} \end{array}$
7ad 7bd 8ad	Me Me Ph	Bn Me Bn	HO	372 371 393	429 423 466	$\begin{array}{c} 3.04{\times}10^{4} \\ 3.28{\times}10^{4} \\ 3.43{\times}10^{4} \end{array}$
7ae 7be 8ae	Me Me Ph	Bn Me Bn	Cl	359 358 382	425 427 463	$\begin{array}{c} 2.35{\times}10^{4} \\ 2.78{\times}10^{4} \\ 3.31{\times}10^{4} \end{array}$
7af 7bf 8af	Me Me Ph	Bn Me Bn	Br	359 360 382	428 429 457	$\begin{array}{c} 2.58{\times}10^{4} \\ 2.67{\times}10^{4} \\ 3.33{\times}10^{4} \end{array}$
7ag 7bg 8ag	Me Me Ph	Bn Me Bn	O ₂ N	384 386 400	485 490 510	$\begin{array}{c} 2.58{\times}10^{4} \\ 2.74{\times}10^{4} \\ 3.63{\times}10^{4} \end{array}$
7ah	Me	Bn	NC	370	445	2.41×10^4
7bh	Me	Me		370	450	2.22×10^4
7ai	Me	Bn	HO	379	437	3.32×10^{4}
7bi	Me	Me	MeO	377	435	$3.82{ imes}10^4$
7aj	Me	Bn	OMe	375	434	2.59×10 ⁴
7ak	Me	Bn	CI	361	430	2.48×10 ⁴
7al	Me	Bn	M.	394	452	$3.04{ imes}10^4$
7bl	Me	Me		391	449	$3.57{ imes}10^4$

^a λ_{max} =Absorption maximum; *e*=Extinction coefficient; λ_{em} =Emission maximum. ^b The emission spectra were taken with the excitation at the maximum absorption wavelength (λ_{max}).

of **17** and **18** were partially removed during the reaction (Scheme 3).

The reaction protocol has also been applied to the dipeptide containing Δ Phe at the C-terminal (23). The synthesis of the didpeptide **23** started with *N*-phthaloylalanine (*N*-Phth–Ala, **19**) as the N-terminal amino acid. Coupling of N-Phth-Ala (19) and Gly- $-OMe \cdot HCl(11)$ with EDC and HOBt gave the *N*-phthaloyl-protected didpeptide methyl ester (N-Phth–Ala–Gly–OMe, 20). Saponification of the dipeptide methyl ester 20 followed the Erlenmeyer azlactone synthesis afforded 2-(1-phthalimidoethyl)-4-benzylidene-5-oxazolinone (22). Subsequent nucleophilic ring opening of the 4-arylidene-5-oxazolinone 22 with methylamine gave the dipeptide 23 containing Δ Phe at the C-terminal (N-Phth–Ala– Δ Phe–NHMe). Didpeptide **23** was placed under the dehydrative cyclization condition to form the 4-arylidene-5imidazolinone 24 in a good yield (Scheme 4).

Scheme 3. Reagents and conditions: (a) Et_3N (1.5 ~ 2 equiv), EtOH, rt; (b) pyridine, reflux.

Scheme 4. Reagents and conditions: (a) EDC, HOBt, Et₃N, CH₂Cl₂, rt, 15 h, 85%; (b) (i) 1 N aqueous NaOH/EtOH, rt, 5 h; (ii) HCl, quantitatively; (c) PhCHO, NaOAc, Ac₂O, 60 $^{\circ}$ C, 12 h, 26%; (d) MeNH₂·HCl, Et₃N, EtOH, rt, 3 h, 44%; (e) pyridine, reflux, 34 h, 61%.

3. Conclusion

In summary, our synthetic approach invokes the Erlenmeyer azlactone synthesis followed by the nucleophilic ring-opening of amines, which allows numerous commercially available arylaldehydes and alkylamines to be utilized. The subsequent dehydrative cyclization in pyridine under reflux is facile and has a good functional group tolerance. This method has a broad scope and is applicable to a wide variety of 4-arylidene-5-imidazolinones. Moreover, the dehydrative cyclization by the Mitsunobu reaction, despite of its narrower scope, has offered a mild condition as a supplementary route. Our investigation successfully provided a viable synthesis, which is amenable to the preparation of various GFP chromophore derivatives.

4. Experimental section

4.1. General chemical procedures

Nuclear magnetic resonance (NMR) spectra were obtained with Bruker Avance-400 or Avance-500 instruments. The chemical shift values are reported in δ values (parts per million. ppm) relative to the standard chemical shift for the deuterated solvent, CDCl₃, or DMSO- d_6 .⁶⁶ The coupling constant (J) values are expressed in hertz (Hz). Mass spectrometry was acquired on Finnigan Mat 95S (ESI) by the Advanced Instrument Center, Department of Chemistry, National Taiwan University, Taipei, Taiwan. Thin-layer chromatography (TLC) was performed on silica gel GHLF-254 plates (Merck Reagents). Compounds on thin-layer chromatography were visualized by illumination under UV light (254 nm), or dipped into 10% ethanolic sulfuric acid followed by charring on a hot plate. Solvent systems are expressed as a percentage of the more polar component with respect to total volume (v/v%). Merck Silica gel (230–400 mesh) was used for flash column chromatography and this technique has been described by W. C. Still et al.⁶⁷ Evaporations were carried out under reduced pressure (water aspirator) with the bath temperature below 50 °C unless specified otherwise. Materials obtained from commercial suppliers were used without further purification.

4.2. [General procedure A] General procedure for the Erlenmeyer azlactone synthesis (Scheme 2)

To a solution of *N*-acylglycine in acetic anhydride (reaction concentration=1 M) was added sodium acetate (0.63 equiv) and aryl–aldehyde (1.25 equiv) at room temperature. The reaction mixture was heated at 95–135 °C for the specific time (monitored by TLC). Ice was added to the reaction mixture and the resulting solution was cooled to 0 °C overnight. The precipitate was collected by filtration and the solid was recrylstallized to give the product. Alternatively, the aqueous solution was extracted by CHCl₃ and the product was purified by flash column chromatography.

4.3. [General procedure B] General procedure for the direct condensation of 2-methyl-4-arylidene-5-oxazolinones (4) with primary amines (Table 1)

4-(Indol-3-ylmethylidene)-1-benzyl-2-methylimidazol-5-one (7al). To a solution of 4-(3-indol-3-ylmethylidene)-2-methyloxazol-5-one (4), 7.21 g, 26.89 mmol) in ethanol (150 mL) was added K₂CO₃ (6.61 g, 47.83 mmol, 1.5 equiv) and benzylamine (17.4 mL, 17.08 g, 159.45 mmol, 5 equiv). The reaction mixture was stirred at room temperature for 10 min, and then was heated at reflux temperature for 11 h. After cooling to room temperature, the solution was filtered and the filtrate was collected. The solvent was removed under reduced pressure. The residue was purified by flash column chromatography (Hex/EtOAc=6:4, R_f=0.20) to give a yellow solid (**7al**, 3.25 g, 10.31 mmol, 38%). An analytical sample of **7al** was obtained by recrystallization from Hex/MeOH. Mp 212-214 °C (Hex/MeOH); ¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H, CH₃), 4.85 (s, 2H, CH₂), 7.24-7.33 (m, 7H), 7.41 (t, 1H, J=4.5 Hz), 7.64 (s, 1H), 7.98 (t, 1H, J=4.3 Hz), 8.55 (d, 1H, J=2.2 Hz), 8.91 (br, 1H, NH); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 43.9 (CH₂), 111.7 (CH), 112.2, 119.1 (CH), 121.6 (CH), 121.7 (CH), 123.4 (CH), 127.1 (CH), 127.5, 127.9 (CH), 129.0 (CH), 131.8 (CH), 136.0, 136.2, 159.0, 169.2; MS (EI) m/z 91 (100), 155 (72), 315 (88) (M⁺); HRMS Calcd for C₂₀H₁₇N₃O: 315.1372. Found 315.1377. Anal. Calcd for C₂₀H₁₇N₃O: C, 76.17; H, 5.43; N, 13.32. Found: C, 75.94; H, 5.56; N, 13.48.

4.4. [General procedure C] General procedure for the nucleophilic ring-opening of 4-arylideneoxazol-5-ones by primary amines (Schemes 2 and 3)

To the solution of 2-substituted 4-arylidene-5-oxazolinone (**4** or **5**) in EtOH (reaction concentration=0.2-0.5 M) was added the primary amines (methylamine: 40% aqueous solution, 20 equiv; other primary amines: 1.2-2.4 equiv) and the solution was stirred at room temperature. Upon completion, the solvent was removed under reduced pressure. The residue was purified (recrystallization or flash column chromatography) to give the corresponding *N*-substituted 2-acylamino-3-aryl-acrylamide. (1.5-2 equiv of trie-thylamine were used to neutralize the HCl when the hydrochloride salts of the amino acid methyl esters (**11** and **12**) were used as the primary amines (Scheme 3)).

4.5. [General procedure D] General procedure for the dehydrative cyclization by the Mitsunobu reaction (Table 3)

To a solution of triphenylphosphine (2 equiv), DBU (2 equiv), DMAP (0.1 equiv) and *N*-substituted 2-acylamino-3-aryl-acrylamide (**9a**, **9b** or **10a**) in THF at 0 °C was added DIAD (2 equiv) dropwise. The reaction mixture was allowed to warm to room temperature with continuous stirring for 24 h. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography.

4.6. [General procedure E] General procedure for the dehydrative cyclization in pyridine (Table 4, Schemes 3 and 4)

The solution of *N*-substituted 2-acylamino-3-aryl-acrylamide (**9a**, **9b** or **10a**) in pyridine (reaction concentration=0.2–0.5 M) was stirred at reflux temperature. Upon completion, the reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to give the corresponding 1,2-disubstituted 4-arylideneimidazol-5-one.

4.7. General spectroscopic method (Table 5)

4.7.1. UV/Vis spectra. UV/Visible spectra were recorded on Agilent 8453 spectrophotometer. The sample solution was prepared by dissolving approximately 10 mg of the tested compound in THF to result in a 10-mL solution, which was then adequately diluted with THF to form solutions in various concentrations for collecting the absorption maximum (λ_{max}) and extinction coefficient (ε).

4.7.2. Fluorescence spectra. Emission data were collected on Cary Eclipse spectrophotometer at room temperature with 10 mm of emission slit and corrected to the emission of a Xenon flash lamp. The sample solution was prepared by dissolving approximately 10 mg of the tested compound in THF to result in a 10-mL solution, which was then adequately diluted with THF to form solutions in various concentrations as indicated. The solutions were excited at the absorption maximum (λ_{max}), which were obtained in UV/Vis spectra.

4-Benzylidene-1-benzyl-2-methylimidazol-5-one (**7aa**). Compound **7aa** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=8:2, R_f =0.25) to give the product as a yellow solid (**7aa**, 64%). An analytical sample of **7aa** was obtained by recrystallization from Hex/ MeOH. Mp 137–139 °C (Hex/MeOH); ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H, CH₃), 4.82 (s, 2H, CH₂), 7.19 (s, 1H, C=CH), 7.23–7.31 (m, 5H), 7.33–7.42 (m, 3H), 8.15 (d, 2H, *J*=7.1 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.1, 43.9, 127.1, 127.8, 128.0, 128.8, 129.0, 130.2, 132.3, 134.2, 136.1, 138.5, 162.6, 170.7; MS (EI) m/z 91 (59), 135 (45), 205 (46), 276 (100) (M⁺); HRMS Calcd for C₁₈H₁₆N₂O: 276.1263. Found 276.1259. Anal. Calcd for C₁₈H₁₆N₂O: C, 78.24; H, 5.84; N, 10.14. Found: C, 78.05; H, 5.74; N, 9.93.

4-(4-Methoxybenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ab**). Compound **7ab** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=8:2, $R_{\rm f}$ =0.22) to give the product as a yellow solid (**7ab**, 30%). An analytical sample of **7ab** was obtained by recrystallization from Hex/EtOAc. Mp 127–129 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.24 (s, 3H, CH₃), 3.85 (s, 3H, OCH₃), 4.82 (s, 2H, CH₂), 6.94 (d, 2H, *J*=8.7 Hz), 7.15 (s, 1H, C=CH), 7.23 (d, 2H, *J*=7.3 Hz), 7.27–7.34 (m, 3H), 8.13 (d, 2H, *J*=8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.0 (CH₃), 43.8 (CH₂), 55.3 (CH₃), 114.3 (CH), 127.0 (CH), 127.1, 127.8 (CH), 128.9 (CH), 134.1 (CH), 136.2, 136.6, 161.1, 161.3, 170.6; MS (EI) *m*/*z* 91 (100), 146 (42), 306 (68) (M⁺); HRMS Calcd for C₁₉H₁₈N₂O₂: 306.1368. Found 306.1373. Anal. Calcd for C₁₉H₁₈N₂O₂: C, 74.49; H, 5.92; N, 9.14. Found: C, 74.51; H, 5.79; N, 9.09.

4-(4-Dimethylaminobenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ac**). Compound **7ac** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.28) to give the product as a yellow solid (**7ac**, 63%). Mp 153–155 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.22 (s, 3H, CH₃), 3.01 (s, 6H, CH₃), 4.81 (s, 2H, CH₂), 6.75 (d, 2H, *J*=8.8 Hz), 6.96 (s, 1H, C=CH), 7.22–7.37 (m, 5H), 8.08 (d, 2H, *J*=8.7 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 15.4 (CH₃), 39.6 (CH₃), 42.8 (CH₂), 111.6 (CH), 121.5, 126.8 (CH), 127.3 (CH), 127.4 (CH), 128.7 (CH), 133.9 (CH), 134.1, 137.1, 151.4, 159.5, 169.6; MS (EI) *m*/*z* 159 (35), 227 (35), 319 (100) (M⁺); HRMS Calcd for C₂₀H₂₁N₃O: 319.1685. Found 319.1681.

4-(4-Hydroxybenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ad**). Compound **7ad** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=6:4, $R_{\rm f}$ =0.25) to give the product as a yellow solid (**7ad**, 30%). An analytical sample of **7ad** was obtained by recrystallization from MeOH/H₂O. Mp 210–212 °C (MeOH/H₂O); ¹H NMR (DMSO-d₆, 400 MHz) δ 2.26 (s, 3H, CH₃), 4.81 (s, 2H, CH₂), 6.84 (d, 2H, *J*=8.5 Hz), 6.98 (s, 1H, C=CH), 7.22 (d, 2H, *J*=7.5 Hz), 7.28–7.37 (m, 3H), 8.09 (d, 2H, *J*=8.5 Hz), 10.2 (br, 1H, OH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 16.0 (CH₃), 43.5 (CH₂), 116.4 (CH), 125.8, 127.0 (CH), 127.4 (CH), 128.0 (CH), 129.3 (CH), 134.8 (CH), 136.3, 137.4, 160.3, 162.0, 170.4; MS (EI) *m*/*z* 91 (100), 292 (78) (M⁺); HRMS Calcd for C₁₈H₁₆N₂O₂: 292.1212. Found 292.1214. Anal. Calcd for C₁₈H₁₆N₂O₂: C, 73.95; H, 5.52; N, 9.58. Found: C, 73.96; H, 5.57; N, 9.56.

4-(4-*Chlorobenzylidene*)-1-*benzyl*-2-*methylimidazol*-5-*one* (**7ae**). Compound **7ae** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, $R_{\rm f}$ =0.15) to give the product as a yellow solid (**7ae**, 47%). An analytical sample of **7ae** was obtained by recrystallization from Hex/MeOH. Mp 96–98 °C (Hex/MeOH); ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H, CH₃), 4.82 (s, 2H, CH₂), 7.11 (s, 1H, C=CH), 7.23 (d, 2H, *J*=7.0 Hz), 7.29–7.39 (m, 5H), 8.09 (d, 2H, *J*=8.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.1 (CH₃), 44.0 (CH₂), 126.2 (CH), 127.1 (CH), 128.0 (CH), 129.0 (CH), 132.7, 133.3 (CH), 136.0, 136.2, 138.7, 163.0, 170.5; MS (EI) *m/z* 91 (100), 310 (17) (M⁺), 312 (5) (M+2); HRMS Calcd for C₁₈H₁₅N₂OCl: 310.0873. Found 310.0869. Anal. Calcd for C₁₈H₁₅N₂OCl: C, 69.57; H, 4.86; N, 9.01. Found: C, 69.45; H, 4.76; N, 8.91.

4-(4-Bromobenzylidene)-1-benzyl-2-methylimidazol-5-one (**7af**). Compound **7af** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, R_{f} =0.12) to give the product as a yellow solid (**7af**, 83%).

An analytical sample of **7af** was obtained by recrystallization from Hex/MeOH. Mp 122–124 °C (Hex/MeOH); ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.27 (s, 3H, CH₃), 4.84 (s, 2H, CH₂), 7.05 (s, 1H, C=CH), 7.24–7.38 (m, 5H), 7.66 (d, 2H, *J*=8.3 Hz), 8.17 (d, 2H, *J*=8.3 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 15.7 (CH₃), 43.0 (CH₂), 123.7, 124.1 (CH), 126.8 (CH), 127.5 (CH), 128.8 (CH), 131.7 (CH), 133.2, 133.7 (CH), 136.6, 138.9, 164.3, 169.7; MS (ES) *m/z* 355 (99) (M+1), 357 (100) (M+3), 377 (48) (M+Na), 379 (48) (M+2+Na); HRMS Calcd for C₁₈H₁₆N₂OBr (M+1): 355.0446. Found 355.0435. Anal. Calcd for C₁₈H₁₅N₂OBr ·1/4H₂O: C, 60.10; H, 4.34; N, 7.79. Found: C, 60.32; H, 4.45; N, 7.62.

4-(4-Nitrobenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ag**). Compound **7ag** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/ EtOAc=7:3, $R_{\rm f}$ =0.30) to give the product as a yellow solid (**7ag**, 75%). An analytical sample of **7ag** was obtained by recrystallization from Hex/EtOAc. Mp 182–184 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.30 (s, 3H, CH₃), 4.84 (s, 2H, CH₂), 7.13 (s, 1H, C=CH), 7.23 (d, 2H, *J*=7.3 Hz), 7.30–7.38 (m, 3H), 8.24 (d, 2H, *J*=8.1 Hz), 8.30 (d, 2H, *J*=8.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.2 (CH₃), 44.0 (CH₂), 123.7 (CH), 123.8 (CH), 127.0 (CH), 128.1 (CH), 129.1 (CH), 132.5 (CH), 135.6, 140.3, 141.1, 147.8, 165.3, 170.3; MS (EI) *m*/*z* 91 (100), 321 (88) (M⁺); HRMS Calcd for C₁₈H₁₅N₃O₃: 321.1113. Found 321.1104. Anal. Calcd for C₁₈H₁₅N₃O₃: C, 67.28; H, 4.71; N, 13.08. Found: C, 67.31; H, 4.60; N, 13.10.

4-(4-Cyanobenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ah**). Compound **7ah** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.25) to give the product as a yellow solid (**7ah**, 38%). An analytical sample of **7ah** was obtained by recrystallization from Hex/EtOAc. Mp 140–143 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.28 (s, 3H, CH₃), 4.82 (s, 2H, CH₂), 7.08 (s, 1H, C=CH), 7.22 (d, 2H, *J*=6.9 Hz), 7.30–7.37 (m, 3H), 7.67 (d, 2H, *J*=8.4 Hz), 8.23 (d, 2H, *J*=8.3 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.2 (CH₃), 44.0 (CH₂), 112.6, 118.6, 124.3 (CH), 127.0 (CH), 128.1 (CH), 129.0 (CH), 132.2 (CH), 135.7, 138.4, 140.7, 164.8, 170.2; MS (EI) *m*/*z* 91 (100), 301 (18) (M⁺); HRMS Calcd for C₁₉H₁₅N₃O: 301.1215. Found 301.1208. Anal. Calcd for C₁₉H₁₅N₃O: C, 75.73; H, 5.02; N, 13.94. Found: C, 75.67; H, 4.71; N, 14.24.

4-(4-Hydroxy-3-methoxybenzylidene)-1-benzyl-2-methylimidazol-5-one (**7ai**). Compound **7ai** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/ EtOAc=6:4, $R_{f=}$ 0.25) to give the product as a yellow solid (**7ai**, 41%). An analytical sample of **7ai** was obtained by recrystallization from MeOH/H₂O. Mp 162–164 °C (MeOH/H₂O); ¹H NMR (CDCl₃, 400 MHz) δ 2.24 (s, 3H, CH₃), 3.94 (s, 3H, OCH₃), 4.82 (s, 2H, CH₂), 6.13 (s, 1H C=CH), 6.94 (d, 1H, J=8.3 Hz), 7.12 (s, 1H), 7.22 (d, 2H, J=7.0 Hz), 7.27–7.35 (m, 3H), 7.52 (dd, 1H, J=8.2, 1.4 Hz), 8.02 (d, 1H, J=1.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.1 (CH₃), 43.8 (CH₂), 56.0 (CH₃), 113.8 (CH), 114.6 (CH), 126.9, 127.0 (CH), 127.7 (CH), 127.9 (CH), 128.4 (CH), 128.9 (CH), 136.2, 136.3, 146.7, 148.2, 161.0, 170.6; MS (EI) m/z 91 (100), 162 (26), 322 (73)(M⁺); HRMS Calcd for C₁₉H₁₈N₂O₃: 322.1317. Found 322.1318. Anal. Calcd for C₁₉H₁₈N₂O₃: C, 70.79; H, 5.63; N, 8.69. Found: C, 70.95; H, 5.68; N, 8.74.

4-(2-Methoxybenzylidene)-1-benzyl-2-methylimidazol-5-one (**7aj**). Compound **7aj** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/ EtOAc=8:2, R_f =0.23) to give the product (**7aj**, 67%). Mp 107–108 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.26 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 4.83 (s, 2H, CH₂), 7.02–7.10 (m, 2H), 7.24–7.42 (m, 7H), 8.73 (d, 1H, *J*=6.8 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 15.6 (CH₃), 43.0 (CH₂), 55.7 (CH₃), 111.3 (CH), 118.7 (CH), 120.6 (CH), 122.2, 126.8 (CH), 127.5 (CH), 128.8 (CH), 132.0 (CH), 132.2 (CH), 136.7, 137.9, 158.5, 163.3, 169.9; MS (EI) *m*/*z* 91 (100), 275 (12), 306 (24) (M⁺); HRMS Calcd for C₁₉H₁₈N₂O₂: 306.1368. Found 306.1367.

4-(2-*Chlorobenzylidene*)-1-*benzyl*-2-*methylimidazol*-5-*one* (**7ak**). Compound **7ak** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, $R_{\rm f}$ =0.15) to give the product (**7ak**, 51%). Mp 92–94 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.30 (s, 3H, CH₃), 4.85 (s, 2H, CH₂), 7.26–7.32 (m, 4H), 7.35–7.39 (m, 2H), 7.42–7.46 (m, 2H), 7.56–7.58 (m, 1H), 8.82–8.84 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 43.1 (CH₂), 119.0 (CH), 126.9 (CH), 127.5 (CH), 127.6 (CH), 128.8 (CH), 129.8 (CH), 131.2, 131.4 (CH), 132.9 (CH), 134.8, 136.5, 139.9, 165.7, 169.8; MS (EI) *m*/*z* 91 (100), 92 (8), 275 (99), 276 (39), 310 (8) (M⁺), 312 (3) (M+2); HRMS Calcd for C₁₈H₁₅N₂OCl: 310.0873. Found 310.0873.

4-Benzylidene-1,2-dimethylimidazol-5-one (**7ba**). Compound **7ba** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=5:5, $R_{\rm f}$ =0.33) to give the product (**7ba**, 81%). An analytical sample of **7ba** was obtained by recrystallization from Hex/EtOAc. Mp 115–117 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.38 (s, 3H, CH₃), 3.19 (s, 3H, NCH₃), 7.11 (s, 1H, C=CH), 7.34–7.44 (m, 3H), 8.13 (d, 2H, J=1.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.8, 26.7, 127.4, 128.8, 130.2, 132.3, 134.3, 138.9, 162.8, 170.9; MS (EI) m/z 200 (100) (M⁺).

4-(4-*Methoxybenzylidene*)-1,2-*dimethylimidazol*-5-*one* (**7bb**). Compound **7bb** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.08) to give the product (**7bb**, 86%). An analytical sample of **7bb** was obtained by recrystallization from Hex/EtOAc. Mp 136–137 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H, CH₃), 3.12 (s, 3H, CH₃), 3.80 (s, 1H, OCH₃), 6.89 (d, 2H, *J*=8.6 Hz), 7.03 (s, 1H, C=CH), 8.07 (d, 2H, *J*=8.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 26.6 (CH₃), 55.4 (OCH₃), 114.4 (CH), 127.26, 127.28 (CH), 134.1 (CH), 137.1, 161.3, 161.4, 170.8; MS (EI) *m*/*z* 56 (100), 230 (20) (M⁺); HRMS Calcd for C₁₃H₁₄N₂O₂: 230.1055. Found: 230.1048. Anal. Calcd for C₁₃H₁₄N₂O₂: C, 67.81; H, 6.13; N, 12.17. Found: C, 67.78; H, 6.10; N, 12.38.

4-(4-Dimethylaminobenzylidene)-1,2-dimethylimidazol-5-one (**7bc**). Compound **7bc** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=5:5, $R_{\rm f}$ =0.20) to give the product (**7bc**, 72%). An analytical sample of **7bc** was obtained by recrystallization from Hex/EtOAc. Mp 207–208 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.34 (s, 3H, CH₃), 3.03 (s, 6H, CH₃), 3.16 (s, 3H, CH₃), 6.69 (d, 2H, *J*=9.0 Hz), 7.07 (s, 1H, C=CH), 8.04 (d, 2H, *J*=8.9 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 26.7 (CH₃), 40.2 (CH₃), 111.9 (CH), 122.4, 129.0 (CH), 134.3 (CH), 134.8, 151.7, 159.2, 170.8; MS (EI) *m*/*z* 56 (16), 243 (100) (M⁺); HRMS Calcd for C₁₄H₁₇N₃O: 243.1372. Found 243.1374.

4-(4-Hydroxybenzylidene)-1,2-dimethylimidazol-5-one (**7bd**). Compound **7bd** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=4:6, $R_{\rm f}$ =0.20) to give the product (**7bd**, 91%). An analytical sample of **7bd** was obtained by recrystallization from MeOH/H₂O. Mp 236–238 °C (MeOH/H₂O); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 2.32 (s, 3H, CH₃), 3.08 (s, 3H, CH₃), 6.82 (d, 2H, *J*=9.6 Hz), 6.88 (s, 1H, C=CH), 8.07 (d, 2H, *J*=8.4 Hz), 10.09 (bs, 1H, OH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 15.7 (CH₃), 26.6 (CH₃), 116.2 (CH), 125.8, 125.9 (CH), 134.5 (CH), 136.8, 160.0, 162.7, 170.3; MS (EI) *m*/*z* 56 (100), 216 (100) (M⁺); HRMS Calcd for C₁₂H₁₂N₂O₂: 216.0899. Found 216.0902. Anal. Calcd for C₁₂H₁₂N₂O₂: C, 66.65; H, 5.59; N, 12.96. Found: C, 66.35; H, 5.53; N, 12.97.

4-(4-Chlorobenzylidene)-1,2-dimethylimidazol-5-one (**7be**). Compound **7be** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/ EtOAc=7:3, R_f =0.25) to give the product (**7be**, 92%). An analytical sample of **7be** was obtained by recrystallization from Hex/EtOAc. Mp 158–160 °C (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.35 (s, 3H, CH₃), 3.15 (s, 3H, NCH₃), 7.00 (s, 1H, C=CH), 7.35 (d, 2H, *J*=8.5 Hz), 8.04 (d, 2H, *J*=8.5 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 26.6 (CH₃), 125.6 (CH), 128.9 (CH), 132.7, 133.3 (CH), 136.0, 139.0, 163.1, 170.5; MS (EI) *m/z* 234 (100) (M⁺), 236 (68) (M+2). HRMS Calcd for C₁₂H₁₁N₂OCl: 234.0560. Found: 234.0563. Anal. Calcd for C₁₂H₁₁N₂OCl: C, 61.41; H, 4.72; N, 11.94. Found: C, 61.72; H, 4.68; N, 11.83.

4-(4-Bromobenzylidene)-1,2-dimethylimidazol-5-one (**7bf**). Compound **7bf** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.15) to give the product (**7bf**, 98%). An analytical sample of **7bf** was obtained by recrystallization from Hex/MeOH. Mp 154–157 °C (Hex/MeOH); ¹H NMR (CDCl₃, 400 MHz) δ 2.36 (s, 3H, CH₃), 3.17 (s, 3H, NCH₃), 6.99 (s, 1H, C=CH), 7.52 (d, 2H, *J*=8.5 Hz), 7.98 (d, 2H, *J*=8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.9 (CH₃), 26.8 (CH₃), 124.7, 125.8 (CH), 132.1 (CH), 133.3, 133.6 (CH), 139.3, 163.3, 170.7; MS (EI) *m*/*z* 56 (100), 278 (89) (M⁺), 280 (68) (M+2). HRMS Calcd for C₁₂H₁₁N₂OBr: 278.0055. Found: 278.0052. Anal. Calcd for C₁₂H₁₁N₂OBr: C, 51.63; H, 3.97; N, 10.04. Found: C, 51.40; H, 3.95; N, 9.83.

4-(4-Nitrobenzylidene)-1,2-dimethylimidazol-5-one (**7bg**). Compound **7bg** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=6:4, $R_{\rm f}$ =0.20) to give the product (**7bg**, 53%). An analytical sample of **7bg** was obtained by recrystallization from Hex/EtOAc. Mp 200–202 °C (dec) (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.40 (s, 3H, CH₃), 3.19 (s, 3H, CH₃), 7.01 (s, 1H, C=CH), 8.20 (d, 2H, *J*=9.1 Hz), 8.24 (d, 2H, *J*=9.0 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.0 (CH₃), 26.9 (CH₃), 123.3 (CH), 123.8 (CH), 132.6 (CH), 140.6, 141.6, 147.9, 165.6, 170.5; MS (EI) *m/z* 224 (37), 225 (100) (M⁺); HRMS Calcd for C₁₂H₁₁N₃O₃: 245.0800. Found 245.0802.

4-(4-Cyanobenzylidene)-1,2-dimethylimidazol-5-one (**7bh**). Compound **7bh** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=6:4, $R_{\rm f}$ =0.18) to give the product (**7bh**, 43%). An analytical sample of **7bh** was obtained by recrystallization from Hex/EtOAc. Mp 219–220 °C (dec) (Hex/EtOAc); ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H, CH₃), 3.19 (s, 3H, CH₃), 7.00 (s, 1H, C=CH), 7.66 (d, 2H, *J*=7.8 Hz), 8.20 (d, 2H, *J*=7.8 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.0 (CH₃), 26.9 (CH₃), 112.8, 118.9, 124.1 (CH), 132.37 (CH), 132.39 (CH), 138.7, 141.2, 165.1, 170.5; MS (EI) *m*/*z* 56 (100), 224 (20), 225 (94) (M⁺); HRMS Calcd for C₁₃H₁₁N₃O: 225.0902. Found 225.0904.

4-(4-Hydroxy-3-methoxybenzylidene)-1,2-dimethylimidazol-5-one (**7bi**). Compound **7bi** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=4:6, $R_{\rm f}$ =0.20) to give the product (**7bi**, 70%). An analytical sample of **7bi** was obtained by recrystallization from Hex/MeOH. Mp 196–198 °C (dec) (Hex/MeOH); ¹H NMR (DMSO-d₆, 400 MHz) δ 2.32 (s, 3H, CH₃), 3.08 (s, 3H, CH₃), 3.80 (s, 3H, OCH₃), 6.84 (d, 1H, *J*=8.2 Hz), 6.89 (s, 1H), 7.65 (d, 1H, *J*=7.8 Hz), 7.95 (s, 1H), 9.72 (s, 1H, OH); ¹³C NMR (DMSO-d₆, 100 MHz) δ 15.4 (CH₃), 26.2 (CH₃), 55.6 (OCH₃), 115.6, 115.7 (CH), 125.7 (CH), 125.8 (CH), 126.7 (CH), 136.4, 147.5, 149.2, 162.2, 169.8; MS (EI) *m*/*z* 56 (18), 246 (100) (M⁺); HRMS Calcd for C₁₃H₁₄N₂O₃:246.1004. Found 246.1002.

4-(*Indol-3-ylmethylidene*)-1,2-*dimethylimidazol-5-one* (**7bl**). Compound **7bl** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=4:6, $R_{\rm f}$ =0.13) to give the product (**7bl**, 77%). An analytical sample of

7bl was obtained by recrystallization from Hex/MeOH. Mp 239–241 °C (dec) (Hex/MeOH); ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.34 (s, 3H, CH₃), 3.10 (s, 3H, CH₃), 7.14–7.22 (m, 2H), 7.31 (s, 1H, C=CH), 7.47 (d, 1H, *J*=7.6 Hz), 8.19 (d, 1H, *J*=7.6 Hz), 8.39 (d, 1H, *J*=2.0 Hz), 11.92 (bs, 1H, NH); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 15.3 (CH₃), 26.2 (CH₃), 111.1, 112.1 (CH), 119.4 (CH), 119.6 (CH), 120.7 (CH), 122.5 (CH), 126.7, 132.7 (CH), 134.0, 136.4, 159.3, 169.2; MS (EI) *m*/*z* 56 (18), 239 (100) (M⁺); HRMS Calcd for C₁₄H₁₃N₃O: 239.1059. Found 239.1060.

4-Benzylidene-1-benzyl-2-phenylimidazol-5-one (**8aa**). Compound **8aa** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, $R_{\rm f}$ =0.20) to give the product (**8aa**, 54%). An analytical sample of **8aa** was obtained by recrystallization from Hex/EtOAc. Mp 138–139 °C (Hex/EtOAc); ¹H NMR (DMSO- d_6 , 400 MHz) δ 4.98 (s, 2H, CH₂), 7.07–7.09 (m, 2H), 7.27–7.28 (m, 4H), 7.46–7.51 (m, 6H), 7.73–7.75 (m, 2H), 8.31–8.33 (m, 2H); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 44.5 (CH₂), 126.3 (CH), 127.4 (CH), 127.8 (CH), 128.3 (CH), 128.7 (CH), 128.8 (CH), 129.0, 130.5 (CH), 131.6 (CH), 132.4 (CH), 134.0, 136.6, 138.5, 162.7, 170.7; MS (EI) *m/z* 338 (100) (M⁺); HRMS Calcd for C₂₃H₁₈N₂O: 338.1419. Found 338.1416.

4-(4-Methoxybenzylidene)-1-benzyl-2-phenylimidazol-5-one (**8ab**). Compound **8ab** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, $R_{\rm f}$ =0.13) to give the product (**8ab**, 15%). Mp 160–162 °C; ¹H NMR (DMSO- $d_{\rm 6}$, 400 MHz) δ 3.83 (s, 3H, OCH₃), 4.98 (s, 2H, CH₂), 7.05–7.08 (m, 4H), 7.22–7.30 (m, 4H), 7.48–7.51 (m, 2H), 7.55–7.57 (m, 1H), 7.73 (d, 2H, *J*=7.4 Hz), 8.31 (d, 2H, *J*=8.7 Hz); ¹³C NMR (DMSO- $d_{\rm 6}$, 100 MHz) δ 44.4 (CH₂), 55.4 (CH₃), 114.5 (CH), 126.3 (CH), 126.8, 127.3 (CH), 128.0 (CH), 128.3 (CH), 128.7 (CH), 128.8 (CH), 129.1 (CH), 131.4 (CH), 134.4 (CH), 136.5, 136.8, 161.2, 161.3, 170.6; MS (EI) *m/z* 91 (57) 368 (100) (M⁺); HRMS (EI) Calcd for C₂₄H₂₀N₂O₂:368.1525. Found 368.1519.

4-(4-*Dimethylaminobenzylidene*)-1-*benzyl*-2-*phenylimidazol*-5-*one* (**8ac**). Compound **8ac** was prepared by the general procedure E. The reaction was purified by flash column chromatography (CH₂Cl₂, $R_{\rm f}$ =0.38) to give the product (**8ac**, 42%). An analytical sample of **8ac** was obtained by recrystallization from EtOAc. Mp 195–197 °C (EtOAc); ¹H NMR (DMSO- d_6 , 400 MHz) δ 3.03 (s, 6H, CH₃), 4.98 (s, 2H, CH₂), 6.79 (d, 2H, *J*=8.4 Hz), 7.06 (d, 2H, *J*=7.3 Hz), 7.16 (s, 1H), 7.22 (d, 1H, *J*=7.2 Hz), 7.26–7.30 (m, 2H), 7.46–7.48 (m, 2H), 7.53 (d, 1H, *J*=6.5 Hz), 7.70 (d, 2H, *J*=7.5 Hz), 8.18 (d, 2H, *J*=8.2 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 40.1 (CH₃), 44.8 (CH₂), 112.3 (CH), 122.0, 126.8 (CH), 127.7 (CH), 128.6 (CH), 129.1 (CH), 129.2 (CH), 130.0 (CH), 131.4 (CH), 134.5, 135.0 (CH), 137.6, 152.2, 159.1, 170.8; MS (EI) *m*/*z* 91 (40), 290 (55), 381 (100) (M⁺); HRMS Calcd for C₂₅H₂₃N₃O: 381.1841. Found 381.1842.

4-(4-Hydroxybenzylidene)-1-benzyl-2-phenylimidazol-5-one (**8ad**). Compound **8ad** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.18) to give the product (**8ad**, 40%). An analytical sample of **8ad** was obtained by recrystallization from Hex/EtOAc. Mp 248–250 °C (Hex/EtOAc); ¹H NMR (DMSO- $d_{\rm 6}$, 400 MHz) δ 4.97 (s, 2H, CH₂), 6.88 (d, 2H, *J*=8.8 Hz), 7.06 (d, 2H, *J*=6.8 Hz), 7.19–7.30 (m, 4H), 7.47–7.58 (m, 3H), 7.71 (d, 2H, *J*=7.2 Hz), 8.20 (d, 2H, *J*=8.8 Hz), 10.33 (bs, 1H, OH); ¹³C NMR (DMSO- $d_{\rm 6}$, 100 MHz) δ 44.8 (CH₂), 116.5 (CH), 125.8, 126.7 (CH), 127.8 (CH), 128.7 (CH), 129.16 (CH), 129.24 (CH), 129.7, 131.8 (CH), 135.3 (CH), 136.2, 137.3, 160.7, 161.1, 171.1; MS (EI) *m/z* 354 (100) (M⁺); HRMS Calcd for C₂₃H₁₈N₂O₂: 354.1368. Found 154.1377.

4-(4-Chlorobenzylidene)-1-benzyl-2-phenylimidazol-5-one (**8ae**). Compound **8ae** was prepared by the general procedure E. The

reaction was purified by flash column chromatography (Hex/ EtOAc=9:1, R_f =0.25) to give the product (**8ae**, 29%). Mp 164–165 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 4.98 (s, 2H, CH₂), 7.07–7.09 (m, 2H), 7.22–7.28 (m, 4H), 7.48–7.60 (m, 5H), 7.73 (d, 2H, *J*=7.4 Hz), 8.33 (d, 2H, *J*=8.4 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 44.5 (CH₂), 126.1 (CH), 126.3 (CH), 127.4 (CH), 128.3 (CH), 128.7 (CH), 128.8 (CH), 128.9 (CH), 131.7 (CH), 132.9, 133.8 (CH), 135.1, 136.6, 138.8, 163.1, 170.6; MS (EI) *m/z* 91 (100), 372 (88) (M⁺), 374 (29) (M+2); HRMS (EI) Calcd for C₂₃H₁₇N₂OCI:372.1029. Found 372.1031.

4-(4-Bromobenzylidene)-1-benzyl-2-phenylimidazol-5-one (**8af**). Compound **8af** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=9:1, $R_{f=}0.25$) to give the product (**8af**, 44%). Mp 166–168 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 4.98 (s, 2H, CH₂), 7.08 (d, 2H, J=8.0 Hz), 7.23–7.31 (m, 4H), 7.49–7.53 (m, 2H), 7.58–7.60 (m, 1H), 7.69–7.75 (m, 4H), 8.26 (d, 2H, J=8.0 Hz); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 44.5 (CH₂), 124.1, 126.2 (CH), 126.3 (CH), 127.3 (CH), 128.3 (CH), 128.7 (CH), 128.8 (CH), 131.7 (CH), 131.8 (CH), 133.2, 134.0 (CH), 136.5, 138.9, 163.2, 170.6; MS (EI) m/z 91 (100), 416 (32) (M⁺), 418 (34) (M+2); HRMS (EI) Calcd for C₂₃H₁₇N₂OBr:416.0524. Found 416.0528.

4-(4-Nitrobenzylidene)-1-benzyl-2-phenylimidazol-5-one (**8ag**). Compound **8ag** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=8:2, $R_{\rm f}$ =0.27) to give the product (**8ag**, 63%). An analytical sample of **8ag** was obtained by recrystallization from Hex/MeOH. Mp 188–190 °C (Hex/MeOH); ¹H NMR (DMSO- d_{6} , 400 MHz) δ 4.99 (s, 2H, CH₂), 7.10 (d, 2H, *J*=7.7 Hz), 7.24–7.31 (m, 3H), 7.36 (s, 1H, C=CH), 7.51–7.62 (m, 3H), 7.77 (d, 2H, *J*=7.3 Hz), 8.29 (d, 2H, *J*=8.8 Hz), 8.54 (d, 2H, *J*=8.8 Hz); ¹³C NMR (DMSO- d_{6} , 100 MHz) δ 44.7 (CH₂), 123.7 (CH), 124.2 (CH), 126.3 (CH), 127.4 (CH), 128.46 (CH), 128.52, 128.7, 128.8 (CH), 132.1 (CH), 132.9 (CH), 136.4, 140.4, 141.0, 147.4, 165.0, 170.6; MS (EI) *m/z* 91 (18), 383 (100) (M⁺); HRMS Calcd for C₂₃H₁₇N₃O₃: 383.1270. Found 383.1274.

Methyl 2-(2-acetamido-3-phenylacrylamido)acetate (*N*-Ac- Δ Phe-Gly-OMe)^{56,68} (**13**). Compound **13** was prepared by the general procedure C. The reaction was purified by flash column chromatography (EtOAc, R_f =0.20) to give the product as a solid (**13**, 93%). Mp 128–132 °C; ¹H NMR (DMSO- d_6 , 400 MHz) δ 2.00 (s, 3H, CH₃), 3.64 (s, 3H, OCH₃), 3.89 (d, 2H, *J*=5.8 Hz, CH₂), 7.13 (s, 1H, C=CH), 7.33–7.35 (m, 1H), 7.38–7.42 (m, 2H), 7.55 (d, 2H, *J*=7.6 Hz), 8.39 (t, 1H, *J*=5.7 Hz, NH), 9.44 (s, 1H, NH); ¹³C NMR (DMSO- d_6 , 100 MHz) δ 22.8 (CH₃), 41.2 (CH₂), 51.6 (CH₃), 128.5 (CH), 128.7 (CH), 128.9 (CH), 129.3, 134.0, 165.3, 169.4, 170.2; MS (EI) *m*/*z* 234 (100), 276 (22) (M⁺).

Methyl 2-(2-acetamido-3-(4-acetoxyphenyl)acrylamido)acetate (*N*- $Ac-\Delta Tyr(OAc)-Gly-OMe$)⁵⁶ (**14**). Compound **14** was prepared by the general procedure C. The reaction was purified by flash column chromatography (Hex/EtOAc=2:8, $R_{\rm f}$ =0.08) to give the product as a solid (**14**, 70%). Mp 110–114 °C (dec); ¹H NMR (DMSO- $d_{\rm 6}$, 400 MHz) δ 2.00 (s, 3H, CH₃), 2.26 (s, 3H, OAc), 3.63 (s, 3H, OCH₃), 3.88 (d, 2H, *J*=5.8 Hz, CH₂), 7.13 (s, 1H, C=CH), 7.15 (d, 2H, *J*=8.6 Hz), 7.58 (d, 2H, *J*=8.6 Hz), 8.43 (t, 1H, *J*=5.8 Hz, NH), 9.48 (s, 1H, NH); ¹³C NMR (DMSO- $d_{\rm 6}$, 100 MHz) δ 21.0 (CH₃), 23.0 (CH₃), 41.4 (CH₂), 51.9 (CH₃), 122.2 (CH), 128.3 (CH), 129.3, 130.8 (CH), 131.7, 150.7, 165.6, 169.4, 169.9, 170.5; MS (EI) *m*/z 203 (23), 250 (39), 274 (100), 316 (50), 317 (22), 334 (18) (M⁺).

Methyl 2-(2-acetamido-3-(4-acetoxyphenyl)acrylamido)propionate (N-Ac- Δ Tyr(OAc)-Ala-OMe)⁶⁹⁻⁷¹ (**15**). Compound **15** was prepared by the general procedure C. The reaction was purified by flash column chromatography (Hex/EtOAc=1:9, *R*_f=0.15) to give the product as a solid (**15**, 40%). Mp 141–144 °C (dec); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.32 (d, 3H, *J*=7.2 Hz, CH₃), 1.99 (s, 3H, CH₃), 2.26 (s,

3H, OAc), 3.63 (s, 3H, OCH₃), 4.32–4.39 (m, 1H), 7.02 (s, 1H, C=CH), 7.15 (d, 2H, *J*=8.5 Hz), 7.57 (d, 2H, *J*=8.5 Hz), 8.36 (d, 1H, *J*=7.0 Hz, NH), 9.42 (s, 1H, NH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 17.0 (CH₃), 21.0 (CH₃), 23.0 (CH₃), 48.4 (CH), 52.1 (CH₃), 122.2 (CH), 127.4 (CH), 129.6, 130.7 (CH), 131.9, 150.6, 165.2, 169.4, 169.8, 173.2; MS (EI) *m/z* 203 (67), 264 (100), 288 (32), 306 (89), 348 (38) (M⁺).

Methyl2-(4-benzylidene-2-methyl-5-imidazolon-1-yl)acetate^{19,56,72,73} (**16**). Compound **16** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.18) to give the product as a solid (**16**, 64%). Mp 110–114 °C; ¹H NMR (CDCl₃, 400 MHz) δ 2.34 (s, 3H, CH₃), 3.79 (s, 3H, OCH₃), 4.40 (s, 2H, CH₂), 7.15 (s, 1H, C=CH), 7.36–7.44 (m, 3H), 8.14 (d, 2H, *J*=7.2 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 41.5 (CH₂), 53.0 (CH₃), 128.6 (CH), 129.0 (CH), 130.6 (CH), 132.5 (CH), 134.2, 138.1, 161.5, 168.2, 170.2; MS (EI) *m/z* 258 (100) (M⁺). HRMS Calcd for C₁₄H₁₄N₂O₃: 258.1004. Found: 258.1007.

Methyl 2-(4-(4-acetoxybenzylidene)-2-methyl-5-imidazolon-1-yl) acetate⁵⁶ (**17a**) and methyl 2-(4-(4-hydroxybenzylidene)-2-methyl-5-imidazolon-1-yl)acetate (17b). Compound 17a and 17b were prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3 then 5:5) to give the products as solids (17a, 51%, R_f=0.10 (Hex/EtOAc=7:3); 17b, 22%, $R_{\rm f}$ =0.13 (Hex/EtOAc=5:5)). **17a**:⁵⁶ An analytical sample of **17a** was obtained by recrystallization from Hex/MeOH. Mp 138-140 °C (Hex/ MeOH); ¹H NMR (CDCl₃, 400 MHz) δ 2.31 (s, 3H, CH₃), 2.34 (s, 3H, OAc), 3.78 (s, 3H, OCH₃), 4.39 (s, 2H, CH₂), 7.11 (s, 1H, C=CH), 7.16 (d, 2H, J=8.6 Hz), 8.17 (d, 2H, J=8.6 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 15.7 (CH₃), 21.4 (CH₃), 41.5 (CH₂), 53.0 (CH₃), 122.1 (CH), 127.3 (CH), 131.9, 133.7 (CH), 138.0, 152.3, 161.7, 168.2, 169.2, 170.1; MS (EI) m/z 274 (100), 316 (32) (M⁺). **17b**: An analytical sample of **17b** was obtained by recrystallization from Hex/CHCl₃. Mp 180–182 °C (Hex/CHCl₃); ¹H NMR (MeOH- d_4 , 400 MHz) δ 2.33 (s, 3H, CH₃), 3.79 (s, 3H, OCH₃), 4.51 (s, 2H, CH₂), 6.85 (d, 2H, J=8.7 Hz), 7.05 (s, 1H, C=CH), 8.02 (d, 2H, J=8.7 Hz); ¹³C NMR (MeOH-d₄, 100 MHz) δ 15.3 (CH₃), 42.4 (CH₂), 53.4 (CH₃), 117.0 (CH), 127.0, 130.1 (CH), 135.9 (CH), 136.7, 161.9, 162.5, 170.3, 172.0; MS (EI) m/z 274 (100) (M⁺). HRMS Calcd for C₁₄H₁₄N₂O₄: 274.0954. Found: 274.0954.

2-(4-(4-acetoxybenzylidene)-2-methyl-5-imidazolon-1-yl) Methvl propionate (18a) and methyl 2-(4-(4-hydroxybenzylidene)-2-methyl-5-imidazolon-1-yl)propionate (18b). Compound 18a and 18b were prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3 then 6:4) to give the products as oils (**18a**, 40%, *R*_f=0.15 (Hex/EtOAc=7:3); **18b**, 10%, $R_{\rm f}=0.15$ (Hex/EtOAc=6:4)). **18a**: ¹H NMR (CDCl₃, 400 MHz) δ 1.66 (d, 3H, J=7.4 Hz, CH₃), 2.31 (s, 3H, CH₃), 2.37 (s, 3H, OAc), 3.77 (s, 3H, OCH₃), 4.88 (q, 1H, *J*=7.4 Hz, CH), 7.08 (s, 1H, C=CH), 7.16 (d, 2H, *J*=8.7 Hz), 8.16 (d, 2H, *J*=8.7 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.4 (CH₃), 16.9 (CH₃), 21.4 (CH₃), 49.6 (CH), 53.1 (CH₃), 122.1 (CH), 127.1 (CH), 131.9, 133.7 (CH), 137.7, 152.2, 161.8, 169.2, 170.1, 170.6; MS (EI) *m*/*z* 229 (5), 288 (100), 330 (88) (M⁺). HRMS Calcd for C₁₇H₁₈N₂O₅: 330.1216. Found: 330.1219. **18b**: ¹H NMR (CDCl₃, 400 MHz) δ 1.62 (d, 3H, J=7.4 Hz, CH₃), 2.32 (s, 3H, CH₃), 3.72 (s, 3H, OCH₃), 4.85 (q, 1H, J=7.3 Hz, CH), 6.81 (d, 2H, J=8.4 Hz), 7.07 (s, 1H, C=CH), 7.93 (d, 2H, J=8.4 Hz); ¹³C NMR (CDCl₃, 100 MHz) δ 16.2 (CH₃), 16.4 (CH₃), 49.7 (CH), 53.1 (CH₃), 116.3 (CH), 126.0, 129.8 (CH), 134.7 (CH), 134.9, 159.5, 160.0, 170.3, 170.6; MS (EI) m/z 229 (17), 288 (100) (M⁺). HRMS Calcd for C₁₅H₁₆N₂O₄: 288.1110. Found: 288.1112.

4-Benzylidene-2-(1-phthalimidoethyl)-5-oxazolone (**22**). To a mixture of N-Phth–Ala–Gly (**21**, prepared from alkaline hydrolysis of N-Phth–Ala–Gly-OMe^{74,75} (**20**), 9.79 g, 35.5 mmol) and sodium acetate (1.82 g, 22.2 mmol, 0.625 equiv) in acetic anhydride (35 mL) was added benzaldehyde (4.0 mL, 4.14 g, 39 mmol, 1.1 equiv) and the solution was stirred at 60 °C for 12 h. After cooling to room temperature, the solvent was removed under reduced pressure and the residue was dissolved in EtOAc. The organic solution was washed with saturated aqueous Na₂CO₃ solution and saturated aqueous NaCl solution, dried over anhydrous MgSO4 and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (Hex/EtOAc=95:5, then 8:2) to give the product as a solid (22, 2.72 g, 7.86 mmol), 22%, R_f=0.23 (Hex/EtOAc=8:2), An analytical sample of 22 was obtained by recrystallization from Hex/ CHCl₃. Mp 146–150 °C (Hex/CHCl₃); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.76 (d, 3H, *J*=7.0 Hz, CH₃), 5.54 (q, 1H, *J*=7.0 Hz, CH), 7.38 (s, 1H, C= CH), 7.47-7.50 (m, 3H), 7.90-7.96 (m, 4H), 8.16-8.19 (m, 2H); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 14.5 (CH₃), 43.5 (CH), 123.6 (CH), 129.0 (CH), 131.2, 131.65 (CH), 131.78, 132.27 (CH), 132.32 (CH), 132.8, 135.0 (CH), 166.1, 166.7, 166.9; MS (EI) m/z 174 (39), 346 (100) (M⁺). HRMS Calcd for C₂₀H₁₄N₂O₄: 346.0954. Found: 346.0953.

N-*Methyl*-(2-(2-*phthalimidopropionamido*))-3-*phenylacrylamide* (*N*-*Phth*-*Ala*- Δ *Phe*-*NMe*) (**23**). Compound **23** was prepared by the general procedure C. The reaction was purified by flash column chromatography (Hex/EtOAc=5:5, *R*_f=0.08) to give the product as a white solid (**23**, 44%). An analytical sample of **23** was obtained by recrystallization from Hex/EtOAc. Mp 104–110 °C (Hex/EtOAc); ¹H NMR (DMSO-*d*₆, 400 MHz) δ 1.56 (d, 3H, *J*=7.2 Hz, CH₃), 2.70 (d, 3H, *J*=4.6 Hz, NCH₃), 5.05 (q, 1H, *J*=7.1 Hz, CH), 7.08 (s, 1H, C=CH), 7.29–7.34 (m, 3H), 7.51–7.53 (m, 2H), 7.69 (d, 1H, *J*=4.6 Hz, NH), 7.85–7.87 (m, 2H), 7.92–7.94 (m, 2H), 9.66 (s, 1H, NH); ¹³C NMR (DMSO-*d*₆, 100 MHz) δ 14.8 (CH₃), 26.3 (CH₃), 48.1 (CH), 123.2 (CH), 128.4 (CH), 128.7 (CH), 129.5, 129.6 (CH), 131.9, 133.9, 134.5 (CH), 165.0, 167.7, 168.8; MS (EI) *m*/*z* 174 (66), 346 (74), 359 (100), 377 (39) (M⁺). HRMS Calcd for C₂₁H₁₉N₃O₄: 377.1376. Found: 377.1362.

4-Benzylidene-1-methyl-2-(1-phthalimidoethyl)-5-imidazolone (**24**). Compound **24** was prepared by the general procedure E. The reaction was purified by flash column chromatography (Hex/EtOAc=7:3, $R_{\rm f}$ =0.20) to give the product as a yellow solid (**24**, 61%). An analytical sample of **24** was obtained by recrystallization from Hex/CH₃CN. Mp 210–212 °C (Hex/CH₃CN); ¹H NMR (CDCl₃, 400 MHz) δ 1.94 (d, 3H, *J*=7.0 Hz, CH₃), 3.06 (s, 3H, NCH₃), 5.40 (q, 1H, *J*=7.0 Hz, CH), 7.17 (s, 1H, C=CH), 7.34–7.36 (m, 3H), 7.76–7.79 (m, 2H), 7.87–7.89 (m, 2H), 8.13–8.15 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 15.6 (CH₃), 26.9 (CH₃), 44.2 (CH), 123.7 (CH), 128.6 (CH), 129.4 (CH), 130.4 (CH), 131.6, 132.7 (CH), 134.1, 134.5 (CH), 138.1, 161.4, 167.3, 171.0; MS (EI) *m/z* 359 (100) (M⁺). HRMS Calcd for C₂₁H₁₇N₃O₃: 359.1270. Found: 359.1272.

Acknowledgements

This work was supported by Research Grants 99-2113-M-003-003- and 99-2320-B-037-012-MY3 from the National Science Council, Taiwan, NTNU100-D-06 from National Taiwan Normal University and from Kaohsiung Medical University Research Foundation. We are grateful to the National Center for High-performance Computing of Taiwan for the electronic resources and facilities.

Supplementary data

¹H, ¹³C NMR, UV–Vis and fluorescence spectra for representative compounds. Supplementary data related to this article can be found online at doi:10.1016/j.tet.2012.04.102.

References and notes

- 1. Khalifa, M. M.; Abdelbaky, N. A. Arch. Pharmacol. Res. 2008, 31, 419.
- Hassanein, H. H.; Khalifa, M. M.; El-Samaloty, O. N.; Abd El-Rahim, M.; Taha, R. A.; Magda Ismail, M. F. Arch. Pharmacol. Res. 2008, 31, 562.

- 3. Saravanan, S.: Selvan, P. S.: Gopal, N.: Gupta, I. K.: De, B. Arch. Pharmacol. 2005. 338 488
- 4 Joshi, H.; Upadhyay, P.; Karia, D.; Baxi, A. J. Eur. J. Med. Chem. 2003, 38, 837.
- 5. Pande, K.; Kalsi, R.; Bhalla, T. N.; Barthwal, P. Pharmazie 1987, 42, 269.
- 6. Chuang, W.-T.; Chen, B.-S.; Chen, K.-Y.; Hsieh, C.-C.; Chou, P.-T. Chem. Commun. 2009, 6982.
- 7. Jain, V.; Rajbongshi, B. K.; Tej Mallajosyula, A.; Bhattachariya, G.; Iyer, S. S. K.; Ramanathan, G. Sol. Energy Mater. Sol. Cells **2008**, 92, 1043.
- Bahadur, L.: Srivastava, P. Semicond, Sci. Technol. 2004, 19, 531. 8 You, Y.; He, Y.; Burrows, P. E.; Forrest, S. R.; Petasis, N. A.; Thompson, M. E. Adv. 9.
- Mater. 2000, 12, 1678.
- 10. Bahadur, L.; Roy, L. Semicond. Sci. Technol. 1995, 10, 358. 11. Shimomura, O. FEBS Lett. 1979, 104, 220.
- 12. Lee, J. S.; Badridge, A.; Peng, S. H.; Yang, S. Q.; Kim, Y. K.; Tolbert, L. M.; Chang, Y. T. ACS Comb. Sci. 2011, 13, 32.
- 13. Conyard, J.; Kondo, M.; Heisler, I. A.; Jones, G.; Baldridge, A.; Tolbert, L. M.; Solntsev, K. M.; Meech, S. R. J. Phys. Chem. B 2011, 115, 1571.
- Bravaya, K. B.; Khrenova, M. G.; Grigorenko, B. L.; Nemukhin, A. V.; Krylov, A. I. J. 14. *Phys. Chem. B* **2011**. 115. 8296.
- Ivashkin, P. E.; Lukyanov, K. A.; Lukyanov, S.; Yampolsky, I. V. J. Org. Chem. 2011, 15 76 2782
- Hsieh, C.-C.; Chou, P.-T.; Shih, C.-W.; Chuang, W.-T.; Chung, M.-W.; Lee, J.; Joo, T. 16 J. Am. Chem. Soc. 2011, 133, 2932.
- 17. Baldridge, A.; Samanta, S. R.; Jayaraj, N.; Ramamurthy, V.; Tolbert, L. M. J. Am. Chem. Soc. 2011. 133, 712.
- 18. Baldridge, A.; Feng, S.; Chang, Y.-T.; Tolbert, L. M. ACS Comb. Sci. 2011, 13, 214.
- Clark, T. B.; Orr, M. E.; Flynn, D. C.; Goodson, T., III. J. Phys. Chem. C 2011, 115, 7331. 19 20.
- Pletnev, S.; Subach, F. V.; Dauter, Z.; Wlodawer, A.; Verkhusha, V. V. J. Am. Chem. Soc. 2010, 132, 2243.
- Naumov, P.; Kowalik, J.; Solntsev, K. M.; Baldridge, A.; Moon, J.-S.; Kranz, C.; Tolbert, L. M. J. Am. Chem. Soc. **2010**, 132, 5845. 21.
- Baldridge, A.; Samanta, S. R.; Jayaraj, N.; Ramamurthy, V.; Tolbert, L. M. J. Am. 22. Chem. Soc. 2010, 132, 1498.
- 23. Huang, G.-J.; Yang, J.-S. Chem.—Asian J. 2010, 5, 2075.
- 24. Luin, S.; Voliani, V.; Lanza, G.; Bizzarri, R.; Nifosi, R.; Amat, P.; Tozzini, V.; Serresi, M.; Beltram, F. J. Am. Chem. Soc. 2009, 131, 96.
- Forbes, M. W.; Jockusch, R. A. J. Am. Chem. Soc. 2009, 131, 17038. 25
- 26. Dong, J.; Solntsev, K. M.; Tolbert, L. M. J. Am. Chem. Soc. 2009, 131, 662.
- 27 Yampolsky, I. V.; Balashova, T. A.; Lukyanov, K. A. Biochemistry 2009, 48, 8077.
- 28. Wu, L. X.; Burgess, K. J. Am. Chem. Soc. 2008, 130, 4089. 29. Olsen, S.; Smith, S. C. J. Am. Chem. Soc. 2008, 130, 8677.
- 30. Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M. Chem. Commun. 2008, 1344.
- 31. Dong, J.; Abulwerdi, F.; Baldridge, A.; Kowalik, J.; Solntsev, K. M.; Tolbert, L. M. J. Am. Chem. Soc. 2008, 130, 14096.
- 32. Chen, K.-Y.; Cheng, Y.-M.; Lai, C.-H.; Hsu, C.-C.; Ho, M.-L.; Lee, G.-H.; Chou, P.-T. J. Am. Chem. Soc. 2007, 129, 4534.
- 33. Gong, X. Y.; Yang, H. J.; Liu, H. X.; Jiang, Y. Y.; Zhao, Y. F.; Fu, H. Org. Lett. 2010, 12, 3128.
- 34. Baldridge, A.; Kowalik, J.; Tolbert, L. M. Synthesis 2010, 2424.
- 35. Baldridge, A.; Solntsev, K. M.; Song, C.; Tanioka, T.; Kowalik, J.; Hardcastle, K.; Tolbert, L. M. Chem. Commun. 2010, 5686.
- 36. Oumouch, S.; Bourotte, M.; Schmitt, M.; Bourguignon, J.-J. Synthesis 2005, 25.
- 37. Wenge, U.; Wagenknecht, H.-A. Synthesis 2011, 502.

- 38. Patel, N. B.; Patel, H. R. J. Heterocycl. Chem. 2011, 48, 373.
- Kang, J.; Zhao, G.; Xu, J.; Yang, W. *Chem. Commun.* **2010**, 2868. 39
- 40. Lincke, K.; Solling, T.; Andersen, L. H.; Klaerke, B.; Rahbek, D. B.; Rajput, J.; Oehlenschlaeger, C. B.; Petersen, M. A.; Nielsen, M. B. Chem. Commun. 2010, 734.
- Hager, B.; Schwarzinger, B.; Falk, H. Monatsh. Chem. 2006, 137, 163. 41
- 42. McCapra, F.; Razavi, Z.; Neary, A. P. J. Chem. Soc., Chem. Commun. 1988, 790. Nalepa, K.; Zednikova, G.; Marek, J.; Travnicek, Z. Monatsh. Chem. 1999, 130, 471. 43
- 44. Eid, M. M.; Badawy, M. A.; Mansour, A. K. J. Heterocycl. Chem. 1988, 25, 1813.
- Habib. O. M. O.: Hassan, H. M.: Moawad, E. B. J. Prakt. Chem. 1986, 328, 295. 45
- 46. Tripathy, P. K.; Mukerjee, A. K. Synthesis **1985**, 285.
- Bondock, S.; Khalifa, W.; Fadda, A. Synth. Commun. 2006, 36, 1601.
 Rao, K.; Dandala, R.; Handa, V. K.; Rao, I. V. S.; Rani, A.; Shivashankar, S.; Naidu, A. Synlett 2007, 1289.
- Topuzyan, V. O.; Arutyunyan, L. G.; Oganesyan, A. A. Russ. J. Org. Chem. 2007, 43, 868. 49
- Topuzyan, V. O.; Oganesyan, A. A.; Panosyan, G. A. Russ. J. Org. Chem. 2004, 40, 50. 1644.
- 51. Kidwai, M.; Mohan, R. J. Chin. Chem. Soc. 2003, 50, 1075. 52. Cativiela, C.; Garcia, J. I.; Jaime, C.; Mayoral, J. A.; Melendez, E. Heterocycles
- 1985 23 2685 Topuzyan, V. O.; Kazandzhyan, M. M.; Tamazyan, R. A.; Aivazyan, A. G. Russ. J. 53.
- Org. Chem. 2009, 45, 215. Topuzyan, V. O.; Arutyunyan, L. G.; Oganesyan, A. A.; Panosyan, G. A. Russ. J. Org. 54. Chem. 2008. 44. 474.
- Topuzyan, V. O.; Arutyunyan, L. G.; Oganesyan, A. A.; Panosyan, G. A. Russ. J. Org. 55. Chem. 2007, 43, 936.
- 56. Stafforst, T.; Diederichsen, U. Eur. J. Org. Chem. 2007, 899.
- Petersen, M. A.; Riber, P.; Andersen, L. H.; Nielsen, M. B. Synthesis 2007, 3635. 57
- 58. Yampolsky, I. V.; Remington, S. J.; Martynov, V. I.; Potapov, V. K.; Lukyanov, S.; Lukyanov, K. A. Biochemistry 2005, 44, 5788.
- Kawasaki, A.; Maekawa, K.; Kubo, K.; Igarashi, T.; Sakurai, T. Tetrahedron 2004, 59. 60 9517
- 60. Oshimi, K.; Kubo, K.; Kawasaki, A.; Maekawa, K.; Igarashi, T.; Sakurai, T. Tetrahedron Lett. 2002, 43, 3291.
- 61. Gasparova, R.; Zbojek, D.; Lacova, M.; Kral'ova, K.; Gatial, A.; Horvath, B.; Krutosikova, A. Cent. Eur. J. Chem. 2005, 3, 622.
- 62 Pfleger, R.; Markert, G. Chem. Ber. 1957, 90, 1494.
- Mitsunobu, O. Synthesis 1981, 1. 63.
- 64 Wada, M.: Mitsunob, O. Tetrahedron Lett. 1972, 13, 1279.
- 65. Tsunoda, T.; Yamamiya, Y.; Ito, S. Tetrahedron Lett. 1993, 34, 1639.
- 66. Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512.
- 67 Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- 68. Laghmari, M.; Sinou, D.; Masdeu, A.; Claver, C. J. Organomet. Chem. 1992, 438, 213.
- 69. Ojima, I.; Yoda, N.; Yatabe, M.; Tanaka, T.; Kogure, T. Tetrahedron 1984, 40, 1255. Ojima, I.; Hatanaka, N.; Yoda, N.; Abe, R.; Yatabe, M.; Yamashita, M. Pept. Chem. 70.
- 1983. 20. 29.
- 71. Ojima, I.; Kogure, T.; Yoda, N.; Suzuki, T.; Yatabe, M.; Tanaka, T. J. Org. Chem. 1982, 47, 1329.
- 72. Kerneur, G.; Lerestif, J. M.; Bazureau, J. P.; Hamelin, J. Synthesis 1997, 287.
- 73. Lerestif, J. M.; Perrocheau, J.; Tonnard, F.; Bazureau, J. P.; Hamelin, J. Tetrahedron 1995, 51, 6757.
- 74. Kashima, C.; Okada, R.; Arao, H. J. Heterocycl. Chem. 1991, 28, 1241.
- 75. Easton, C. J.; Hutton, C. A.; Rositano, G.; Tan, E. W. J. Org. Chem. 1991, 56, 5614.