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Copper-mediated pentafluoroethylation of arenediazonium tetrafluoroborates with tetrafluoroethylene (TFE) on-site generated from TMSCF3 has been 
developed as a new method to prepare pentafluoroethyl arenes. The active pentafluoroethylation reagent “CuC2F5” is pre-generated from CuSCN, TFE 
and CsF, and its generation and further reaction are strongly solvent-dependent. This pentafluoroethylation reaction represents the first example of 
Sandmeyer-type pentafluoroethylation, which exhibits good functional group tolerance and potential applications for the synthesis of complicated 
bioactive compounds. 

 

Background and Originality Content 
Perfluoroalkylated compounds are of great interest in 

pharmaceutical, agrochemical and material research and 
industry.1 In this context, numerous efforts have been  devoted 
to developing novel methods for the introduction of 
trifluoromethyl group (CF3) into organic aromatic compounds.2 
However, the similar pentafluoroethylation processes are still 
underexploited.3-6 Currently available aromatic 
pentafluoroethylation methods mainly rely on 
transition-metal-mediated cross-coupling of aryl halides3 or 
arylboron compounds,4 and C-H functionalization of arenes.5 In 
most cases, unreadily available or expensive C2F5 sources such as 
pentafluoroethylsilanes (R3SiC2F5), pentafluoropropanoates 
(C2F5CO2M), C2F5H and C2F5I are required.3-6 

Tetrafluoroethylene (TFE) is a bulk fluorochemical for 
manufacturing poly(tetrafluoroethylene) and copolymers with 
other alkenes,7 and recently has been used as a C2 building block8 
for pentafluoroethylation of aryl iodides in the presence of CsF by 
us3m and Ohashi, Ogoshi and coworkers,3o respectively (Scheme  
1a and 1b). From a practical standpoint, TFE is an ideal C2F5 
precursor for industrial production of pentafluoroethylated 
compounds.  However, the use of stored TFE in academic 
laboratories is largely restricted due to the safety regulation on 
the storage and transport of this suspected carcinogenic and 
potentially explosive gas.9 To address this problem, our group has 
developed a new method for the on-site preparation of TFE by 
dimerization of difluorocarbene in-situ generated from 
(trifluoromethyl)trimethylsilane (TMSCF3) under mild conditions 
(Scheme 1a),3m which has paved the way for the development of 
new fluoroalkylation methods with TFE in academia.10 

Arenediazonium salts are available from inexpensive aromatic 
amines on a large scale, and have been widely employed for 
various transformations,11 including Sandmeyer-type 
fluoroalkylations.12 However, to our knowledge, the 
Sandmeyer-type pentafluoroethylation is still unknown. According 

to our previous report on copper-mediated pentafluoroethylation 
of aryl iodides with on-site generated TFE and CsF, we were 
convinced that a similar strategy should also be applicable for the 
synthesis of pentafluoroethylarenes from arenediazonium salts 
(Scheme 1c).  
Scheme 1  Aromatic pentafluoroethylation using TFE and CsF  

TMSCFTMSCF33

RR
II

RR
CC22FF55FF22CC CFCF22

CsCsFF/CuI/1,10-phen/CuI/1,10-phen

NaI NaI (cat.)(cat.)

70 70 ooCC

TMSCFTMSCF33

RR
NN22BFBF44

RR
CC22FF55FF22CC CFCF22

CsCsFF/CuSCN/CuSCN

NaI NaI (cat.)(cat.)
70 70 ooCC

RR
II

RR
CC22FF55FF22CC CFCF22

CsCsFF/(1,10-phen)CuF /(1,10-phen)CuF (cat.)(cat.)

a) a) pentafluoethylation pentafluoethylation of of ArI ArI with with on-site on-site generated generated TFE TFE (Hu, (Hu, 2017)2017)

c) c) pentafluoethylation pentafluoethylation of of ArNArN22BFBF44
 
with with on-site on-site generated generated TFE TFE (this (this work)work)

b) b) pentafluoethylation pentafluoethylation of of ArI ArI with with stored stored TFE TFE (Ohashi (Ohashi & & Ogoshi, Ogoshi, 2018)2018)

Readily Readily availableavailable  
 

Results and Discussion 
Based on our previous experiments,3m we began our studies 

of pentafluoroethylation of benzenediazonium tetrafluoroborate 
(PhN2BF4) by choosing CuCl and 1,10-phenanthroline (1,10-phen) 
(1:1) as  C2F5

– stabilizer and cross-coupling promoter (Scheme 2). 
The active pentafluoroethylation reagent “CuC2F5” was 
pre-generated from TMSCF3-derived TFE, CsF, CuCl, and 1,10-phen 
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in DMF, and reacted with PhN2BF4, with PhN2BF4 and CuCl being 
the limiting reactants. We found that the existing form of the 
“CuC2F5” intermediate in DMF was dependent on the amounts of 
TMSCF3 (to generate TFE) and CsF used. When 6.0 equiv of 
TMSCF3 and 1.2 equiv of CsF were used, the “CuC2F5” 
intermediate existed as a mixture of a neutral species 
(1,10-phen)Cu(C2F5) and an ionic species [Cu(C2F5)2]– (the total 
amount of [C2F5

–] was around 0.8 equiv).13 Increasing the 
equivalents of TMSCF3 and CsF to 15.0 and 3.0 equiv, respectively, 
the ionic species [Cu(C2F5)2]– was generated predominantly (the 
total amount of [C2F5

–] was 1.3 equiv). However, in both cases, we 
got very low yields of the desired coupling product 
(pentafluoroethyl)benzene (PhC2F5), which was significantly 
distinct from the cross-coupling with aryl iodides.3m GC-MS 
analysis of the reaction mixture showed that large amounts of 
chlorobenzene, biphenyl and diphenyldiazene were formed as the 
side products. This result suggested that: (1) the reduction of 
PhN2BF4 by (1,10-phen)Cu(I) complex to phenyl radical proceeds 
faster than the subsequent transfer of phenyl radical to Cu(II)-C2F5, 
and (2) the chlorination reaction proceeds faster than the 
pentafluoroethylation reaction. Thus, we envisioned that an 
efficient pentafluoroethylation protocol should not require the 
use of additional ligands and avoid the presence of strong 
nucleophilic counterions such as chloride ion. 

 
Scheme 2  Initial attempt on the pentafluoroethylation  
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Table 1  Optimization of the preparation of “CuC2F5” from CuSCN and 
CsFa 

TMSCF3

NaI (10 mol%)

THF, 70 oC, 1 h
F2C CF2

CuSCN CsF
solvent, t oC, 2 h

+ "CuC2F5
"

15.0 equiv

1.0 equiv 2.5 equiv  

Entry Solvent T (oC) 
[Cu(C2F5)2]– 

(%)b 
CuC2F5 (%)b [C2F5

–] 
(equiv)b 

1 DMSO 70 < 5 < 5 < 0.15 

2 MeCN 70 < 5 < 5 < 0.15 

3 NMP 70 45 35 1.25 

4 DMAc 70 32 26 0.90 

5c DMF 70 63 13 1.39 

6 NMP 60 25 40 0.90 

7 NMP 50 7 35 0.49 

8c,d DMF 70 62 12 1.36 

9c,d,e DMF 70 61 10 1.32 
aUnless otherwise noted, reaction conditions are as follows: TMSCF3 (3.0 
mmol), NaI (0.3 mmol), THF (10 mL), CuSCN (0.2 mmol), CsF (0.5 mmol), 
and solvent (2 mL). bYields and amounts were determined by 19F NMR 
spectroscopy analysis using PhCF3 as an internal standard (based on 
CuSCN). cReaction conditions: TMSCF3 (7.5 mmol), NaI (0.75 mmol), THF 
(10 mL), CuSCN (0.5 mmol), CsF (1.25 mmol), and solvent (5 mL). dTMSCF3 
(6.0 mmol) and NaI (0.6 mmol) were used. eReaction time was 1 h. 

 
Inspired by Goossen’s work on copper-mediated 

fluoroalkylation of arenediazonium salts with fluoroalkylsilanes 
(R3Si-Rf),

12d-f we utilized copper thiocyanate (CuSCN) instead of 
CuCl for fluorocupration of TFE due to its relatively lower 
reactivity towards arenediazonium salts in the subsequent step 
(Table 1). An optimization of the preparation of “CuC2F5” (a 
mixture of Cu(C2F5) and [Cu(C2F5)2]–) demonstrated that the 
fluorocupration of TFE with CuSCN and CsF could proceed 
smoothly at 70 oC in amide solvents such as NMP, DMAc and DMF 
in the absence of additional ligand 1,10-phen, with DMF being the 
superior solvent (Table 1, entries 3-5).14 Additionally, the reaction 
temperature could significantly influence the fluorocupration 
process (Table 1, entries 6 and 7). However, only small amounts of 
[C2F5

–] were produced when performed in DMSO and CH3CN, 
respectively (Table 1, entries 1 and 2). Using DMF as the optimal 
solvent, an optimization of the other reaction parameters showed 
that reducing the amount of TMSCF3 from 15 equiv to 12 equiv 
and shortening the fluorocupration time from 2 hours to 1 hour 
could afford [C2F5

–] in the similar yield (Table 1, entries 8 and 9). 
 

Table 2  Optimization of the pentafluoroethylation reactiona 

TMSCF3

NaI (10 mol%)

THF, 70 oC, 1 h
F2C CF2

CuSCN, CsF,

DMF, 70 oC, 1 h

"CuC2F5
"+ solvent

rt, overnight
PhN2BF4 PhC2F5

 

Entry Solvent T (oC) Yield (%)b 

1 DMF rt 20 

2 MeCN rt 40 

3 DMSO rt 22 

4 MeCN 30 42 

5 MeCN 40 37 

6 MeCN –5 to 0 37 

7c MeCN rt 20 

8d MeCN rt 39 

9d,e MeCN rt 17 

10f MeCN rt 55 
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11g,h,i MeCN rt 78 
aUnless otherwise noted, “CuC2F5” was prepared from TMSCF3 (3.0 mmol), 
NaI (0.3 mmol), THF (10 mL), CuSCN (0.2 mmol), CsF (0.5 mmol), and DMF 
(2 mL). The subsequent Sandmeyer-type pentafluoroethylation was 
performed with PhN2BF4 (0.2 mmol) and solvent (2 mL). bYields were 
determined by 19F NMR spectroscopy analysis using PhCF3 as an internal 
standard. c1,10-phenantholine (1.0 equiv) was added. dBefore use, the 
“CuC2F5” solution was filtered under N2 atmosphere to remove the solid. 
e“CuC2F5” was added into PhN2BF4. fDMF was removed before the addition 
of MeCN (2 mL). g“CuC2F5” was prepared from TMSCF3 (6.0 mmol), NaI 
(0.6 mmol), THF (10 mL), CuSCN (0.5 mmol), CsF (1.25 mmol), and DMF (5 
mL). As an average of five parallel experiments, the so-prepared “CuC2F5” 
contains 0.585 mmol [C2F5

–] after changing DMF with MeCN (2.5 mL). 
h[C2F5

–] was used as the limiting reactant, and PhN2BF4 was used as the 
excess reactant (1.5 equiv). iThe reaction time was 5 min. 

 
We next tested the usefulness of “CuC2F5” prepared from 

CuSCN and on-site generated TFE in the pentafluoroethylation of 
arenediazonium salts by using PhN2BF4 as a model substrate 
(Table 2). The reaction was performed by adding a solution of 
PhN2BF4 (1.0 equiv) into the “CuC2F5” system in DMF. A screening 
of the solvents used to dissolve PhN2BF4 showed that the addition 
of MeCN was beneficial for the pentafluoroethylation process 
(Table 2, entries 1-3), which is consistent with most of the 
reported Sandmeyer-type fluoroalkylation procedures,12 where 
MeCN was adopted as the solvent. However, the yield of PhC2F5 

 

Scheme 3  Scope of pentafluoroethylation reactiona,b  
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aReactions were performed with “CuC2F5” (containing ca. 0.585 mmol 
[C2F5

–]) prepared as per Table 2, entry 11. bUnless otherwise noted, yields 
given refer to the isolated yields of the analytically pure compounds. cThe 
yield was determined by 19F NMR spectroscopy analysis using PhCF3 as an 
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internal standard due to the volatility of the product. d95% purity based on 
1H NMR spectroscopy analysis. 

 
was only moderate (Table 2, entry 2). Although the coupling 
process was not sensitive to the reaction temperature (Table 2, 
entries 4-6), the use of an additional ligand 1,10-phen or the 
reverse addition of “CuC2F5” to PhN2BF4 could inhibit the desired 
reaction to some extent (Table 2, entry 7). To improve the yield of 
PhC2F5, DMF was removed from the system in vacuo at 50 oC after 
the formation of “CuC2F5” and was changed with MeCN before 
adding PhN2BF4.14 In this case, PhC2F5 was obtained in 55% yield 
(Table 2, entry 10). Interestingly, we found that a substantial 
amount of neutral species CuC2F5 remained even after a long 
reaction time (overnight), implying that “CuC2F5” should be much 
more stable than PhN2BF4 in the current reaction system. In view 
of this, we calibrated the exact amount of [C2F5

–] existed in MeCN 
before the addition of PhN2BF4 and used [C2F5

–] as the limiting 
reactant (Table 2, entry 11). To our delight, a 78% yield of PhC2F5 
was obtained when the amount of PhN2BF4 was increased to 1.5 
equiv (relative to [C2F5

–], not [Cu]). It is worthwhile to notice that 
“CuC2F5” was consumed completely within 5 min. 

With the optimized conditions in hand (Table 2, entry 11), a 
survey of the substrate scope with regard to arenediazonium 
tetrafluoroborates was investigated. As shown in Scheme 3, 
substrates containing electron-donating groups such as alkyloxide 
(2g, 2k), phenoxide (2l) and phenyl (2d) gave yields higher than 
80%, while those bearing strong electron-withdrawing groups 
such as cyano (2h), nitro (2j) and sulfonyl (2n) delivered relatively 
lower yields (50~60%). Substrates with carboxyl esters (2a, 2f, 2o) 
and carbonyls (2e, 2m) were able to give moderate to good yields 
as well. Besides, this methodology displayed good functional 
group tolerance towards halides (2i, 2t), pyridyl (2s), acidic 
protons (2q, 2x) and trimethylsilyl protecting group (2p), which 
made the products ready to go through further functionalization. 
More structurally complicated diazonium tetrafluoroborates, such 
as dihydrobenzo[b][1,4]dioxine (2k), benzo[d]thiazole (2r), 
fluorene (2v), benzo[d][1,3]dioxol (2u), carbazole (2w), were also 
successfully pentafluoroethylated utilizing this strategy. Finally, 
derivative of tocopherol (2y) was synthesized to further 
demonstrate the application of this method. 

 

Table 3  Solvent effects in the pentafluoroethylation of PhN2BF4  with 
TMSC2F5

a
 

TMSC2F5

CuSCN

CsF

t oC, 1 h+
"CuC2F5

"
+ PhN2BF4

(1.0 equiv)

solvent B
rt, 30 min

PhC2F5
solvent A

(2.0 equiv)

(1.0 equiv)

(2.5 equiv)  
Entry Solvent A T (oC) Solvent B PhC2F5 (%) 

1 DMF 70 DMF 20 

2b DMF 70 MeCN 49 

3c MeCN 70 MeCN — 

4d DMF rt MeCN 59e 

aYields were determined by 19F NMR spectroscopy using benzotrifluoride 

as an internal standard. bDMF was evacuated in vacuo at 50 oC and 
substituted by MeCN before adding substrate into the mixture. cIn the 
first step, only C2F5H was observed in 19F NMR spectroscopy. dTMSCF3 was 
used instead of TMSC2F5. eThe yield of PhCF3 was determined by 19F NMR 
spectroscopy using PhOCF3 as an internal standard. 

 
Finally, to gain insights into this Sandmeyer-type 

pentafluoroethylation reaction, we prepared “CuC2F5” 
independently from TMSC2F5 and investigated its reaction with 
PhN2BF4. As shown in Table 3, the generation and reaction of 
“CuC2F5” were also solvent-dependent, which confirmed that 
there is a paradox in choosing solvents for Sandmeyer-type 
pentafluoroethylation. In the first step, although “CuC2F5” is 
relatively stable in MeCN, its generation prefers amide solvents 
such as DMF, which can accelerate the cupration of in-situ 
generated C2F5

– (Table 3, entries 1-3). However, in the second step, 
the reaction of “CuC2F5” with arenediazonium salts must be 
conducted in MeCN, which can confine the aryl radical in a solvent 
cage,12g thus inhibiting the side reactions (Table 3, entries 1-2). 
Moreover, as compared with the trifluoromethylation conducted 
under similar conditions, the cross-coupling of “CuC2F5” with 
arenediazonium salts is more sensitive to the solvent system, 
which can be attributed to the lower reactivity of “CuC2F5” than 
“CuCF3” (Table 3, entry 4).3f,3k 

 

Conclusions 
In summary, we have developed a Sandmeyer-type 

pentafluoroethylation reaction utilizing on-site generated TFE as 
the C2 building block. This method exhibits great functional group 
tolerance and potential applications for synthesis of complicated 
bioactive compounds. In view of the low cost of TFE15 and 
aromatic diazonium salts, this protocol is expected to find 
applications in the industrial production of pentafluoroethylated 
aromatics. 

 

Experimental 
Detailed experimental procedures, characterization data, and 

copies of 1H, 19F and 13C NMR spectra of new compounds are 
provided in Supporting Information. 
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[Cu(C2F5)2]– [ δ −84.36 (s, 3F), −117.58 (s, 2F)]. Our assignments are 
consistent to Grushin’s report,3f but are contrary to Ogoshi and 
Hartwig’s reports.3o, 4b 

[14] The 19F NMR data of “Cu(C2F5)” prepared from CuSCN, TFE and CsF in 
various solvents are given in the Supporting Information. 

[15] Our on-site protocol for TFE generation is for research in academic 
laboratories. For large-scale reactions, the industrially produced TFE 
(with much lower cost) should be used.  
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