\mathbf{M}_{2} Subtype preferring dibenzodiazepinone-type muscarinic receptor ligands: Effect of chemical homo-dimerization on orthosteric (and allosteric?) binding

Max Keller ${ }^{\text {a,b,*, }}$, Christian Tränkle ${ }^{\text {c }}$, Xueke She ${ }^{\text {a }}$, Andrea Pegoli ${ }^{\text {a }}$, Günther Bernhardt ${ }^{\text {a }}$, Armin Buschauer ${ }^{\text {a }}$, Roger W. Read ${ }^{\text {b,* }}$
${ }^{\text {a D Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany }}$
${ }^{\mathrm{b}}$ School of Chemistry, University of New South Wales, UNSW Sydney NSW 2052, Australia
${ }^{\text {c }}$ Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, D-53121 Bonn, Germany

A R T I C L E I N F O

Article history:

Received 14 October 2014
Revised 21 December 2014
Accepted 7 January 2015
Available online xxxx

Keywords:

Muscarinic acetylcholine receptors
Dibenzodiazepinones
Antagonists
Dimeric ligands
Allosteric binding
AF-DX 384

Abstract

A series of new dibenzodiazepinone-type muscarinic receptor ligands, including two homo-dimeric compounds, was prepared. Sixteen representative compounds were characterized in equilibrium binding studies with $\left[{ }^{3} \mathrm{H}\right] N$-methylscopolamine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$) at the muscarinic receptor subtype M_{2}, and seven selected compounds were additionally investigated at M_{1}, M_{3}, M_{4} and M_{5} with respect to receptor subtype selectivity. The side chain of the known M_{2} preferring muscarinic receptor antagonist DIBA was widely varied with respect to chain length and type of the basic group (amine, imidazole, guanidine and piperazine). Most of the structural changes were well tolerated with respect to muscarinic receptor binding, determined by displacement of [$\left.{ }^{3} \mathrm{H}\right] \mathrm{NMS}$. Compounds investigated at all subtypes shared a similar selectivity profile, which can be summarized as $M_{2}>M_{1} \approx M_{4}>M_{3} \approx M_{5}(46,50,57,62-64)$ and M_{2} $>\mathrm{M}_{1} \approx \mathrm{M}_{4}>\mathrm{M}_{3}>\mathrm{M}_{5}(\mathbf{1}, \mathbf{5 8})$. The homo-dimeric dibenzodiazepinone derivatives UNSW-MK250 (63) and UNSW-MK262 (64) exhibited the highest M_{2} receptor affinities ($\mathrm{pIC}_{50}=9.0$ and 9.2 , respectively). At the M_{2} receptor a steep curve slope of -2 was found for the dimeric ligand 63, which cannot be described according to the law of mass action, suggesting a more complex mechanism of binding. In addition to equilibrium binding studies, for selected ligands, we determined $\mathrm{pEC}_{50 \text {,diss }}$, an estimate of affinity to the allosteric site of M_{2} receptors occupied with $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$. Compounds $\mathbf{5 8}$ and $\mathbf{6 2 - 6 4}$ were capable of retarding $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ dissociation by a factor >10 ($E_{\text {max,diss }}>92 \%$), with highest potency ($\mathrm{pEC} \mathrm{C}_{50 \text {,diss }}=5.56$) residing in the dimeric compound 64 . As the monomeric counterpart of $\mathbf{6 4}$ was 100 times less potent (62: $\mathrm{pEC}_{50, \text { diss }}=3.59$), these data suggest that chemical dimerization of dibenzodiazepinone-type M receptor ligands can enhance allosteric binding.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Muscarinic acetylcholine receptors (M receptors) are members of the GPCR superfamily type A and comprise five receptor subtypes $\left(\mathrm{M}_{1}-\mathrm{M}_{5}\right)$, which mediate the action of the neurotransmitter acetylcholine in the peripheral and central nervous system. As the orthosteric (i.e., neurotransmitter) site within the binding pocket is highly conserved among M receptors, the development of selective M receptor ligands has been very challenging. Over

[^0]the last two decades, M receptors were repeatedly suggested to exhibit distinct allosteric binding sites, ${ }^{1-9}$ and there has been an increasing number of reports on ligands that address the less conserved allosteric sites of M receptors. ${ }^{10}$ This approach harbors a potential with regard to the development of new types of selective M receptor targeting drugs, for example, for the treatment of Alzheimer's disease. ${ }^{11-13}$ To date, there is a lack of highly subtypeselective M receptor ligands. ${ }^{14,15}$ The M_{2} preferring pyridobenzodi-azepinone-type M receptor antagonists AF-DX 384 (1), AF-DX 116 (2) and AQ-RA 741 (3), first described in 1989, were developed from the M_{1} preferring M receptor antagonist pirenzepine ${ }^{16}$ by modifying the side chain (Fig. 1A). ${ }^{17}$ Reported binding data of the tricyclic M receptor antagonist DIBA, a molecule that represents the dibenzodiazepinone congener of $\mathbf{3}$ (Fig. 1A), and binding data
of the dibenzodiazepinone analog of pirenzepine (data not shown), revealed that replacement of the pyridobenzodiazepinone scaffold by a dibenzodiazepinone moiety leads to a considerable increase in $\mathrm{M}_{1}, \mathrm{M}_{2}$ and M_{3} receptor affinity. ${ }^{18,19}$ Shortening of the linear alkyl chain in DIBA from 4 to 2 carbon atoms, was shown to result in a marked decrease in M_{1} and M_{2} affinity. ${ }^{20}$ In Figure 1A, compounds 4 and 5 are shown as examples of DIBA derivatives in which one of the terminal N-ethyl residues was replaced by an acyl substituent (2,2-dimethylpentanoyl and 4 -fluorobenzoyl, respectively). These structural changes caused a decrease in M receptor affinity, and, in case of $\mathbf{5}$, impaired M_{2} selectivity (Fig. 1A). Replacement of the terminal basic nitrogen in DIBA by an imidazole moiety and shortening of the alkyl chain to three carbon atoms resulted in compound 6 (Fig. 1A). The synthesis and crystal structure of $\mathbf{6}$ were reported recently, ${ }^{21}$ and the determination of M_{2} receptor binding data of $\mathbf{6}$ is a subject of the present study.

Compound $\mathbf{1}$ belongs to the most intensely investigated tricyclic diazepine derivatives. Its tritium-labeled analog was used by several groups for the pharmacological characterization of various M receptor ligands and autoradiographic studies. ${ }^{27-31}$ Compound 1 was suggested to bind to both the orthosteric binding site and the so-called common allosteric site, at M_{2} receptors occupied by the orthosteric antagonist [$\left.{ }^{3} \mathrm{H}\right] \mathrm{N}$-methylscopolamine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$). The M_{2} receptor subtype preference of $\mathbf{1}$ was explained by partial occupation of both binding sites. ${ }^{31}$ Moreover, hybrid molecules, containing the scaffold of $\mathbf{1}$ and parts of the allosteric M receptor modulator W84 (cf. Fig. 1B), were reported to exhibit higher affinity towards the allosteric site of $\left[{ }^{3} \mathrm{H}\right]$ NMS occupied M_{2} receptors compared to W84 alone. ${ }^{30,32}$ Linkage of two or three pyridobenzodiazepinone moieties via a highly flexible linker yielded a dimeric and a trimeric M receptor antagonist, respectively, both of which showed high M_{2} affinity (pA_{2} values >9). ${ }^{33}$ The trimeric pyridobenzodiazepinone derivative, referred to as tripitramine (Fig. 1A), was
reported to exhibit considerably higher M_{2} selectivity over monomeric analogs such as $3 .{ }^{26,33}$ Tripitramine has been primarily described as a competitive M receptor antagonist in both binding studies and functional investigations. ${ }^{26,34,35}$ However, binding of tripitramine to an allosteric site was suggested. ${ }^{36}$

The present study was directed towards bioisosteric replacement of the terminal diethylamino group in DIBA by basic heterocycles (imidazole, piperazine) and a guanidine group to further investigate M receptor affinity and subtype selectivity (Fig. 2). In addition, in some derivatives the side chain attached to the dibenzodiazepinone moiety was considerably extended. Ultimately, two symmetrical homo-dimeric (in the following referred to as 'dimeric’) dibenzodiazepinone derivatives, considerably varying in linker length, were synthesized and pharmacologically investigated. The binding mode of these compounds is still unknown. Therefore, we prefer the term dimeric ligand over bivalent ligand, as the latter usually implies a specific interaction with a receptor dimer. Binding studies at muscarinic receptors $M_{1}-M_{5}$ were performed to assess the affinity and selectivity of the new ligands (Fig. 2).

2. Results and discussion

2.1. Synthesis of the DIBA derived M receptor ligands

The preparation of piperidine derivatives $\mathbf{1 5}, \mathbf{2 3},{ }^{37} \mathbf{3 0}, \mathbf{3 1}, \mathbf{3 6}$, and 39, which were later linked to the dibenzodiazepinone scaffold, is outlined in Schemes 1 and 2. For the synthesis of compound 15, the phosphonium salt $7,{ }^{38}$ prepared in-house by the literature method as a $6: 1$ mixture of $\mathbf{7 a}$ and $\mathbf{7 b}$ from 1-bromo-4-chlorobutane, and the commercially available piperidinone $\mathbf{8}$ were converted to intermediate $\mathbf{1 1}$ under Wittig conditions (Scheme 1). Correct temperature, reaction time and quantity of base were

AF-DX 384 (1)

AF-DX 116 (2)

Compd. $\mathrm{Z} \quad \mathrm{R}^{2}$
(3)
(3)

DIBA
$\underset{(4)}{ } 140$
(4)

5
$6 \quad \mathrm{CH} \stackrel{\mathrm{C}^{\mathrm{N}} \mathrm{N}}{ }$

pirenzepine

		pK_{i}				
Compd.	Ref.	M_{1}	M_{2}	M_{3}	M_{4}	M_{5}
pirenzepine	a	$\mathbf{7 . 8}$	6.0	6.6	7.2	6.6
AF-DX 384	b	7.5	$\mathbf{8 . 2}$	7.2	8.0	6.3
AF-DX 116	c	6.1	$\mathbf{7 . 0}$	5.8	6.3	5.3
AQ-RA 741	c	7.3	$\mathbf{8 . 3}$	7.0	8.1	5.9
BIBN 140	c	6.5	$\mathbf{8 . 1}$	6.4	7.3	6.5
$\mathbf{5}$	d	7.2	$\mathbf{7 . 5}$	7.3	n.a.	n.a.
DIBA	e	8.4	$\mathbf{9 . 5}$	8.0	7.7	n.a.
tripitramine	f	8.8	$\mathbf{9 . 6}$	7.4	8.2	7.5

B

Figure 1. (A) Structures and binding data of selected tricyclic M receptor antagonists described in literature. (B) Structure of the M receptor allosteric ligand W84. n.a.: no data available. References: (a) Esqueda et al., ${ }^{22}$ (b) Dörje et al., ${ }^{23}$ (c) Doods et al., ${ }^{24}$ (d) Kassiou et al., ${ }^{25}$ (e) Gitler et al., ${ }^{19}$ (f) Maggio et al. ${ }^{26}$

DIBA: M_{2} receptor preferring antagonist

Figure 2. Schematic presentation of the concept and aim of the present study.

Scheme 1. Synthesis of the piperidine derivatives 15 and 23. Reagents and conditions: (a) n-BuLi, THF, 36\%; (b) potassium phthalimide, DMF, 12: 78\%, 20: 70\%; (c) hydrazine monohydrate, $\mathrm{EtOH}, \mathbf{1 3}: 87 \%$, 21: 80\%; (d) di-tert-butyldicarbonate, triethylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathbf{1 4}: 95 \%$, 22: 96%; (e) $20 \% \mathrm{Pd} / \mathrm{C}$, hydrogen, $\mathrm{MeOH}, 75 \%$; (f) $\mathrm{Pt}_{2} \mathrm{O}$, hydrogen, $32 \% \mathrm{HCl}$, $\mathrm{MeOH}, 98 \%$; (g) benzyl bromide, $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, 96%; (h) $48 \% \mathrm{HBr}, 78 \%$; (i) $10 \% \mathrm{Pd} / \mathrm{C}$, hydrogen, $\mathrm{MeOH}, 90 \%$.
essential in preventing the formation of side products: excess n butyllithium as well as too short periods for ylide formation (resulting in unreacted n-butyllithium) probably led to the formation of by-product 9 , and temperatures above $-10^{\circ} \mathrm{C}$ during ylide formation resulted in the cyclobutylidene derivative 10. Neither $\mathbf{9}$ nor 10 (identified by NMR spectroscopy and mass spectrometry; data not shown) could be separated from the product (11) by column chromatography. However, using a stoichiometric amount of base and reaction temperatures below $-10^{\circ} \mathrm{C}$, the formation of 9 and $\mathbf{1 0}$ could be avoided. Treatment of 11, which comprised a $\sim 40: 1$ mixture of halides 11a and 11b, with potassium phthalimide gave derivative 12, which in turn was converted to amine 13 by hydrazinolysis. Boc-protection of amine 13 and debenzylation of product 14, using palladium catalyzed hydrogenolysis, gave piperidine derivative 15 (Scheme 1).

Synthesis of the shorter homolog of 15, namely compound 23, ${ }^{37}$ began with the pyridinyl alcohol 16, which was initially reduced by platinum catalyzed hydrogenation to its piperidine analog 17. ${ }^{39}$

Benzyl protection of amino alcohol $\mathbf{1 7}^{39}$ and treatment of the resulting tertiary amino alcohol $\mathbf{1 8}^{39}$ with 48% hydrobromic acid gave bromide 19. ${ }^{40}$ Conversion of bromide $19{ }^{40}$ via phthalimide 20, ${ }^{41}$ amine 21, ${ }^{42}$ and N-Boc derivative 22, into piperidine derivative $\mathbf{2 3}^{37}$ proceeded using the conditions described for the preparation of $\mathbf{1 5}$ from bromide $\mathbf{1 1}$ (via 12, 13, 14) (Scheme 1).

Reduction of commercially available carboxylic acid $\mathbf{2 4}$ to the alcohol $\mathbf{2 5}{ }^{43}$ using lithium aluminium hydride, followed by N -benzyl protection, gave amino alcohol $\mathbf{2 6}^{44}$ (Scheme 2). Treatment with 48% hydrobromic acid gave bromide $27,{ }^{45}$ a key intermediate that was used for the preparation of the remaining piperidine derivatives 30, 31, 36, and 39.

Nucleophilic displacement of the bromide from compound $\mathbf{2 7}^{45}$ with imidazole and with 4-methylpiperazine gave intermediates 28 and 29, respectively, which were subjected to hydrogenolysis to afford $\mathbf{3 0}$ and $\mathbf{3 1}$ (Scheme 2).

Amidation of urocanic acid (32) with amine 33 gave imidazole 34, which was N -alkylated using bromide 27 to afford a 7:1 mix-

Scheme 2. Synthesis of the piperidine derivatives 30, 31, 36 and 39. Reagents and conditions: (a) LiAlH $4, \mathrm{THF}, 75 \%$; (b) benzyl bromide, diisopropylethylamine, acetonitrile, 65%; (c) $48 \% \mathrm{HBr}, 78 \%$; (d) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, 28: 56%, 29: 86%; (e) $10 \% \mathrm{Pd} / \mathrm{C}$, hydrogen, $\mathrm{MeOH}, \mathbf{3 0}: 80 \%, \mathbf{3 1}: 93 \%$, 36: 89\%, 39: 66\%; (f) N-(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride (EDC), N-hydroxybenzotriazole (HOBt), DMF, 86%; (g) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, 35a/35b: 91\%, 38: 48%.
ture of the 1,4 - and 1,5 -substituted derivative ($\mathbf{3 5 a}$ and 35b). A separation of the isomers $\mathbf{3 5 a}$ and $\mathbf{3 5 b}$ could be achieved by repeated column chromatography. Simultaneous benzyl deprotection and reduction of the major isomer $\mathbf{3 5 a}$ by hydrogenolysis gave the piperidine derivative 36. Meanwhile, twofold alkylation of piperazine (37) using bromide 27 yielded intermediate 38, which was subjected to hydrogenolysis to give compound $\mathbf{3 9}$ (Scheme 2).

For the preparation of the dibenzodiazepinone portion of the target molecules, 2-chlorobenzoic acid (40) and o-phenylenediamine (41) were cyclocondensed as previously reported (Scheme 3). ${ }^{46}$ Acylation of the resulting dibenzodiazepinone $\mathbf{4 2}$ with chloroacetyl chloride gave the chloroacetamide 43, an essential building block, to which was introduced by N -alkylation, piperidines 15, 23, 30, 31, 36, and 39 (cf. Schemes 1 and 2).

Reaction of chloroacetamide 43 with piperidines 15 and 23 yielded the Boc-protected intermediates 44 and 45 , respectively. These were converted to the primary amines 46 and 47 by treatment with hydrochloric acid. Guanidinylation of amines 46 and 47 using the pyrazole derived guanidinylating reagent 48 and subsequent deprotection afforded the guanidinylated congeners 49 and $\mathbf{5 0}$ (Scheme 3). Guanidinylation of $\mathbf{4 6}$ and $\mathbf{4 7}$ with the S-methylisothiourea derivative $\mathbf{5 1}$ followed by treatment with trifluoroacetic acid afforded compounds 52 and 53 , which represent N^{G} -
carbamoylated congeners of compounds 49 and 50. Propanoylation of $\mathbf{5 2}$ and $\mathbf{5 3}$ with succinimidyl propionate resulted in compounds 54 and 55, and 4-fluorobenzoylation of 52 using succinimidyl 4-fluorobenzoate gave derivative 56.

Reaction of chloroacetamide 43 with piperidines $\mathbf{3 0}$ and $\mathbf{3 1}$ resulted directly in the target compounds $\mathbf{5 7}$ and $\mathbf{5 8}$, bearing a terminal imidazolyl and N-methylpiperazinyl moiety, respectively. The ureido derivative 59 was obtained by treatment of amine $\mathbf{4 7}$ with isocyanic acid liberated from potassium cyanate.

Reaction of building block $\mathbf{4 3}$ with piperidine $\mathbf{3 6}$ gave the Bocprotected intermediate 60, which was treated with TFA to obtain amine 61. Propanoylation of the latter afforded compound 62. The dimeric ligand 63 was obtained by treatment of compound 39 with 43, and the twin compound 64 was prepared by acylation of amine $\mathbf{6 1}$ using terephthalic acid chloride (Scheme 3).

2.2. Binding studies at muscarinic receptors

The dibenzodiazepinone-type M receptor ligands were investigated in equilibrium binding experiments applying intact CHO cells stably expressing the human muscarinic receptor subtypes $\mathrm{M}_{1}-\mathrm{M}_{5}$. The muscarinic antagonist [$\left.{ }^{3} \mathrm{H}\right]$ NMS was used as radioligand. Receptor saturation binding experiments with [$\left.{ }^{3} \mathrm{H}\right]$ NMS were

元

$60 \mathrm{~g} C_{61}^{61} \mathrm{R}=\mathrm{H}(\times 3$ TFA $)$

Scheme 3. Synthesis of building block 43 and dibenzodiazepinone derivatives 46, 47, 49, 50, 52-59, 61-64. Reagents and conditions: (a) copper bronze, chlorobenzene, 27%; (b) N, N-dimethylaniline, chloroacetyl chloride, $\mathrm{THF}, 79 \%$; (c) $\mathrm{K}_{2} \mathrm{CO}_{3}$, acetonitrile, 44: 60\%, 45: 93\%, 57: 73\%, 58: 81\%, 60: 70\%, 63: 37\%; (d) 46: $5 \mathrm{M} \mathrm{HCl}, 85 \%, 47: \mathrm{HCl}$ (gas), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1,93 \%$; (e) (1) triethylamine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (2) TFA, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 49: 93 \%, 50$: 67%; (f) (1) HgCl_{2}, DMF or DMSO; (2) TFA, $\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\mathrm{MeOH}, \mathbf{4 6}: 82 \%, \mathbf{4 7}: 66 \%$; (g) succinimidyl propionate, triethylamine or diisopropylethylamine, DMF, 54: 70\%, 55: 87\%, 62: 91\%; (h) succinimidyl 4-fluorobenzoate, diisopropylethylamine, DMF, 56\%; (i) $\mathrm{KOCN}, 1 \mathrm{M} \mathrm{HCl}, \mathrm{EtOH}, \mathrm{H}_{2} \mathrm{O}, 59 \%$; (j) TFA, $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 96 \%$; (k) terephthalic acid chloride, diisopropylethylamine, DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 64 \%$.
performed to determine the equilibrium dissociation constant ($\mathrm{p} K_{\mathrm{d}}=-\log K_{\mathrm{D}}$ value) of $\left[{ }^{3} \mathrm{H}\right]$ NMS at the five subtypes $\mathrm{M}_{1}-\mathrm{M}_{5}$. The $\mathrm{p} K_{\mathrm{d}}$ values amounted to $9.85\left(\mathrm{M}_{1}\right), 10.1\left(\mathrm{M}_{2}\right), 10.1\left(\mathrm{M}_{3}\right), 10.5$ $\left(\mathrm{M}_{4}\right)$ and $9.63\left(\mathrm{M}_{5}\right)$ and were in good agreement with previously reported data ${ }^{23}$ obtained from saturation binding at membranes of CHO cells expressing the receptor of interest ($\mathrm{CHO}-\mathrm{hM}_{x}$ cells ($x=1-5$); see Supplementary material). Competition binding
experiments with four reference ligands (atropine, pirenzepine, 4-DAMP and propantheline) at the five M receptor subtypes revealed $\mathrm{p} K_{\mathrm{i}}$ values that were in good accordance with reported data (see Supplementary Table S2).

The new DIBA derivatives 46, 47, 49, 50, 52, 54-59, 61-64 (Fig. 3) as well as AF-DX 384 (1) and $\mathbf{6}$ were studied in equilibrium binding experiments at M_{2} receptors applying the orthosteric

63 (UNSW-MK250)

Figure 3. Structures of the investigated dibenzodiazepinone derivatives.
muscarinic antagonist radioligand $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ (Fig. 4). Since the mode(s) of potential orthosteric/allosteric receptor interactions of the compounds upon inhibition of radioligand binding were unknown, data from equilibrium binding studies were analyzed by simple logistic curve fitting, and not according to the ternary complex model. ${ }^{47}$ The resulting pIC_{50} values and slope factors are summarized in Table 1. Figure 4A shows the curves of $\mathbf{1}$ and a subset of six dibenzodiazepinone derivatives ($\mathbf{6}, \mathbf{4 6}, 49,52,54,56$), which all contain a three-membered carbon chain (instead of a tetramethylene chain as in DIBA) connecting the piperidine ring and the terminal basic group (cf. Figs. 1 and 2).

Within the designated subset of compounds (Fig. 4A), $\mathbf{1}$ and the imidazole derivative $\mathbf{6}$ exhibited the highest M_{2} receptor affinity ($\mathrm{pIC}_{50}=8.3$ and 8.29, respectively), two orders of magnitude higher compared to the primary amine $46\left(\mathrm{pIC}_{50}=6.21\right)$ (Table 1), showing that the replacement of the terminal amine group in $\mathbf{4 6}$ by an imidazole moiety ($\mathbf{6}$) considerably favors the interaction with the M_{2} receptor. The compounds $\mathbf{4 9}, 52,54,56$, all containing a guanidine, revealed pIC_{50} values between 7.0 and 7.5 , that is, substitution of the guanidine group, resulting in markedly longer side chains as in $\mathbf{5 4}$ and 56, had only little impact on M_{2} affinity (pIC_{50} of 49: 7.50 ± 0.05 vs. pIC_{50} of 54: $7.21 \pm 0.05(P<0.05)$ and 56: 7.16 ± 0.04 ($P<0.05$) (Fig. 4A, Table 1).

The displacement curves of the second subset of compounds, comprising $47,50,55$, and 57 , the higher homologues of 46,49 , $\mathbf{5 4}$, 6, as well as the ureido derivative 59 (cf. Fig. 3), are depicted in Figure 4B. A markedly higher M_{2} affinity resided in the higher homolog compared to the lower homolog in case of the primary amines 46 and 47 ($\mathrm{pIC}_{50}=6.21 \pm 0.14$ and 7.40 ± 0.07, respectively, $P<0.01$) and the guanidines 49 and 50 ($\mathrm{pIC}_{50}=7.50 \pm 0.05$ and 8.33 ± 0.08, respectively, $P<0.01$) (Table 1). By contrast, the difference in M_{2} affinity was low for the N^{G}-substituted compounds $\mathbf{5 4}$ and $55\left(\mathrm{pIC}_{50}=7.21 \pm 0.05\right.$ and 7.69 ± 0.08, respectively, $P<0.02$) and the imidazole derivatives 6 and 57 ($\mathrm{pIC}_{50}=8.29 \pm 0.06$ and 8.01 ± 0.05, respectively, $P<0.05$) (cf. Table 1). Compound 59 represents the non-basic ureido congener of the guanidine derivative $\mathbf{5 0}$ (Fig. 3). The lower M_{2} affinity of $\mathbf{5 9}$ compared to $\mathbf{5 0}$ $\left(\mathrm{pIC}_{50}=6.92 \pm 0.03\right.$ and 8.33 ± 0.08, respectively, $P<0.01$) suggested that a basic group is indeed favorable with respect to M_{2} receptor affinity.

The effect on [$\left.{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ equilibrium binding of the third subset of compounds, comprising the piperazine derivatives 58 and $\mathbf{6 3}$ and the di-substituted imidazole derivatives 61, 62 and 64 (Fig. 3), is depicted in Figure 4C. These compounds exhibited the highest M_{2} affinities within the herein presented series of dibenzodiazepinone derivatives with pIC_{50} values in the range of 8.6-9.2 (Table 1). Regarding the two pairs of monomeric/dimeric ligands
$\mathbf{5 8} / \mathbf{6 3}$ and $\mathbf{6 2} / \mathbf{6 4}$, the linkage of two dibenzodiazepinone moieties as in the dimeric ligands $\mathbf{6 3}$ and 64, resulted in slightly increased affinities compared to the monomeric counterparts 58 and $\mathbf{6 2}$ (58/63: $\mathrm{pIC}_{50}=8.66 \pm 0.06$ and 8.98 ± 0.06, respectively, $P<0.02$; 62/64: $\mathrm{pIC}_{50}=8.60 \pm 0.05$ and 9.20 ± 0.05, respectively, $P<0.001$). Interestingly, although the linkers in $\mathbf{6 3}$ and $\mathbf{6 4}$ differ in the chemical nature and by 22 atoms in length, both compounds showed comparable M_{2} affinities ($\mathrm{pIC} \mathrm{C}_{50}=9.0$ and 9.2 , respectively). Whereas the slope of the displacement curve was significantly increased for the dimeric ligand 63 (slope $=-2.01, P<0.001$, Table 1), the slope obtained for the dimeric compound $\mathbf{6 4}$ with the longer spacer was not significantly different from unity ($P>0.05$). The steepness of the curve, as indicated by a slope of -2.01 in case of the dimeric ligand $\mathbf{6 3}$, suggests an unusual binding mode, which remains to be resolved in future studies. At M_{2} receptors the lower plateaus of the curves for the inhibition of $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ equilibrium binding were not different from zero percent specific $\left[{ }^{3} \mathrm{H}\right]$ NMS binding ($P>0.05$) for all compounds (Fig. 4).

The propionamide 62, exhibiting high M_{2} affinity ($\mathrm{pIC}_{50}=8.60$), represents the non-labeled ('cold') form of a potential radioligand, which is available by treatment of amine precursor $\mathbf{6 1}$ with commercially available succinimidyl $\left[{ }^{3} \mathrm{H}\right]$ propionate. The radiolabeled analog of $\mathbf{6 2}$ might be an interesting alternative to radioligands such as $\left[{ }^{3} \mathrm{H}\right] \mathrm{AF}-\mathrm{DX} 384$ or $\left[{ }^{3} \mathrm{H}\right]$ AF-DX 116.

Reference compound $\mathbf{1}$ and a selection of the new dibenzodiazepinone derivatives, comprising primary amine 46, guanidine derivative $\mathbf{5 0}$, imidazole derivative $\mathbf{5 7}$, and the two pairs of monomeric/dimeric ligands $\mathbf{5 8} / \mathbf{6 3}$ and $\mathbf{6 2} / \mathbf{6 4}$, were also studied in equilibrium binding experiments with $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ at the M receptor subtypes M_{1}, M_{3}, M_{4} and M_{5}. The respective [$\left.{ }^{3} H\right]$ NMS displacement curves are shown in Figure 5, the pIC_{50} values and slopes are included in Table 1. The receptor subtype selectivity profile was similar for these compounds: all compounds showed a preference for the M_{2} receptor. Lower affinities were obtained for the subtypes M_{1} and M_{4}, and the lowest affinities were found at subtypes M_{3} and M_{5}, that is, the selectivity pattern can be summarized as M_{2} $>M_{1} \approx M_{4}>M_{3} \approx M_{5}(46,50,57,62-64)$ and $M_{2}>M_{1} \approx M_{4}>$ $\mathrm{M}_{3}>\mathrm{M}_{5}(\mathbf{1}, 58)$.

It should be noted that, due to comparable fractional receptor occupancies ($\mathrm{frac}_{\mathrm{occ}}=L / L+K_{\mathrm{D}}$) of $\left[{ }^{3} \mathrm{H}\right]$ NMS at each subtype (rang-
 Table 1), the selectivity profile would not change after conversion of the pIC_{50} values to $\mathrm{p} K_{\mathrm{i}}$ values via the Cheng-Prusoff equation (assuming a competitive interaction throughout), which was not done for reasons given below. Moderately increased slopes, significantly different from -1 (t-test) were obtained at the M_{1} receptor for the dimeric ligands $63(P<0.01)$ and $64(P<0.01)$, and at the M_{3}

Figure 4. Concentration-dependent effects of (A) the tricyclic M receptor ligands AF-DX-384 (1), 6, 46, 49, 52, 54, 56, (B) 47, 50, 55, 57, 59 and (C) 58, 61-64 on $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding in muscarinic M_{2} receptors. Live $\mathrm{CHO}-\mathrm{hM}_{2}$ cells were incubated with $0.2 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}\left(K_{\mathrm{d}}=0.090 \mathrm{nM}\right)$ and the compound of interest at $23^{\circ} \mathrm{C}$ for 3 h . Data points represent mean values \pm SEM from $2(49), 3(\mathbf{1}, \mathbf{6}, 46,50$, 54-59, 61, 62), 4 (47,52), 5 (64) and 9 (63) independent experiments (each performed in triplicate). (For interpretation to colors in this figure, the reader is referred to the web version of this paper.)
subtype for $\mathbf{1}(P<0.05)$ and $\mathbf{6 4}(P<0.05)$ (Table 1$)$. In the equilibrium binding experiments performed at subtypes M_{1}, M_{3}, M_{4} and M_{5} the lower plateaus of the four-parameter logistic curves were not significantly different from zero percent specific [$\left.{ }^{3} \mathrm{H}\right]$ NMS binding throughout for all investigated compounds at all subtypes ($P>0.05$).

Since an interaction with allosteric sites at the M_{2} receptor was proposed for $\mathbf{1 , 2}$, the dimeric M receptor antagonist methoctramine, as well as the trimeric pyridodibenzodiazepinone tripitramine,,${ }^{31,36,48-50}$ the reference compound $\mathbf{1}$ and the two pairs of monomeric/dimeric ligands $58 / 63$ and $\mathbf{6 2} / 64$, were studied with respect to a potential contribution of allosteric receptor binding. For this purpose these compounds were also studied at $\left[{ }^{3} \mathrm{H}\right]$ NMS occupied M_{2} receptors, that is, their effect on the time course of
$\left[{ }^{3} \mathrm{H}\right]$ NMS dissociation was determined. In these experiments the dissociation of $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ is determined in the absence and in the presence of the allosteric ligand. The ratio of the rate constants of [$\left.{ }^{3} \mathrm{H}\right]$ NMS dissociation determined in the presence of allosteric modulator (k_{-1} values) to the rate constant of $\left[{ }^{3} \mathrm{H}\right]$ NMS dissociation determined in the absence of modulator ($k_{-1(0)}$) was plotted against the log concentration of test compound and the data were fitted by a four parameter logistic equation (Fig. 6).

All compounds were capable of inhibiting [$\left.{ }^{3} \mathrm{H}\right]$ NMS dissociation almost completely (cf. $E_{\text {max, diss }}$ values in Table 2). The pEC 50 ,diss values summarized in Table 2 can be interpreted as estimates of affinities to the allosteric site, assuming that an occupation of the allosteric site becomes obvious by a retardation of NMS dissociation. The $\mathrm{pEC}_{50, \text { diss }}$ value of 4.27 obtained for $\mathbf{1}$ was in good agreement with a previously reported $\mathrm{pEC}_{50 \text {,diss }}$ value of 4.65 determined at porcine heart membranes using the same type of experiment with an incubation temperature of $37{ }^{\circ} \mathrm{C} .{ }^{30}$ The strongest effect was observed for the dimeric ligand 64 ($\mathrm{pEC}_{50 \text {,diss }}=5.56$, Table 2), which proved to be almost as potent as the pure allosteric M receptor modulator W 84 (pEC 50 ,diss $=5.87$; porcine heart M_{2} receptor, phosphate/TrisHCl buffer, $37{ }^{\circ} \mathrm{C}$). ${ }^{30}$ Remarkably, compound 64 was about 100 times more potent than its monomeric counterpart 62 ($\mathrm{pEC}_{50, \text { diss }}$ values of $\mathbf{6 4}$ and 62: 5.56 ± 0.04 vs $3.59 \pm 0.07, P<0.001$) (Table 2). Likewise, the dimeric ligand 63 was more potent compared to its monomer 58 by one order of magnitude (pEC 50 ,diss values: 5.10 ± 0.01 and 4.02 ± 0.02, respectively, $P<0.01$) (Table 2).

These results suggest that chemical dimerization of dibenzodi-azepinone-type M receptor ligands favors allosteric binding, a phenomenon observed with tacrine and a tacrine dimer containing a hexamethylene spacer. ${ }^{51}$ However, the ability of the compounds to inhibit $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding was much stronger than their capability to retard the $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ dissociation (pIC_{50} $\gg \mathrm{pEC}_{50, \text { diss }}$, cf. Figs. 3 and 5, respectively). Therefore, the contribution of allosteric interactions to binding of the new compounds to 'free' muscarinic receptors seems to be rather small. Assuming that the displacement of $\left[{ }^{3} \mathrm{H}\right]$ NMS is exclusively attributed to competitive binding to the orthosteric site, the compounds could be formally described as competitive antagonists and IC_{50} values from equilibrium binding experiments converted to K_{i} values via the Cheng-Prusoff equation. However, as this is uncertain, in particular in the case of the dimeric ligands 63 and 64 , the authors decided to present pIC_{50} values (Table 1). Aiming at unmasking a potential allosteric receptor binding by an incomplete inhibition of $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding at high concentrations, compounds 58, 62-64 were also studied at a tenfold higher [$\left.{ }^{3} \mathrm{H}\right]$ NMS concentration of 2 nM . However, this approach in neither case elevated the bottom level of the respective curve above zero percent specific $\left[{ }^{3} \mathrm{H}\right]$ NMS binding (Fig. 7), suggesting either a formally competitive, or a very strong negatively cooperative interaction as previously described for $\mathbf{1 .}{ }^{31}$

3. Summary and conclusion

In this study the synthesis and pharmacological characterization of various new dibenzodiazepinone-type muscarinic receptor ligands, including two homo-dimeric compounds, was presented. For 16 compounds M_{2} receptor binding data were determined by equilibrium binding studies with $\left[{ }^{3} \mathrm{H}\right]$ NMS, a muscarinic receptor antagonist binding orthosterically to M receptors, and for seven selected ligands, additionally, on the subtypes $\mathrm{M}_{1}, \mathrm{M}_{3}, \mathrm{M}_{4}$ and M_{5}. The terminal basic group of the previously described M_{2} preferring muscarinic receptor antagonist DIBA was replaced by imidazole, guanidine, and piperazine, which all proved to be bioisosteric moieties. In some compounds the basic side chain was considerably extended by introducing additional substituents

Table 1
pIC_{50} values and curve slopes obtained from nonlinear logistic curve analyses of AF-DX 384 (1) and the dibenzodiazepinone-type M receptor ligands $\mathbf{4 6}, \mathbf{4 7}, \mathbf{4 9}, \mathbf{5 0}, \mathbf{5 2}, 54-59,61$ 64 characterizing the inhibition of $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding to the indicated M receptor subtypes in live CHO-hM M_{x} cells ($x=1-5$)

Compound	$\mathrm{M}_{1}{ }^{\text {a }}$		$M_{2}{ }^{\text {b }}$		$\mathrm{M}_{3}{ }^{\text {c }}$		$\mathrm{M}_{4}{ }^{\text {d }}$		$\mathrm{M}_{5}{ }^{\text {e }}$	
	pIC_{50}	Slope								
1	7.36 ± 0.18	-0.93 ± 0.09	8.23 ± 0.03	-0.74 ± 0.09	6.24 ± 0.09	$-1.26 \pm 0.04{ }^{\text {\# }}$	7.72 ± 0.11	$-0.69 \pm 0.05^{\text {\# }}$	5.68 ± 0.06	-1.05 ± 0.06
6	n.d.	n.d.	8.29 ± 0.06	-1.03 ± 0.11	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
46	5.80 ± 0.05	-0.94 ± 0.10	6.21 ± 0.14	-0.83 ± 0.13	5.14 ± 0.05	-1.05 ± 0.11	5.93 ± 0.04	-1.04 ± 0.12	5.46 ± 0.05	-0.83 ± 0.10
47	n.d.	n.d.	7.40 ± 0.07	-0.98 ± 0.07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
49	n.d.	n.d.	7.50 ± 0.05	-0.89 ± 0.11	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
50	7.63 ± 0.07	-0.99 ± 0.07	8.33 ± 0.08	-0.92 ± 0.10	6.92 ± 0.06	-0.86 ± 0.06	7.72 ± 0.01	-0.82 ± 0.10	6.83 ± 0.07	-0.92 ± 0.14
52	n.d.	n.d.	7.04 ± 0.13	-1.10 ± 0.21	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
54	n.d.	n.d.	7.21 ± 0.05	-1.12 ± 0.03	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
55	n.d.	n.d.	7.69 ± 0.08	-1.14 ± 0.07	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
56	n.d.	n.d.	7.16 ± 0.04	-0.99 ± 0.13	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
57	7.34 ± 0.03	-1.05 ± 0.03	8.01 ± 0.05	$-0.81 \pm 0.02^{\text {\# }}$	6.65 ± 0.01	-0.86 ± 0.07	7.61 ± 0.08	-0.81 ± 0.18	6.65 ± 0.06	-1.03 ± 0.13
58	7.57 ± 0.08	-1.13 ± 0.10	8.66 ± 0.06	-1.25 ± 0.08	6.60 ± 0.08	-0.92 ± 0.09	7.88 ± 0.11	-0.99 ± 0.09	6.01 ± 0.09	-0.97 ± 0.14
59	n.d.	n.d.	6.92 ± 0.03	-0.98 ± 0.13	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
61	n.d.	n.d.	8.72 ± 0.04	-0.82 ± 0.10	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
62	7.70 ± 0.06	-1.11 ± 0.11	8.60 ± 0.05	-1.19 ± 0.06	6.68 ± 0.08	-1.09 ± 0.08	8.05 ± 0.02	-0.86 ± 0.03	6.40 ± 0.08	-0.68 ± 0.11
63	8.63 ± 0.04	$-1.32 \pm 0.09^{\#}$	9.00 ± 0.19	$-2.01 \pm 0.07^{\text {\# }}$	7.63 ± 0.03	-1.05 ± 0.14	8.38 ± 0.08	-1.32 ± 0.17	7.29 ± 0.08	-1.09 ± 0.09
64	8.55 ± 0.05	$-1.56 \pm 0.08^{\#}$	9.20 ± 0.05	-1.27 ± 0.12	7.34 ± 0.03	$-1.30 \pm 0.09^{\text {\# }}$	8.60 ± 0.08	-1.17 ± 0.14	7.09 ± 0.10	-1.46 ± 0.18

Presented are mean values \pm SEM from 2-9 independent experiments (performed in triplicate). K_{d} values/applied concentrations of [${ }^{3} \mathrm{H}$]NMS:
${ }^{\text {a }} 0.15 / 0.2 \mathrm{nM}\left(\mathrm{frac}_{\mathrm{occ}}=0.57\right)$.
${ }^{\mathrm{b}} 0.090 / 0.2 \mathrm{nM}\left(\mathrm{frac}_{\text {occ }}=0.69\right)$.
c $0.089 / 0.2 \mathrm{nM}\left(\mathrm{frac}_{\mathrm{occ}}=0.69\right)$.
${ }^{\mathrm{d}} 0.035 / 0.1 \mathrm{nM}\left(\right.$ frac $\left._{\text {occ }}=0.74\right)$
${ }^{e} 0.24 / 0.3 \mathrm{nM}\left(\right.$ frac $\left._{\text {occ }}=0.55\right)$.
\# Significantly different $(P<0.05)$ from -1 .

Figure 5. Concentration-dependent effects of the tricyclic M receptor ligands AF-DX-384(1), 46, 50, 57, 58, 62-64 on $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding at muscarinic receptors $\mathrm{M}_{1}, \mathrm{M}_{3}, \mathrm{M}_{4}, \mathrm{M}_{5}$. Intact CHO-hM M_{x} cells ($x=1,3,4,5$) were incubated with $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}\left(c=0.2 \mathrm{nM}\left(\mathrm{M}_{1}, \mathrm{M}_{3}\right), 0.1 \mathrm{nM}\left(\mathrm{M}_{4}\right)\right.$ or $0.3 \mathrm{nM}\left(\mathrm{M}_{5}\right)$) and the compound of interest at $23{ }^{\circ} \mathrm{C}$ for 3 h . Data points represent mean values \pm SEM from at least 3 independent experiments (each performed in triplicate). (For interpretation to colors in this figure, the reader is referred to the web version of this paper.)
at the imidazole or guanidine moiety. Interestingly, the extension of the side chain retained and could even enhance receptor binding properties compared to the reference compound AF-DX 384 ($\mathbf{1}$), as
became obvious from displacement of $\left[{ }^{3} \mathrm{H}\right]$ NMS from M receptors (Figs. 4 and 5, Table 1). The dimeric ligands UNSW-MK250 (63) and UNSW-MK262 (64) exhibited the highest M_{2} receptor affinities

Figure 6. Concentration-dependent effect of AF-DX 384 (1), the monomeric dibenzodiazepinone derivatives 58, $\mathbf{6 2}$ and the dimeric ligands $\mathbf{6 3}, \mathbf{6 4}$ on the rate constant of $\left[{ }^{3} \mathrm{H}\right]$ NMS dissociation at muscarinic M_{2} receptors. The dissociation of $\left[{ }^{3} \mathrm{H}\right]$ NMS $(\mathrm{c}=1 \mathrm{nM})$ was studied in the presence of atropine $(c=500 \mathrm{nM})$ alone (determination of $k_{-1(0)}$), and in the presence of atropine (500 nM) plus the compound of interest at increasing individual concentrations (determination of k_{-1}) over a period of 2 h . Data points represent mean values \pm SEM from $2(\mathbf{1}, 58)$ or 3 (62-64) independent experiments (each performed in triplicate). The dashed lines mean extrapolation of the curves.

Table 2
Parameters characterizing the inhibition of the dissociation of $\left[{ }^{3} \mathrm{H}\right]$ NMS from muscarinic M_{2} receptors by AF-DX 384 (1), 58, 62-64

Compound	$\mathrm{pEC}_{50, \text { diss }}$	Slope	$E_{\text {max,diss }}(\%)$
$\mathbf{1}$	4.27 ± 0.08	-0.99 ± 0.10	99 ± 6.0
$\mathbf{5 8}$	4.02 ± 0.02	-1.09 ± 0.09	93 ± 1.6
$\mathbf{6 2}$	3.59 ± 0.07	-1.09 ± 0.03	92 ± 5.3
$\mathbf{6 3}$	5.10 ± 0.01	-1.01 ± 0.06	97 ± 2.5
$\mathbf{6 4}$	5.56 ± 0.04	-0.97 ± 0.12	95 ± 3.1

Experiments were performed with live $\mathrm{CHO}-\mathrm{hM}_{2}$ cells at $23^{\circ} \mathrm{C}$. Presented are mean values \pm SEM from $2(\mathbf{1}, \mathbf{5 8})$ or $3(\mathbf{6 2 - 6 4})$ independent experiments (performed in triplicate). All values obtained for the slope and $E_{\text {max, diss }}$ were not significantly different from -1 and 100%, respectively ($P>0.05$).

Figure 7. Concentration-dependent effects of the dibenzodiazepinones 58, 62-64 on $\left[{ }^{3} \mathrm{H}\right]$ NMS equilibrium binding at a concentration of 2 nM . Note, that elevating the concentration of $\left[{ }^{3} \mathrm{H}\right]$ NMS did not unmask the formation of putative allosteric ternary complexes by an elevated lower plateau of the inhibition curve. Intact CHOhM_{2} cells were incubated with $2 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}\left(K_{\mathrm{d}}=0.090 \mathrm{nM}\right)$ and the compound of interest at $23^{\circ} \mathrm{C}$ for 3 h . Data points represent mean values \pm SEM from 3 ($\mathbf{5 8) , ~} 4$ (62, 63) and 7 (64) independent experiments (each performed in triplicate), respectively. pIC_{50} values/curve slopes amounted to: $8.60 \pm 0.04 /-1.49 \pm 0.08$ (64) $8.42 \pm 0.05 /-1.72 \pm 0.09$ (63), $8.08 \pm 0.11 /-0.81 \pm 0.11(\mathbf{5 8})$ and $7.77 \pm 0.07 /$ -1.14 ± 0.08 (62).
($\mathrm{pIC}_{50}=9.0$ and 9.2, respectively). All compounds, which were investigated at all subtypes in equilibrium binding experiments applying $\left[{ }^{3} \mathrm{H}\right] N M S$, shared a similar selectivity profile, which can be summarized as $M_{2}>M_{1} \approx M_{4}>M_{3} \approx M_{5}(46,50,57,62-64)$ and $M_{2}>M_{1} \approx M_{4}>M_{3}>M_{5}(\mathbf{1}, \mathbf{5 8})$. Steep curve slopes were observed for the dimeric ligand 63 at the M_{2} receptor (slope $=-2.0$) and for the dimeric ligand 64 at the M_{1} receptor (slope $=-1.56$), suggesting a complex mechanism of binding. In addition to the equilibrium binding experiments applying $\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$, the retarding effect of the homo-dimeric ligands 63 and 64 as well as their monomeric counterparts UNSW-MK249 (58) and UNSW-MK259 (62) on the dissociation of [$\left.{ }^{3} \mathrm{H}\right]$ NMS from M_{2} receptors was determined. In these investigations, with a $\mathrm{pEC}_{50 \text {, diss }}$ of 5.56 , the dimeric dibenzodiazepinone derivative 64 showed the strongest effect. As the monomeric counterpart of $\mathbf{6 4}$ was 100 times less potent $\left(62, \mathrm{pEC}_{50}\right.$,diss $\left.=3.59\right)$, these data are compatible with the assumption that chemical dimerization of dibenzodiazepinone-type M receptor ligands favors allosteric binding, but cannot be considered a proof. Interestingly, although the increase in putative allosteric binding of 64 compared to 62 was 100 -fold, and the increase in orthosteric affinity amounted only to a factor of 4 , this was not reflected by positive cooperativity between 64 and NMS. Principally, the role and the extent of orthosteric and allosteric interactions involved in the binding of such compounds in the sense of a dualsteric (bitopic) interaction, as well as the potential impact on functional selectivity remain unresolved challenging questions. ${ }^{52}$ Aiming at an elucidation of the topology of the binding domains of the DIBA derivatives presented in this study, apart from crystal structures of receptor-ligand complexes, pharmacological tools such as a radiolabeled 64, the study of ligands with capped linkers, and orthosterical/allosterical loss of function M receptor mutants might be included in future studies.

4. Experimental section

4.1. Chemistry: Experimental protocols and analytical data

4.1.1. General experimental conditions

Compounds $\mathbf{8}, \mathbf{1 6}, \mathbf{2 4}, \mathbf{3 2}, \mathbf{4 0}, 41$, benzyl bromide, 1-bromo-2chlorobutane, n-butyllithium, chloroacetyl chloride, copper bronze, di-tert-butyldicarbonate, N, N-dimethylaniline, imidazole, lithium aluminiumhydride and platinum(IV)oxide were purchased from Sigma-Aldrich. Potassium phthalimide was obtained from Merck-Schuchardt and succinimidyl [2-(Boc-amino)ethyl]carbamate was from Fluka. EDC, HOBt and N-methylpiperazine were purchased from Alfa Aesar. Piperazine was obtained from Columbia Organic Chemicals, and terephthaloyl chloride was from Lancaster. The syntheses of N-Boc-S-methylisothiourea, ${ }^{53}$ guanidinylating reagent 48, ${ }^{54}$ succinimidyl propionate, ${ }^{55}$ and succinimidyl 4-fluorobenzoate ${ }^{54}$ were described elsewhere. Solvents were obtained from commercial suppliers and used without further purification. A Biotage Initiator microwave synthesizer (Biotage, Uppsala, Sweden) was used for microwave driven reactions. Thin layer chromatography was performed on Merck silica gel 60 F_{254} TLC aluminum plates. For column chromatography silica gel DAVISIL ($0.040-0.063 \mathrm{~mm}$; GRACE Davison, Worms, Germany) was used. NMR spectra were recorded on Bruker Avance 300 ($7.05 \mathrm{~T},{ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}$), Bruker Avance 400 (9.40 T , ${ }^{1} \mathrm{H}: 400 \mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}$), Bruker Avance $500\left(11.75 \mathrm{~T},{ }^{1} \mathrm{H}\right.$: $500 \mathrm{MHz},{ }^{13} \mathrm{C}: ~ 125 \mathrm{MHz}$), Bruker Avance $600\left(14.1 \mathrm{~T},{ }^{1} \mathrm{H}\right.$: $600 \mathrm{MHz},{ }^{13} \mathrm{C}: 150 \mathrm{MHz}$) and Bruker Avance 700 ($16.4 \mathrm{~T},{ }^{1} \mathrm{H}$: 700 MHz) instruments (Bruker, Karlsruhe, Germany). Low-resolution mass spectrometry (MS) was performed on a Waters Micromass $Z^{\text {™ }}$ Detector (Waters, Milford, MA, US). High-resolution mass spectrometry (HRMS) was performed on an Orbitrap LTQ XL ion trap mass spectrometer (Thermo Fisher Scientific, San Jose,

CA, US) using an electrospray ionization (ESI) source. Elemental analysis was carried out by the Microanalytical Unit, Research School of Chemistry, The Australian National University, Canberra, on a Carlo Erba 1106 instrument. IR spectra were measured on a Nicolet ${ }^{\text {TM }} 380$ spectrophotometer (Thermo Electron Corporation). Melting points were determined with a MEL-TEMP II apparatus (Laboratory Devices Inc., US) and are uncorrected.

Annotation concerning the NMR spectra $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ of the dibenzodiazepinone derivatives (compounds 44-47, 49, 50, 52-64): Due to a slow rotation about the exocyclic amide group on the NMR time scale, two isomers (ratios provided in the experimental protocols) were evident in the NMR spectra. Provided that adjacent signals in the ${ }^{13} \mathrm{C}$ NMR spectra could be unambiguously clarified (using ${ }^{1} \mathrm{H}$ COSY and HSQC data) to arise from one carbon nucleus, these signals were depicted as a set of signals (e.g., 123.7/ $123.9 \mathrm{ppm})$.

4.1.2. 4-Chlorobutyltriphenylphosphonium bromide (7a)/4-bromobutyltriphenylphosphonium chloride (7b) ${ }^{38}$

Triphenylphosphine ($160.6 \mathrm{~g}, 0.61 \mathrm{~mol}$) and 1-bromo-4-chlorobutane ($105 \mathrm{~g}, 0.61 \mathrm{~mol}$) were dissolved in anhydrous toluene (500 mL) and the mixture was refluxed for 16 h (after 10 min of reflux a white solid began to precipitate). The reaction mixture was cooled to rt and the liquid was removed by filtration. The white solid was washed twice with toluene and hexane and dried in vacuo at $70^{\circ} \mathrm{C}$ to give the salt $\mathbf{7 a} / 7 \mathbf{b}$ as $6: 1$ mixture (198.3 g , 75%). IR (Nujol) 1460, 1375, $1110 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm})(7 a) 1.72(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{p}, 2 \mathrm{H}, J 6.8 \mathrm{~Hz}), 3.63-$ 3.73 (m, 2H), 3.76 (t, 2H, J 6.4 Hz), 7.88-7.90 (m, 12H), 7.91-7.98 $(\mathrm{m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm})(7 a) 20.0,20.7$, 33.2, 33.5, 45.1, 118.8, 119.9, 131.1, 131.3, 134.5, 134.6, 135.9. MS (ESI, MeOH) m/z (\%) 397/399 (10/10) [M+H] ${ }^{+}$(7b), 353/355 $(100 / 34)[M+H]^{+}(7 a) . \mathrm{C}_{22} \mathrm{H}_{23} \mathrm{BrClP}(433.7)$.

4.1.3. 1-Benzyl-4-(4-chlorobutylidene)piperidine (11a)/1-benzyl-4-(4-bromobutylidene) piperidine (11b)

Under an atmosphere of argon $\mathbf{7 a} / 7 \mathbf{b}$ ($2 \mathrm{~g}, 4.61 \mathrm{mmol}$) was suspended in anhydrous THF (15 mL) and the mixture was cooled to $-72{ }^{\circ} \mathrm{C}$. n-Butyllithium (2.5 M in n-hexane, $1.68 \mathrm{~mL}, 4.19 \mathrm{mmol}$) was added to the stirred suspension and the mixture was allowed to warm up to $-10^{\circ} \mathrm{C}$ over a period of 45 min . During that period the color of the mixture changed from yellow via orange to red. The temperature was kept at $-10^{\circ} \mathrm{C}$ for 1.5 h and then cooled again to $-72{ }^{\circ} \mathrm{C}$. N-Benzylpiperidin-4-one (8) ($0.79 \mathrm{~g}, 4.19 \mathrm{mmol}$) was added, the mixture was allowed to warm up to rt over a period of 60 min and stirring was continued for 16 h . Solid material was removed by filtration and the filtrate column chromatographed using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc as eluent ($R_{f}=0.5$ for n-hexane/EtOAc 1:1) to give the product 11a/11b (ratio ca $40: 1$) as a yellowish oil ($0.393 \mathrm{~g}, 36 \%$). IR (neat) 2935, 2900, 2795, 2360 , $2340 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ (11a) $1.80(\mathrm{~m}$, 2H), 2.15-2.35 (m, 4H), 2.33 (t, 2H, J 5.5 Hz), 2.47 (m, 4H), 3.55 (s, 2H), $3.56(\mathrm{t}, 2 \mathrm{H}, J 6.5 \mathrm{~Hz}), 5.17(\mathrm{t}, 1 \mathrm{H}, J 7.4 \mathrm{~Hz}), 7.25-7.41$ (m, $5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})(11 a) 25.9,29.5,34.7$, 37.4, 45.9, 56.4, 57.2, 64.9, 123.1, 129.3, 130.1, 131.6, 139.1, 139.3. MS (ESI, MeOH) $m / z(\%) 308 / 310(2 / 2)[M+H]^{+}(11 b), 264 /$ $266(100 / 34)[M+H]^{+}(11 a)$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{16-}\right.$ $\left.\mathrm{H}_{23} \mathrm{ClN}\right]^{+} 264.1519$ (11a), found: 264.1508. $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ClN}$ (263.8) (11a).

4.1.4. 1-Benzyl-4-(4-phthalimidobutylidene)piperidine (12)

Potassium phthalimide ($183 \mathrm{mg}, 0.986 \mathrm{mmol}$) was added to a solution of 11a/11b ($200 \mathrm{mg}, 0.758 \mathrm{mmol}$) in DMF (1 mL) and the mixture was stirred in a bath at $100^{\circ} \mathrm{C}$ for 16 h . Water (10 mL), 10% aq $\mathrm{NaOH}(1 \mathrm{~mL})$ and brine (1 mL) were added and the product was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$). The combined
extracts were washed twice with 10% aq $\mathrm{NaOH}(2 \mathrm{~mL})$ and brine (5 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the volatiles yielded a yellow oil, which was subjected to column chromatography (eluent: n-hexane/ $\mathrm{Et}_{2} \mathrm{O} 3: 1$ to $1: 1$). Removal of the solvent from the eluate under reduced pressure and drying in vacuo afforded product 12 as a yellow oil ($220 \mathrm{mg}, 78 \%$). $R_{f}=0.3$ (n-hexane/EtOAc 1:1). Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 76.98; $\mathrm{H}, 7.00$; $\mathrm{N}, 7.48$; found: C, 77.31; H, 6.93; N, 7.81. IR (neat) 2940, 2900, 2795, 1770, 1715, $1615 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.74(\mathrm{p}, 2 \mathrm{H}, J$ $7.1 \mathrm{~Hz}), 2.05-2.16(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{t}, 2 \mathrm{H}, J 5.5 \mathrm{~Hz}), 2.42(\mathrm{~m}, 4 \mathrm{H})$, $3.52(\mathrm{~s}, 2 \mathrm{H}), 3.68(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 5.17(\mathrm{t}, 1 \mathrm{H}, J 7.2 \mathrm{~Hz}), 7.25-7.39$ (m, 5H), 7.78-7.89 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 26.4, 29.5, 30.4, 37.2, 39.5, 56.2, 57.0, 64.8, 123.9, 124.9, 129.3, 130.1, 131.7, 134.3, 136.2, 138.3, 139.3, 170.7. MS (ESI, MeOH) $m / z(\%) 407(13), 397(7)[M+\mathrm{Na}]^{+}, 375(100)[M+\mathrm{H}]^{+} . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ (374.5).

4.1.5. 4-(4-Aminobutylidene)-1-benzylpiperidine (13)

Hydrazine monohydrate ($3.54 \mathrm{~g}, 70.8 \mathrm{mmol}$) was added to a solution of $\mathbf{1 2}(5.3 \mathrm{~g}, 14.15 \mathrm{mmol})$ in ethanol (200 mL) and the mixture was stirred at $80^{\circ} \mathrm{C}$ bath temperature for 2 h . The white precipitate was removed by filtration and the volatiles were removed from the filtrate under reduced pressure. Purification by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 100: 10: 1$ to $50: 10: 1$) yielded product 13 as a yellowish oil ($3.0 \mathrm{~g}, 87 \%$). $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 50: 10: 1\right)$. Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2}$: C, 78.64; H, 9.90; N, 11.46; found: C, 78.34; H, 10.18; $\mathrm{N}, 11.48$. IR (neat) $3370,3290,3060,3025,2930,2850$, $2795 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 1.52 (p, 2H, J 7.4 Hz), 2.06 (q, 2H, J 7.4 Hz), 2.23 (t, 2H, J 5.5 Hz), 2.31 (t, 2H, J $5.5 \mathrm{~Hz}), 2.46(\mathrm{~m}, 4 \mathrm{H}), 2.64(\mathrm{t}, 2 \mathrm{H}, J 7.2 \mathrm{~Hz}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 5.20(\mathrm{t}$, $1 \mathrm{H}, J 7.4 \mathrm{~Hz}$), $7.25-7.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 26.4, 29.5, 35.1, 37.3, 43.0, 56.4, 57.2, 64.9, 124.4, 129.3, 130.1, 131.7, 137.8, 139.3. MS (ESI, MeOH) m / z (\%) 245 (100) $[M+H]^{+} . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2}(244.4)$.

4.1.6. 1-Benzyl-4-(4-N-tert-butoxycarbonyl-aminobutylidene)piperidine (14)

A solution of di-tert-butyldicarbonate ($2.7 \mathrm{~g}, 12.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added dropwise to an ice cold solution of $13(2.85 \mathrm{~g}, 11.66 \mathrm{mmol})$ and triethylamine $(0.24 \mathrm{~g}$, $2.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. The ice bath was removed and stirring was continued at rt overnight. The volatiles were removed under reduced pressure and the residue column chromatographed (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$) to yield product 14 as a yellowish oil ($3.8 \mathrm{~g}, 95 \%$). $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$. Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 73.22; H, 9.36; N, 8.13; found: C, 73.56; H, 9.66; N, 8.20. IR (neat) $3350 \mathrm{br}, 3030,2935,2800,1690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.50(\mathrm{p}, 2 \mathrm{H}, J 7.3 \mathrm{~Hz}), 2.01$ (q, 2H, J 7.3 Hz), 2.22 (t, 2H, J 5.3 Hz), 2.27 (t, 2H, J 5.5 Hz), 2.45 (m, 4H), $3.09(\mathrm{~m}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 5.11(\mathrm{t}, 1 \mathrm{H}, J 7.3 \mathrm{~Hz}), 7.22-$ $7.40(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 24.7,28.3,28.8$, $30.6,36.0,40.5,54.7,55.5,63.2,79.4,122.1,127.5,128.6,129.7$, 136.7, 138.1, 156.3. MS (ESI, MeOH) m/z (\%) 367 (6) [M+Na] ${ }^{+}, 345$ (100) $[M+H]^{+}, 289(46)\left[M-\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}\right]^{+} . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$ (344.5).

4.1.7. 4-(4-N-tert-Butoxycarbonyl-aminobutyl)piperidine (15)

Under an atmosphere of argon a 20% palladium-on-charcoal catalyst (0.4 g) was suspended in $\mathrm{MeOH}(10 \mathrm{~mL})$ and a solution of $14(3.24 \mathrm{~g}, 9.4 \mathrm{mmol})$ in $\mathrm{MeOH}(60 \mathrm{~mL})$ was added. A slow stream of hydrogen was passed through a glass tube into the vigorously stirred suspension for 20 h . The catalyst was filtered off and the solvent was removed under reduced pressure. Purification by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 200:20:1 to 100:20:1) afforded amine $\mathbf{1 5}$ as a yellowish oil, which solidified in the refrigerator to give a pale yellow solid ($1.82 \mathrm{~g}, 75 \%$)
$\mathrm{mp} 49-50^{\circ} \mathrm{C} . R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 50: 10: 1\right)$. Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 65.59; $\mathrm{H}, 11.01$; $\mathrm{N}, 10.93$; found: C, 65.67 ; H, 11.09; N, 10.77. IR (Nujol) 3375, 3300, 3195, $1695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 0.98(\mathrm{dq}, 2 \mathrm{H}, J$ $11.8,3.6 \mathrm{~Hz}), 1.11-1.31(\mathrm{~m}, 5 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}), 1.56$ (d, 2H, J 12.2 Hz), 2.42 (dt, 2H, J 12.1, 2.3 Hz), 2.91 (m, 4H), 6.76 (t, 1H, J 5.4 Hz). ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO-d d_{6}) $\delta(\mathrm{ppm}) 24.2,29.3$, 30.7, 34.0, 36.8, 37.5, 40.8, 47.2, 78.4, 156.7. MS (ESI, MeOH) m/z (\%) 257 (45) $[M+\mathrm{H}]^{+}, 201$ (100) $\left[M-\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}\right]^{+}, 157$ (5) $\left[M-\mathrm{C}_{4} \mathrm{H}_{8}\right.$ $\left.-\mathrm{CO}_{2}+\mathrm{H}\right]^{+} . \mathrm{C}_{14} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{2}$ (256.4).

4.1.8. 4-(3-Hydroxypropyl)piperidine (17) ${ }^{39}$

Under an atmosphere of argon platinum(IV)oxide (1.45 g , $6.4 \mathrm{mmol})$ was added to a solution of $16(10.0 \mathrm{~g}, 72.89 \mathrm{mmol})$ in $\mathrm{MeOH}(110 \mathrm{~mL})$ and 32% hydrochloric acid (18 mL). The mixture was vigorously stirred under a low pressure of hydrogen (8 kPa) for 46 h . The major part of the catalyst was removed by filtration and the volatiles were removed under reduced pressure. The oily residue was taken up in 15% aq $\mathrm{NaOH}(80 \mathrm{~mL})$ and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (150 and $3 \times 100 \mathrm{~mL}$). The pooled extracts were washed with water (20 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the volatiles and drying in vacuo yielded product 17 as a white crystalline, compact solid ($10.3 \mathrm{~g}, 98 \%$) mp 58$60{ }^{\circ} \mathrm{C} . R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 50: 10: 1\right)$. IR (Nujol) $3290,1320 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.08-1.23$ (m, 2H), 1.27-1.36 (m, 2H), 1.36-1.49 (m, 1H), 1.53-1.63 (m, 2 H), 1.74 (br d, 2H, J ca 13.4 Hz), 2.59 (dt, $2 \mathrm{H}, \mathrm{J} 12.42 .6 \mathrm{~Hz}$), 3.04 (td, 2H, J 12.42 .9 Hz), 3.56 (t, $2 \mathrm{H}, \mathrm{J} 6.6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) $\delta(\mathrm{ppm}) 31.5,34.8,35.2,38.0,47.9,64.0$. MS (ESI, MeOH) m/z (\%) $287(36)[2 M+H]^{+}, 144(100)[M+H]^{+} . \mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}(143.2)$.

4.1.9. 1-Benzyl-4-(3-hydroxypropyl)piperidine (18) ${ }^{39}$

Compound 18 was prepared from piperidine 17 (9.0 g , 62.85 mmol) and benzyl bromide ($11.82 \mathrm{~g}, 69.13 \mathrm{mmol}$) as previously described, ${ }^{39}$ but anhydrous acetonitrile (100 mL) was used instead of absolute EtOH. For purification by column chromatography $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH were used as solvents (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1$). Product $\mathbf{1 8}$ was obtained as a yellowish oil ($14.1 \mathrm{~g}, 96 \%$). $R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 200: 40: 1\right)$. IR (neat) $3335 \mathrm{br}, 2925,1495,1455,1365,1340 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.19-1.37(\mathrm{~m}, 5 \mathrm{H}), 1.51-1.62(\mathrm{~m}, 2 \mathrm{H})$, 1.72 (br d, 2H, J ca 9.6 Hz), 2.02 (br t, $2 \mathrm{H}, J 11.3 \mathrm{~Hz}$), 2.92 (br d, $2 \mathrm{H}, J 11.8 \mathrm{~Hz}$), $3.52(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{t}, 2 \mathrm{H}, J 6.7 \mathrm{~Hz}), 7.25-7.38(\mathrm{~m}$, $5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 31.7, 33.8, 34.6, 37.6, 55.7, 64.0, 65.3, 129.3, 130.1, 131.8, 139.2. MS (ESI, MeOH) m/z (\%) 256 (9) $[M+\mathrm{Na}]^{+}, 234(100)[M+\mathrm{H}]^{+} . \mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}(233.35)$.

4.1.10. 1-Benzyl-4-(3-bromopropyl)piperidine (19) ${ }^{40}$

Compound $\mathbf{1 8}$ ($13.6 \mathrm{~g}, 58.29 \mathrm{mmol}$) was dissolved in 48% aq HBr ($33 \mathrm{~mL}, 291.5 \mathrm{mmol}$) and the mixture was heated under reflux in a bath at $120^{\circ} \mathrm{C}$ for 3 h . The mixture was cooled to rt , and water $(150 \mathrm{~mL})$ and 28% aq $\mathrm{NH}_{3}(30 \mathrm{~mL})$ were added under cooling in a water bath. The product was extracted with n-hexane/ $\mathrm{Et}_{2} \mathrm{O}$ (1:1 $\mathrm{v} / \mathrm{v}, 2 \times 150 \mathrm{~mL})$. The extracts were pooled, washed with water $(30 \mathrm{~mL})$ and brine (30 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and purification by column chromatography (eluent: n-hexane/ $\mathrm{Et}_{2} \mathrm{O} 3: 1$ to $1: 1$) afforded 19 as a pale yellow oil $(13.45 \mathrm{~g}, 78 \%) . R_{f}=0.4$ (n-hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$). Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}$: C, 60.81; H, 7.49; N, 4.73; found: C, 61.18; H, 7.12; N, 4.88. IR (neat) 3025, 2920, 2850, 2800, 2755, 1495, 1450, 1365, $1340 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 1.19-1.35 (m, 3H), 1.36-1.45 (m, 2H), 1.71 (br d, $2 \mathrm{H}, J$ ca 9.6 Hz), 1.82-1.93 (m, 2H), 2.03 (br t, $2 \mathrm{H}, J 11.3 \mathrm{~Hz}$), 2.92 (br d, $2 \mathrm{H}, J$ ca 11.9 Hz), $3.44(\mathrm{t}, 2 \mathrm{H}, J 6.7 \mathrm{~Hz}$), 3.53 (s, 2H), $7.25-7.37$ (m, $5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 32.2,33.7,35.4,36.9$,
37.1, 55.6, 65.3, 129.3, 130.1, 131.8, 139.2. MS (ESI, MeOH) m/z (\%) 298/296 (97/100) $[M+H]^{+} . \mathrm{C}_{15} \mathrm{H}_{22} \mathrm{BrN}(296.25)$

4.1.11. 1-Benzyl-4-(3-phthalimidopropyl)piperidine (20) ${ }^{41}$

Potassium phthalimide $(5.85 \mathrm{~g}, 31.60 \mathrm{mmol})$ was added to a solution of $19(7.2 \mathrm{~g}, 24.31 \mathrm{mmol})$ in DMF (25 mL), the mixture was stirred in a bath at $100^{\circ} \mathrm{C}$ for 5 h , and then cooled to rt. Water (200 mL), 10% aq $\mathrm{NaOH}(25 \mathrm{~mL}$) and brine (25 mL) were added and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL}$ and $2 \times 100 \mathrm{~mL})$. The combined extracts were washed twice with 10% aq $\mathrm{NaOH}(50 \mathrm{~mL}$), once with water (30 mL) and brine (30 mL), and were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the volatiles yielded a yellow oil, which was subjected to column chromatography (eluent: n-hexane/ $\mathrm{Et}_{2} \mathrm{O}$ $3: 1$ to $1: 2$). Removal of the solvent from the eluate under reduced pressure gave a yellowish oil, which solidified during drying in vacuo to afford product 20 as a white crystalline solid (6.21 g , 70%) mp 77-78 ${ }^{\circ} \mathrm{C} . R_{f}=0.4$ (n-hexane/Et ${ }_{2} \mathrm{O}$ 1:2). IR (Nujol) 1710, $1400 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.14-1.33(\mathrm{~m}$, 5 H), 1.62-1.74 (m, 4H), 2.02 (br t, $2 \mathrm{H}, J$ ca 12.1 Hz), 2.88 (br d, $2 \mathrm{H}, J 12.1 \mathrm{~Hz}$), $3.50(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{t}, 2 \mathrm{H}, J 7.2 \mathrm{~Hz}), 7.23-7.36$ (m, $5 \mathrm{H}), 7.77-7.87(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 27.6$, 33.7, 35.5, 37.2, 39.8, 55.6, 65.2, 124.9, 129.2, 130.1, 131.8, 134.2, 136.2, 139.1, 170.6. MS (ESI, MeOH) m/z (\%) 395 (13) $[\mathrm{M}+\mathrm{Na}]^{+}$, 363 (100) $[M+H]^{+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+}$ 363.2073, found: 363.2058. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ (362.5).

4.1.12. 4-(3-Aminopropyl)-1-benzylpiperidine (21) ${ }^{42}$

Hydrazine monohydrate ($4.14 \mathrm{~g}, 82.77 \mathrm{mmol}$) was added to a solution of $\mathbf{2 0}(6.0 \mathrm{~g}, 16.55 \mathrm{mmol})$ in ethanol (250 mL), the mixture was stirred in a bath at $80^{\circ} \mathrm{C}$ for 2 h , and then cooled to rt . The white precipitate was removed by vacuum filtration and the volatiles were removed from the filtrate under reduced pressure. Purification by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 100: 20: 1$) yielded $\mathbf{2 0}$ as a yellowish oil ($3.08 \mathrm{~g}, 80 \%$). $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\mathrm{NH}_{3} 50: 10: 1$). IR (neat) $3365 \mathrm{br}, 2925,2850,2800,2755,1495,1455,1370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.18-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.56(\mathrm{~m}, 2 \mathrm{H})$, 1.67-1.78 (m, 2H), 2.02 (br t, 2H, J 11.2 Hz), $2.62(\mathrm{t}, 2 \mathrm{H}, J 7.2 \mathrm{~Hz}$), 2.92 (br d, $2 \mathrm{H}, J$ ca 11.5 Hz), 3.53 (s, 2H), 7.25-7.38 (m, 5H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 31.9,33.8,35.7,37.6,43.6,55.7$, 65.3, 129.3, 130.1, 131.8, 139.2. MS (ESI, MeOH) m / z (\%) 233 (100) $[M+\mathrm{H}]^{+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{~N}_{2}\right]^{+}$ 233.2018, found: 233.2005. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{2}$ (232.4).

4.1.13. 1-Benzyl-4-(3-N-(tert-butoxycarbonyl)aminopropyl)piperidine (22)

A solution of di-tert-butyldicarbonate ($2.76 \mathrm{~g}, 12.65 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) was added dropwise to an ice cold solution of $21(2.94 \mathrm{~g}, 12.65 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ over a period of 30 min . The ice bath was removed and stirring was continued at rt overnight. The volatiles were removed under reduced pressure and the product was purified by column chromatography (eluent: n hexane/ $\mathrm{Et}_{2} \mathrm{O} 2: 1$ to $1: 2$). Removal of the solvent from the eluate under reduced pressure yielded a yellowish oil, which solidified during drying in vacuo to afford 22 as a white crystalline solid $(4.03 \mathrm{~g}, 96 \%) \mathrm{mp} 81-82^{\circ} \mathrm{C} . R_{f}=0.3\left(\mathrm{Et}_{2} \mathrm{O}\right)$. Anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 72.25; H, 9.70; N, 8.43; found: C, 72.19; H, 9.74; N, 8.27. IR (Nujol) 3360, 1680, $1530 \mathrm{~cm}^{-1} .^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) $\delta(\mathrm{ppm}) 1.17-1.34(\mathrm{~m}, 5 \mathrm{H}), 1.42-1.56(\mathrm{~m}, 11 \mathrm{H}), 1.71(\mathrm{br} \mathrm{d}, 2 \mathrm{H}$, J ca 9.5 Hz), 2.02 (br t, $2 \mathrm{H}, J 11.2 \mathrm{~Hz}$), 2.92 (br d, $2 \mathrm{H}, J$ ca 11.7 Hz), 3.03 (t, 2H, J 7.0 Hz), 3.53 (s, 2H), 7.25-7.38 (m, 5H). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 29.0,29.6,33.8,35.6,37.4,42.4,55.6$, 65.3, 80.6, 129.3, 130.1, 131.8, 139.2, 159.4. MS (ESI, MeOH) m/z (\%) 665 (5) $[2 M+\mathrm{H}]^{+}, 355$ (8) $[M+\mathrm{Na}]^{+}, 333$ (100) $[M+\mathrm{H}]^{+}$. $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{2}$ (332.5).
4.1.14. 4-(3-N-tert-Butoxycarbonyl-aminopropyl)piperidine (23) ${ }^{37}$ Under an atmosphere of argon, $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst $(600 \mathrm{mg})$ was added to a solution of compound $22(3.92 \mathrm{~g}, 11.79 \mathrm{mmol})$ in MeOH (35 mL). The mixture was vigorously stirred under a low pressure of hydrogen (8 kPa) for 22 h (after 15 h more catalyst (400 mg) was added). The catalyst was filtered off and the solvent was removed under reduced pressure. The oily residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 400:40:1 to 100:25:1), which afforded amine 23 as a pale yellow oil ($2.56 \mathrm{~g}, 90 \%$). $R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 100: 20: 1\right)$. IR (neat) $3355 \mathrm{br}, 2925 \mathrm{br}, 1685,1530,1455,1390,1365 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.11-1.33(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.58$ (m, 12H), 1.77 (br d, 2H, J ca 13.6 Hz), 2.65 (dt, $2 \mathrm{H}, \mathrm{J} 12.42 .7 \mathrm{~Hz}$), $3.04(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 3.10(\mathrm{td}, 2 \mathrm{H}, J 12.32 .9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 28.7,29.7,34.1,35.9,37.4,42.3,47.6$, 80.6, 159.4. MS (ESI, MeOH) m/z (\%) 485 (17) [2M+H] ${ }^{+} 243$ (100) $[M+\mathrm{H}]^{+}, 187$ (15) $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}\right]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}\right]^{+} 243.2073$, found: 243.2062. $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ (242.4).

4.1.15. 4-(Piperidin-4-yl)butanol (25) ${ }^{43}$

Under an atmosphere of argon 4-(piperidin-4-yl)butanoic acid hydrochloride (24) ($15 \mathrm{~g}, 72.2 \mathrm{mmol}$) was suspended in anhydrous THF (200 mL). The suspension was immersed in an ice bath and lithium aluminiumhydride ($6.85 \mathrm{~g}, 180.5 \mathrm{mmol}$) was added in portions under stirring. The mixture was slowly warmed to rt and then kept under reflux overnight. The mixture was cooled in an ice bath and water (7 mL), 15% aq $\mathrm{NaOH}(7 \mathrm{~mL})$ and water (20 mL) was added dropwise under stirring. The white precipitate was separated by vacuum filtration and the volatiles were removed from the filtrate under reduced pressure yielding a colorless oil. The white solid was washed with chloroform ($3 \times 50 \mathrm{~mL}$) and the washing filtrates (product $\mathbf{2 5}$ was evident by TLC analysis) were combined with the colorless oil. 0.3% aq $\mathrm{NaOH}(150 \mathrm{~mL})$ was added, the mixture was vigorously shaken, the phases were separated and the aqueous phase repeatedly treated with chloroform ($100 \mathrm{~mL}, 80 \mathrm{~mL}$ and $2 \times 50 \mathrm{~mL}$). The chloroform extracts were combined, washed with water (50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent yielded crude 25 as a colorless oil $(15 \mathrm{~g})$. A portion ($5.2 \mathrm{~g}, 35 \%$) of this material was subjected to column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\mathrm{NH}_{3} 100: 20: 1$ to 25:50:1) to afford pure product $\mathbf{2 5}$ as pale yellow oil, which crystallized during storage at $-20^{\circ} \mathrm{C}$ to give a hard white solid ($2.94 \mathrm{~g}, 75 \%$ (referred to 15 g crude)) $\mathrm{mp} 49-51^{\circ} \mathrm{C} . R_{f}=0.2\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 50: 25: 1$). IR (Nujol) $3255,1320 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.07-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 2 \mathrm{H})$, $1.35-1.48$ (m, 3H), 1.49-1.60 (m, 2H), 1.73 (br d, 2H, J 13.1 Hz), 2.58 (dt, 2H, J 12.42 .6 Hz), 3.04 (td, $2 \mathrm{H}, J 12.22 .8 \mathrm{~Hz}$), 3.57 (t, $2 \mathrm{H}, \mathrm{J} 6.5 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 24.7,34.7,34.8$, 38.1, 39.0, 48.0, 63.8. MS (ESI, MeOH) m/z (\%) 315 (36) [2M+H] ${ }^{+}$, 158 (100) $[M+\mathrm{H}]^{+} . \mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}(157.25)$.

4.1.16. 1-Benzyl-4-(4-hydroxybutyl)piperidine (26) ${ }^{44}$

In two $20-\mathrm{mL}$ pressure vials (20 bar) amine $25(2 \times 4.0 \mathrm{~g}$, $2 \times 25.45 \mathrm{mmol}$) was dissolved in acetonitrile ($2 \times 10 \mathrm{~mL}$) under warming. Diisopropylethylamine ($2 \times 3.62 \mathrm{~g}, 2 \times 28.0 \mathrm{mmol}$) and benzyl bromide ($2 \times 4.78 \mathrm{~g}, 2 \times 28.0 \mathrm{mmol}$) were added under stirring and the mixture was heated in a bath at $105^{\circ} \mathrm{C}$ for 60 min . The solvent was removed under reduced pressure and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ and 5% aq $\mathrm{NaOH}(150 \mathrm{~mL})$. The mixture was vigorously shaken, the phases were separated, and the aqueous phase treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts were combined, washed with water (50 mL) and dried over Na_{2}. SO_{4}. The solvent was removed under reduced pressure and the product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1$). Amino alcohol 26 was obtained as an orange oil ($8.2 \mathrm{~g}, 65 \%$). $R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. IR (neat) 3330
br, 2925, 1495, $1455 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 1.17-1.33 (m, 5H), 1.34-1.46 (m, 2H), 1.48-1.59 (m, 2H), 1.72 (br d, $2 \mathrm{H}, J 9.6 \mathrm{~Hz}$), 2.03 (br t, $2 \mathrm{H}, J 11.3 \mathrm{~Hz}$), 2.92 (br d, $2 \mathrm{H}, J$ 11.8 Hz), $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{t}, 2 \mathrm{H}, \mathrm{J} 6.5 \mathrm{~Hz}), 7.26-7.37(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 24.9,33.8,34.7,37.6,38.3$, 55.7, 63.8, 65.3, 129.3, 130.1, 131.8, 139.0. MS (ESI, MeOH) m/z (\%) $270(7)[M+\mathrm{Na}]^{+}, 248$ (100) $[M+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}(247.4)$.

4.1.17. 1-Benzyl-4-(4-bromobutpyl)piperidine (27) ${ }^{45}$

Bromide 27 was prepared from $26(8.2 \mathrm{~g}, 33.95 \mathrm{mmol})$ using the procedure for the preparation of the lower homologue 19, and was obtained as a pale yellow oil, which solidified during storage below $0^{\circ} \mathrm{C}$. ($13.45 \mathrm{~g}, 78 \%$). $R_{f}=0.4$ (n-hexane/ $\mathrm{Et}_{2} \mathrm{O} 1: 1$). Anal. calcd for C_{16} $\mathrm{H}_{24} \mathrm{BrN}$: C, 61.94; H, 7.80; N, 4.51; found: C, 61.71; H, 7.66; N, 4.56. IR (Nujol) 1260, 1125, 735, $695 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 1.17-1.35 (m, 5H), 1.42-1.55 (m, 2H), 1.67-1.76 (m, 2H), 1.79-1.90 (m, 2H), 2.02 (br t, 2H, J 11.2 Hz), 2.92 (br d, $2 \mathrm{H}, \mathrm{J}$ 11.8 Hz), 3.46 (t, 2H, J 6.7 Hz), $3.53(\mathrm{~s}, 2 \mathrm{H}), 7.23-7.38(\mathrm{~m}, 5 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 27.2,33.8,35.0,35.3,37.6$ (two carbons), 55.6, 65.3, 129.3, 130.1, 131.8, 139.1. MS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}(\%) 312 / 310(98 / 100)[M+\mathrm{H}]^{+} . \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{BrN}(310.3)$.

4.1.18. 1-Benzyl-4-(4-(imidazol-1-yl)butyl)piperidine (28)

In a $5-\mathrm{mL}$ pressure vial imidazole $(0.15 \mathrm{~g}, 2.2 \mathrm{mmol})$ and finely ground potassium carbonate ($0.35 \mathrm{~g}, 2.53 \mathrm{mmol}$) were suspended in anhydrous acetonitrile (4 mL). Bromide 27 ($0.52 \mathrm{~g}, 1.69 \mathrm{mmol}$) was added and the mixture was kept under vigorous stirring at $70^{\circ} \mathrm{C}$ for 16 h . Insoluble material was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 15 \mathrm{~mL})$. The combined filtrates were evaporated to dryness and the residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). The fractions containing the product were combined and the solvent was removed under reduced pressure. Uptake of the oily residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and removal of the volatiles in vacuo yielded 28 as a yellowish oil, which crystallized during storage at $-20^{\circ} \mathrm{C}$ to a give white compact solid ($0.28 \mathrm{~g}, 56 \%$). $R_{f}=0.7\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3}$: C, 76.72 ; H, 9.15; $\mathrm{N}, 14.13$; found: C, 76.92; H, 9.01 ; N , 13.90. IR (Nujol) 1230, 1110, $1075 \mathrm{~cm}^{-1} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 1.15-1.37(\mathrm{~m}, 7 \mathrm{H}), 1.67(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, J$ ca 9.8 Hz), $1.73-1.84(\mathrm{~m}, 2 \mathrm{H}), 2.01$ (br t, 2H, J 11.3 Hz), 2.90 (br d, $2 \mathrm{H}, \mathrm{J}$ $11.8 \mathrm{~Hz}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, 2 \mathrm{H}, J 7.0 \mathrm{~Hz}), 6.98(\mathrm{t}, 1 \mathrm{H}, J 1.2 \mathrm{~Hz})$, $7.13(\mathrm{t}, 1 \mathrm{H}, J 1.2 \mathrm{~Hz}), 7.25-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 25.5,33.1,33.7,37.5,37.8,48.8,55.6$, 65.2, 121.4, 129.3, 129.8, 130.1, 131.8, 139.1, 139.2. MS (ESI, MeOH) $m / z(\%) 595(100)[2 M+H]^{+}, 298(72)[M+H]^{+} . \mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{3}(297.4)$.

4.1.19. 1-Benzyl-4-(4-(4-methylpiperazin-1-yl)butyl)piperidine (29)

In a $20-\mathrm{mL}$ pressure vial N-methylpiperazine (0.30 g , 3.02 mmol) was dissolved in anhydrous acetonitrile (3 mL). Finely ground potassium carbonate ($1.28 \mathrm{~g}, 9.28 \mathrm{mmol}$) and bromide 27 ($0.72 \mathrm{~g}, 2.32 \mathrm{mmol}$) (dissolved in 5 mL of acetonitrile) were added and the mixture was kept under vigorous stirring at $100^{\circ} \mathrm{C}$ for 2 h . The suspension was transferred to a round bottom flask and the solvent was evaporated. The residue was taken up in saturated aq $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL}$ and $2 \times 20 \mathrm{~mL}$), the combined extracts were washed with water (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated and the product was purified by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 400: 40: 1$ to 200:50:1. Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake of the oily residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette followed by removal of the solvent in vacuo yielded a yellowish oil, which crystallized at $-20^{\circ} \mathrm{C}$ to afford product 29 as a white crystalline compact solid $(0.66 \mathrm{~g}, 86 \%) \mathrm{mp} 36-37^{\circ} \mathrm{C} . R_{f}=0.5\left(\mathrm{CH}_{2}\right.$
$\mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 200:50:1). IR (Nujol) 2785, 2765, 1285, $1165 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 1.18-1.42 (m, 7 H), $1.46-1.58$ (m, 2H), 1.71 (br d, $2 \mathrm{H}, J$ ca 9.7 Hz), 2.03 (br t, 2 H , J ca 11.2 Hz), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.32-2.80(\mathrm{br} \mathrm{m}, 10 \mathrm{H}), 2.92$ (br d, 2H, J ca 11.6 Hz), $3.54(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.37(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3-}$ OD) $\delta(\mathrm{ppm}) 26.6,28.5,33.8,37.6,38.4,46.8,54.6,55.7,56.4,60.5$, 65.3, 129.3, 130.1, 131.8, 139.1. MS (ESI, MeOH) m / z (\%) 352 (5) $[M+\mathrm{Na}]^{+}, 330(100)[M+\mathrm{H}]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{3}\right]^{+} 330.2909$, found: 330.2900. $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{~N}_{3}$ (329.5).

4.1.20. 4-(4-(Imidazol-1-yl)butyl)piperidine (30)

Under an atmosphere of argon, $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (100 mg) was added to a solution of compound $\mathbf{2 8}(574 \mathrm{mg}, 1.93 \mathrm{mmol})$ in MeOH $(12 \mathrm{~mL})$. The mixture was vigorously stirred under a low pressure of hydrogen (12 kPa) for 24 h . After the first 2 h and then 6 h , more catalyst was added (50 mg each). The catalyst was filtered off and the solvent was removed under reduced pressure. The yellow oily residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 500: 25: 1$ to $75: 75: 1$), which afforded $\mathbf{3 0}$ as a yellowish oil ($319 \mathrm{mg}, 80 \%$). $R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq NH_{3} 200:40:1). IR (neat) 3390 br, 3285 br, 3105, 2925, 2850, 1510, $1450,1370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.05-1.21$ (m, 2H), 1.26-1.46 (m, 5H), 1.70 (br d, $2 \mathrm{H}, \mathrm{J}$ ca 13.3 Hz), 1.76-1.86 (m, 2H), 2.59 (dt, 2H, J 12.42 .7 Hz), 3.04 (td, 2H, J 12.22 .8 Hz), $4.05(\mathrm{t}, 2 \mathrm{H}, J 7.0 \mathrm{~Hz}), 6.99(\mathrm{t}, 1 \mathrm{H}, J$ ca 1.0 Hz$), 7.15(\mathrm{t}, 1 \mathrm{H}, J$ ca 1.1 Hz), 7.67 (br s, 1 H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 25.2, 33.1, 34.4, 37.8, 38.4, 47.8, 48.8, 121.4, 129.8, 139.2. MS (ESI, MeOH) $m / z(\%) 415(90)[2 M+H]^{+}, 208(100)[M+H]^{+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{3}\right]^{+}$208.1814, found: 208.1802. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{~N}_{3}$ (207.3).

4.1.21. N-Methyl- N^{\prime}-(4-(piperidin-4-yl)butyl)piperazine (31)

Under an atmosphere of argon, $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (60 mg) was added to a solution of compound $29(0.46 \mathrm{~g}, 1.39 \mathrm{mmol})$ in MeOH $(12 \mathrm{~mL})$. A slow stream of hydrogen was passed through a glass tube into the vigorously stirred suspension for 24 h (after 5 h more $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (60 mg) was added). The catalyst was filtered off, the solvent was removed under reduced pressure and the oily residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 400: 40: 1$ to 50:50:1). Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake of the oil in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette followed by removal of the solvent in vacuo yielded 31 as a yellowish oil, which solidified during storage at $4{ }^{\circ} \mathrm{C}(0.31 \mathrm{~g}, 93 \%) . R_{f}=0.15\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq NH_{3} 100:25:1). IR (neat) $3280 \mathrm{br}, 2930,2795,1445,1370 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.14(\mathrm{dq}, 2 \mathrm{H}, J 12.23 .6 \mathrm{~Hz}$), 1.25-1.46 (m, 5H), 1.47-1.59 (m, 2H), 1.73 (br d, 2H, J са 12.6 Hz), 2.31 (s, 3H), 2.32-2.90 (br m, 12H), 3.05 (br d, 2H, J ca 12.3 Hz). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 26.4, 28.6, 34.7, 38.0, 39.0, 46.9, 47.9, 54.6, 56.4, 60.5. MS (ESI, MeOH) m/z (\%) 240 (100) $[M+H]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{3}\right]^{+}$ 240.2440, found: 240.2428. $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{~N}_{3}$ (239.4).

4.1.22. tert-Butyl 2-aminoethylcarbamate (33) ${ }^{56}$

Compound 33 was prepared from ethane-1,2-diamine (24 g , 0.4 mol) and di-tert-butyl dicarbonate ($8.72 \mathrm{~g}, 40 \mathrm{mmol}$) using a described procedure, ${ }^{57}$ and was obtained as a yellowish oil $(6.21 \mathrm{~g}, 97 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ (ppm) 1.39 (s, 9H), $1.43(\mathrm{~s}, 2 \mathrm{H}), 2.74(\mathrm{t}, 2 \mathrm{H}, J 5.9 \mathrm{~Hz}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 28.5,41.9,43.4,79.2,156.3$. $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ (160.2).

4.1.23. 4-((N-(N-tert-Butoxycarbonyl-2-aminoethyl)-3-amino-3-oxo)propenyl) 1 H -imidazole (34)

Urocanic acid (32) ($4.74 \mathrm{~g}, 34.33 \mathrm{mmol}$), amine 33 (5.5 g , 34.33 mmol) and HOBt ($5.26 \mathrm{~g}, 34.33 \mathrm{mmol}$) were suspended/dis-
solved in DMF (50 mL) and the mixture was cooled to $0^{\circ} \mathrm{C}$. N -(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($6.91 \mathrm{~g}, 36.05 \mathrm{mmol}$) was added and the mixture was slowly warmed to rt and stirred overnight (The suspension turned to a clear orange solution after 2 h). The mixture was diluted with 2.5% aq $\mathrm{NaOH}(500 \mathrm{~mL})$ and brine (100 mL). Repeated treatment with EtOAc ($12 \times 200 \mathrm{~mL}$) afforded an extraction of product 34 only in low amounts and extraction with $\mathrm{CHCl}_{3}(2 \times 150 \mathrm{~mL})$ failed as well. Therefore, the aqueous phase was concentrated under reduced pressure at $40^{\circ} \mathrm{C}$ to a volume of 300 mL and then treated twice with $\mathrm{CHCl}_{3} / \mathrm{MeOH} 5: 1$ (500 and 400 mL). The organic phases were combined with the earlier EtOAc and CHCl_{3} extracts and removal of the volatiles under reduced pressure yielded a yellow liquid (ca 50 mL). DMF was removed under reduced pressure ($50^{\circ} \mathrm{C}, 10 \mathrm{mbar}$) and the residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1$ to $10: 1$). Removal of the solvent from the eluate under reduced pressure, uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(80 \mathrm{~mL})$, evaporation, uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ followed by removal of the solvent in vacuo afforded 34 as a white powder ($8.27 \mathrm{~g}, 86 \%$), mp $159-161^{\circ} \mathrm{C}$. A minor fraction was recrystallized from acetone/EtOAc to yield colorless needles, mp $165-167^{\circ} \mathrm{C}$. $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$: C, 55.70 ; H, 7.19; N, 19.99; found: C, 55.65; H, 7.29; N, 19.86. IR (Nujol) $3355,3300,1685,1665,1630,1530 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) $\delta(\mathrm{ppm}) 1.46(\mathrm{~s}, 9 \mathrm{H}), 3.23(\mathrm{t}, 2 \mathrm{H}, J 6.2 \mathrm{~Hz}), 3.39(\mathrm{t}, 2 \mathrm{H}, J 6.2 \mathrm{~Hz})$, 6.52 (d, 1H, J 15.6 Hz), 7.36 (s, 1H), 7.46 (d, 1H, J 15.6 Hz), 7.77 (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 29.6,41.5,42.0,81.0$, 120.1, 123.2 (br), 133.1, 137.5 (br), 139.2, 159.4, 170.2. MS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}(\%) 583$ (76) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 319$ (38) $[M+\mathrm{K}]^{+}, 303$ (100) $[M+\mathrm{Na}]^{+}, 281$ (17) $[\mathrm{M}+\mathrm{H}]^{+}, 203$ (26) $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{CO}_{2}+\mathrm{Na}\right]^{+}, 181$ (22) $\left[M-\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{CO}_{2}+\mathrm{H}\right]^{+}, \mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{3}$ (280.32).
4.1.24. 1-(4-(1-Benzylpiperidin-4-yl)butyl)-4-((N-(N-tert-butox-ycarbonyl-2-aminoethyl)-3-amino-3-oxo)propenyl) 1 H -imidazole (35a)/1-(4-(1-benzylpiperidin-4-yl)butyl)-5-((N-(N-tert-butoxy-carbonyl-2-aminoethyl)-3-amino-3-oxo)propenyl)1H-imidazole (35b)

Compound 34 ($3.35 \mathrm{~g}, 11.95 \mathrm{mmol}$) and finely ground potassium carbonate ($8.26 \mathrm{~g}, 59.76 \mathrm{mmol}$) were suspended in anhydrous acetonitrile (40 mL). Bromide $27(3.89 \mathrm{~g}, 12.55 \mathrm{mmol})$ was added and the mixture was vigorously stirred under reflux for $4 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(250 \mathrm{~mL})$ and saturated aq $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{~mL})$ were added, the mixture was vigorously shaken, the phases were separated, and the aqueous phase treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The organic phases were combined, washed with water (50 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the pale yellow, solid residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40: 1$ to $10: 1$), which afforded a mixture of product 35a and the by-product 35b (ratio: 7:1) as a white powder ($5.56 \mathrm{~g}, 91 \%$). A portion $(1.16 \mathrm{~g})$ of this material was re-chromatographed (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1$ to $5: 1$) to yield pure product $35 a(0.76 \mathrm{~g}) \mathrm{mp} 184-186^{\circ} \mathrm{C}$ from the first fraction of the eluate, a $3: 1$ mixture of $\mathbf{3 5 a}$ and $\mathbf{3 5 b}$ (0.32 g) from the medium fraction, and a $1: 10$ mixture of $\mathbf{3 5 a}$ and $\mathbf{3 5 b}(16 \mathrm{mg})$ from the last fraction. 35a: $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{3}$: C, 68.34; H, 8.50; N, 13.74; found: C, 68.32 ; $\mathrm{H}, 8.75$; $\mathrm{N}, 13.62$. IR (Nujol) 3255, 1705, 1670, $1630 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}) 0.99-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.37(\mathrm{~s}, 9 \mathrm{H}), 1.55$ (br d, $2 \mathrm{H}, \mathrm{J}$ ca 10.9 Hz), 1.66 (br s, 2 H), 1.85 (t, $2 \mathrm{H}, \mathrm{J} 10.5 \mathrm{~Hz}$), 2.74 (br d, $2 \mathrm{H}, J$ ca 11.5 Hz), 3.01 (q, $2 \mathrm{H}, J$ ca 6.1 Hz), 3.17 (q, $2 \mathrm{H}, J$ $6.2 \mathrm{~Hz}), 3.40(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{t}, 2 \mathrm{H}, \mathrm{J} 7.0 \mathrm{~Hz}), 6.48$ (d, 1H, J 15.3 Hz), $6.82(\mathrm{t}, 1 \mathrm{H}, J 5.5 \mathrm{~Hz}), 7.18-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J 0.9 \mathrm{~Hz}), 7.66$ $(\mathrm{s}, 1 \mathrm{H}), 8.01(\mathrm{t}, 1 \mathrm{H}, J 5.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}) δ (ppm) 23.1, 28.2, 30.6, 31.9, 35.1, 35.5, 38.8, 39.9, 46.1, 53.3, 62.5, 77.6, 118.3, 121.5, 126.7, 128.1, 128.7, 131.5, 137.6, 138.7 (two carbons), 155.6, 165.9. MS (ESI, MeOH) $\mathrm{m} / \mathrm{z}(\%) 1041$ (10) [$2 \mathrm{M}+\mathrm{Na}]^{+}$,

1019 (39) $[2 \mathrm{M}+\mathrm{H}]^{+}, 532$ (19) $[\mathrm{M}+\mathrm{Na}]^{+}, 510$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 266.5$ (25) $[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+}$ 510.3444, found: 510.3437. $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{3}$ (509.68).

Compound 35b: $R_{f}=0.55 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} \quad 5: 1\right) .{ }^{1} \mathrm{H} \quad \mathrm{NMR}$ (300 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm}) 0.98-1.14(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{br} \mathrm{s}, 4 \mathrm{H})$, 1.37 (s, 9H), 1.49-1.67 (m, 4H), 1.84 (br t, 2H, J ca 11.1 Hz), 2.74 (br d, $2 \mathrm{H}, J$ ca 11.5 Hz), 3.01 (q, $2 \mathrm{H}, J$ ca 6.0 Hz), 3.18 (q, $2 \mathrm{H}, J$ 6.2 Hz), 3.39 (s, 2H), $4.05(\mathrm{t}, 2 \mathrm{H}, J 6.9 \mathrm{~Hz}), 6.40(\mathrm{~d}, 1 \mathrm{H}, J 15.8 \mathrm{~Hz})$, $6.85(\mathrm{t}, 1 \mathrm{H}, J 5.6 \mathrm{~Hz}), 7.18-7.33$ (m, 7H), 7.75 (d, 1H, J 0.8 Hz), 8.18 (t, 1H, J 5.5 Hz). ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO-d d_{6}) $\delta(\mathrm{ppm}) 23.0$, 28.2, 30.6, 31.9, 35.1, 35.4, 39.0, 39.8, 44.3, 53.3, 62.5, 77.6, 120.0, 124.5, 126.7, 128.1 (two carbons), 128.7, 129.9, 138.7, 140.3, 155.6, 165.1. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+} 510.3444$, found: 510.3432. $\mathrm{C}_{29} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{3}$ (509.68).

4.1.25. 1-(4-Piperidin-4-yl-butyl)-4-((N-(N-tert-butoxycarbonyl-2-aminoethyl)-3-amino-3-oxo)propyl) 1 H -imidazole (36)

Under an atmosphere of argon, $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (500 mg) was added to a solution of compound $\mathbf{3 5 a} / \mathbf{3 5 b}(7: 1)(4.11 \mathrm{~g}, 8.06 \mathrm{mmol})$ in $\mathrm{MeOH}(25 \mathrm{~mL})$. A slow stream of hydrogen was passed through a glass tube into the vigorously stirred suspension for 29 h (after 5 h and 21 h more catalyst was added, 200 mg each). The catalyst was filtered off, the solvent was removed under reduced pressure and the colorless oily residue, which showed only one component by TLC, was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 800: 40: 1$ to 100:50:1). The forerun of the eluate contained a single product $\mathbf{3 6}$ by NMR spectroscopy. The residual eluate contained an 85:15 mixture of product $\mathbf{3 6}$ and what was presumed to be the equivalent 1,5 -disubstitued imidazole derivative, respectively. The solvent was removed from the eluates under reduced pressure, the residues were dried in vacuo and then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 and 12 mL , respectively). The solutions were filtered through a cotton wool packed Pasteur pipette and the solvent was removed in vacuo. The first fraction afforded pure product 36 as a pale yellow oil, which solidified to a white crystalline solid ($0.36 \mathrm{~g}, 11 \%$) mp $110-113{ }^{\circ} \mathrm{C}$. The second fraction afforded a mixture of product $\mathbf{3 6}$ and the above mentioned by-product (ratio ca $86: 14)$ as a yellowish resin ($2.64 \mathrm{~g}, 78 \%$). $R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ 28% aq $\mathrm{NH}_{3} 100: 20: 1$). Anal. calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{3} 0.5 \mathrm{H}_{2} \mathrm{O}$: C, 61.36; H, 9.13; N, 16.27; found: C, 61.56; H, 9.48; N, 16.10. IR (Nujol) 1700, 1645, $1540 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 1.05-1.21 (m, 2H), 1.23-141 (m, 5H), 1.46 (s, 9H), 1.70 (br d, $2 \mathrm{H}, J$ ca 14 Hz), $1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, 2 \mathrm{H}, J 7.6 \mathrm{~Hz}), 2.59$ (dt, 2H, J 12.32 .5 Hz), 2.84 (t, 2H, J 7.6 Hz), 3.05 (br d, $2 \mathrm{H}, J$ $12.4 \mathrm{~Hz}), 3.14(\mathrm{t}, 2 \mathrm{H}, J 6.0 \mathrm{~Hz}), 3.25(\mathrm{t}, 2 \mathrm{H}, J 6.1 \mathrm{~Hz}), 3.98(\mathrm{t}, 2 \mathrm{H}, J$ $7.0 \mathrm{~Hz}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ (ppm) 25.3, 26.0, 29.6, 33.1, 34.4, 37.76, 37.83, 38.4, 41.3, 41.8, $47.8,48.8,80.9,117.8,138.7,142.6,159.3,176.4$. MS (ESI, MeOH) $\mathrm{m} / \mathrm{z}(\%) 843(6)[2 \mathrm{M}+\mathrm{H}]^{+}, 444(4)[\mathrm{M}+\mathrm{Na}]^{+}, 422(100)[\mathrm{M}+\mathrm{H}]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+}$422.3131, found: 422.3124. $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{3}$ (421.58).

4.1.26. $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-Bis(4-(1-benzylpiperidin-4-yl)butyl)piperazine (38)

In a $20-\mathrm{mL}$ pressure vial piperazine ($0.18 \mathrm{~g}, 2.09 \mathrm{mmol}$) was dissolved in anhydrous acetonitrile (8 mL). Finely ground potassium carbonate $(2.31 \mathrm{~g}, \quad 16.72 \mathrm{mmol})$ and bromide $27(1.33 \mathrm{~g}$, 4.28 mmol) were added and the mixture was kept under vigorous stirring at $100^{\circ} \mathrm{C}$ for 2 h . The suspension was transferred to a round bottom flask, the solvent was evaporated and the residue was taken up in saturated aq $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$. The product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40,30 and 20 mL), the combined extracts were washed with water (10 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated and the product was column chromatographed (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$ to $5: 1$). Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake of the white solid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$, filtration of the solu-
tion with a cotton wool packed Pasteur pipette followed by removal of the solvent in vacuo yielded product $\mathbf{3 8}$ as a white solid ($0.55 \mathrm{~g}, 48 \%$) mp 104-105 ${ }^{\circ} \mathrm{C}$ (soluble in chloroform, but insoluble in MeOH and DMSO). $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq NH_{3} 200:20:1). Anal. calcd for $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{4}$: C, 79.36; $\mathrm{H}, 10.36 ; \mathrm{N}, 10.28$; found: C, 79.52; H, 10.55; N, 10.14. IR (Nujol) 2805, 2765, $1350 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.13-1.34(\mathrm{~m}$, 14 H), $1.39-1.51(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 4 \mathrm{H}), 1.90(\mathrm{br} \mathrm{t}, 4 \mathrm{H}, J$ ca 10.9 Hz), 2.27-2.34 (m, 4H), 2.46 (br s, 8H), 2.85 (br d, 4H, J ca 10.9 Hz), 3.47 (s, 4H), $7.20-7.34$ (m, 10H). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 25.0,27.3,32.5,35.8,36.7,53.4,54.1,59.0,63.7$, 127.0, 128.2, 129.4, 138.8. MS (ESI, MeOH/10 mM HCl 10:1) m/z (\%) $581(27)[M+2 \mathrm{H}+\mathrm{Cl}]^{+}, 545$ (2) $[M+\mathrm{H}]^{+}, 273$ (100) $[M+2 \mathrm{H}]^{2+}$. $\mathrm{C}_{36} \mathrm{H}_{56} \mathrm{~N}_{4}$ (544.86).

4.1.27. N, N^{\prime}-Bis(4-(piperidin-4-yl)butyl)piperazine (39)

Under an atmosphere of argon, $10 \% \mathrm{Pd} / \mathrm{C}$ catalyst (100 mg) was added to a solution of compound $\mathbf{3 8}(0.49 \mathrm{~g}, 0.90 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$ and $\mathrm{MeOH}(5 \mathrm{~mL})$. A slow stream of hydrogen was passed through a glass tube into the vigorously stirred suspension for 48 h (after 7 h and 23 h more catalyst was added, 50 and 80 mg , respectively). The catalyst was filtered off, the solvent was removed under reduced pressure and the oily residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 400:20:1 to 75:75:1). Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake in MeOH (6 mL) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette followed by removal of the solvent in vacuo yielded 39 as a white crystalline solid ($0.22 \mathrm{~g}, 66 \%$) mp $>240{ }^{\circ} \mathrm{C}$ (decomp.). $R_{f}=0.1\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 100: 25: 1\right)$. IR (Nujol) $3460,1400 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ $1.33-1.53(\mathrm{~m}, 12 \mathrm{H}), 1.60-1.80(\mathrm{~m}, 6 \mathrm{H}), 1.98$ (br d, $4 \mathrm{H}, J$ ca 12.7 Hz), 2.87-3.07 (m, 8H), 3.10-3.48 (br m, 12H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 25.5,26.7,30.8,35.4,37.3,46.1,52.2$, 58.9. MS (ESI, MeOH) m/z (\%) 365 (3) $[M+H]^{+}, 190$ (27) $\left[M+2 \mathrm{NH}_{4}\right]^{2+}, 183(100)[M+2 \mathrm{H}]^{2+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{~N}_{4}\right]^{2+}$ 183.1861, found: 183.1853. $\mathrm{C}_{22} \mathrm{H}_{44} \mathrm{~N}_{4}$ (364.61).

4.1.28. 5-((4-(3-N-(tert-Butoxycarbonyl)aminopropyl)piperidin-

 1-yl)acetyl)-5H-dibenzo[b,e]-[1,4]diazepin-11(10H)-one.0.5 EtO_{2} (44)Compound 44 was prepared from amine 23 ($1.88 \mathrm{~g}, 7.75 \mathrm{mmol}$) and compound 43 ($2.11 \mathrm{~g}, 7.35 \mathrm{mmol}$) using the procedure for the preparation of 29. Eluent for column chromatography: $\mathrm{Et}_{2} \mathrm{O}$ to CH_{2} $\mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 100: 100: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 50: 1$. Removal of the volatiles from the eluate under reduced pressure and drying in vacuo afforded 44 as a slightly tan colored glass $(2.16 \mathrm{~g}, 60 \%) \mathrm{mp}$ $>120^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$. Anal. calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 0.5 \quad \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}: \mathrm{C}, 68.03 ; \mathrm{H}, 7.80 ; \mathrm{N}, 10.58$; found: $68.25 ; \mathrm{H}, 7.73$; N, 10.51. IR (Nujol) 1710, 1680, 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 0.99-1.30 (m, 8H), 1.38-1.52 (m, 11.5H), 1.56 (br d, $1 \mathrm{H}, J$ ca 10.3 Hz), 1.63 (d, $0.5 \mathrm{H}, J$ 11.6 Hz), $1.87-2.04$ (m, 2H), 2.52 (br d, $0.45 \mathrm{H}, J$ ca 8.5 Hz), 2.65 (br d, $0.55 \mathrm{H}, J$ ca 8.2 Hz), $2.78-2.88(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}$), $3.03-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.51(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.0 \mathrm{~Hz}), 7.23-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $(\mathrm{t}, 0.45 \mathrm{H}, J 7.0 \mathrm{~Hz}), 7.41(\mathrm{t}, 0.55 \mathrm{H}, J 7.2 \mathrm{~Hz}), 7.45-7.56(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.61 (m, 1H), 7.64-7.70 (m, 1H), 7.86-7.94 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 16.3\left(\mathrm{Et}_{2} \mathrm{O}\right), 29.0,29.7,33.6 / 33.8 / 33.9$, 35.4, 37.0, 42.4, 55.6/55.8, 61.9/62.2, $67.7\left(\mathrm{Et}_{2} \mathrm{O}\right), 80.6,123.8$, $127.4,127.8,128.6,129.76,129.84,130.3,130.7,131.4,132.0$, 132.9/133.0, 135.1/135.5, 136.9, 137.8, 144.6/144.7, 159.4, 170.0/ 170.2, 172.1/172.4. MS (ESI, MeOH) m / z (\%) 1023 (12) $[2 M+K]^{+}$, 1007 (35) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 985$ (41) $[2 \mathrm{M}+\mathrm{H}]^{+}, 531$ (15) $[\mathrm{M}+\mathrm{K}]^{+}, 515$ (40) $[M+N a]^{+}, 493$ (100) $[M+H]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{4}\right]^{+} 493.2815$, found: 493.2805. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{4}$ (492.61).
4.1.29. 5-((4-(4-N-tert-Butoxycarbonyl-aminobutyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e]-[1,4]diazepin-11(10H)-one (45)

In a $20-\mathrm{mL}$ pressure vial compounds $43(2.16 \mathrm{~g}, 7.54 \mathrm{mmol})$ and 15 ($1.93 \mathrm{~g}, 7.54 \mathrm{mmol}$) were dissolved in anhydrous acetonitrile $(18 \mathrm{~mL})$. Finely ground potassium carbonate ($1.03 \mathrm{~g}, 7.39 \mathrm{mmol}$) was added and the mixture was kept under stirring in a microwave reactor at $100^{\circ} \mathrm{C}$ (pressure: ca 2 bar) for 100 min . Solid material was removed by filtration, the filtrate evaporated to dryness, and the residue subjected to column chromatography (eluent 1. column: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1$ to $5: 1$, eluent 2. column: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH}$ $100: 1$ to $5: 1$). Removal of the solvent under reduced pressure, reuptake in $\mathrm{Et}_{2} \mathrm{O}$ and removal of the solvent in vacuo afforded product 45 as a pale tan colored glass ($3.67 \mathrm{~g}, 93 \%$) mp 94-96 ${ }^{\circ} \mathrm{C} . R_{f}=0.3$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$. IR (Nujol) 3325, 3185, 1685, 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca $1.2: 1$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 0.97-1.18 (m, 2H), 1.18-1.37 (m, 5H), 1.39-1.50 (m, 11H), 1.50$1.68(\mathrm{~m}, 2 \mathrm{H}), 1.87-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{br} \mathrm{d}, 0.45 \mathrm{H}, J 8.2 \mathrm{~Hz}), 2.66$ (br d, $0.55 \mathrm{H}, J 8.3 \mathrm{~Hz}$), $2.85(\mathrm{t}, 1 \mathrm{H}, J 11.8 \mathrm{~Hz}), 3.03(\mathrm{t}, 2 \mathrm{H}, J 6.9 \mathrm{~Hz})$, $3.05-3.30(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, 0.45 \mathrm{H}, \mathrm{J} 7.3 \mathrm{~Hz})$, $7.42(\mathrm{t}, 0.55 \mathrm{H}, J 7.6 \mathrm{~Hz}), 7.46-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 1 \mathrm{H})$, 7.65-7.72 (m, 1H), 7.87-7.95 (m, 1H). ${ }^{13}$ C NMR ($100 \mathrm{MHz}, 293 \mathrm{~K}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 25.8,29.7,32.0,33.6 / 33.8,37.2,38.2,42.1,55.7 /$ $55.8,61.9 / 62.2,80.6,123.8 / 123.9,127.4,127.8,128.6,129.8$, 130.3, 130.8, 131.4, 131.9, 132.9/133.0, 135.1/135.6, 136.8, 137.8, 144.6/144.7, 159.4, 170.0/170.2, 172.1/172.3. MS (ESI, MeOH) m/z (\%) 545 (10) $[M+\mathrm{K}]^{+}, 529(55)[M+\mathrm{Na}]^{+}, 507$ (100) $[M+\mathrm{H}]^{+}, 451$ (14) $\left[M-\mathrm{C}_{4} \mathrm{H}_{8}+\mathrm{H}\right]^{+} . \mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{4}$ (506.6).

4.1.30. 5-((4-(3-Aminopropyl)piperidin-1-yl)acetyl)-5H-dibenzo-[b,e][1,4]diazepin-11(10H)-one $\cdot \mathrm{H}_{2} \mathrm{O}$ (46)

Compound $44(1.99 \mathrm{~g}, 4.04 \mathrm{mmol})$ was suspended in 5 M HCl $(12 \mathrm{~mL})$ and the mixture was stirred at rt for 90 min (turned to a clear solution within 15 min). Under ice cooling 28% aq NH_{3} (6 mL) was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50,30 and 20 mL). The pooled extracts were washed with water $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated and the product was column chromatographed (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 400: 20: 1$ to 100:25:2). Removal of the volatiles from the eluate under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and removal of the solvent in vacuo afforded product 46 as a white glass ($1.35 \mathrm{~g}, 85 \%$) mp $84-86^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.3\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq NH_{3} 100:20:1). Anal. calcd for C_{23} $\mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 67.29$; $\mathrm{H}, 7.37$; $\mathrm{N}, 13.65$; found: C, 67.43 ; H, 7.13 ; N, 13.51. IR (Nujol) 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca $1.2: 1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ 1.00-1.19 (m, 2H), 1.20-1.30 (m, 3H), 1.42-1.53 (m, 2.5H), 1.57 (d, 1H, J 11.5 Hz$), 1.64(\mathrm{~d}, 0.5 \mathrm{H}, J 11.9 \mathrm{~Hz}), 1.87-$ $2.04(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{br} \mathrm{d}, 0.45 \mathrm{H}, J 8.6 \mathrm{~Hz}), 2.60(\mathrm{t}, 2 \mathrm{H}, J 7.3 \mathrm{~Hz})$, 2.66 (br d, $0.55 \mathrm{H}, J 8.0 \mathrm{~Hz}), 2.79-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.25(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, 0.45 \mathrm{H}, J 7.0 \mathrm{~Hz}), 7.41(\mathrm{t}, 0.55 \mathrm{H}, J$ $7.2 \mathrm{~Hz}), 7.46-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.87-7.94 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 31.7, $33.6 / 33.8 / 33.9,35.6,37.2,43.6,55.6 / 55.8,61.9 / 62.2,123.8,127.4$, 127.8, 128.6, 129.8, 130.3, 130.7, 131.4, 132.0, 132.9/133.0, 135.1/135.5, 136.9, 137.8, 144.6/144.7, 170.0/170.2, 172.1/172.4. MS (ESI, MeOH) m/z (\%) $785(22)[2 M+H]^{+}, 393(100)[M+H]^{+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2}\right]^{+}$393.2291, found: 393.2277. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{2}$ (392.5).

4.1.31. 5-((4-(4-Aminobutyl)piperidin-1-yl)acetyl)-5H-dibenzo-[b,e][1,4]diazepin-11(10H)-one (47)

Compound 45 ($3.53 \mathrm{~g}, 6.97 \mathrm{mmol}$) was dissolved in 60 mL of a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and methanol ($10: 1 \mathrm{v} / \mathrm{v}$) and gaseous hydrochloric acid (generated from ammonium chloride and sulphuric acid) was passed through a glass tube into the stirred solution for

60 min. The solvent was removed under reduced pressure and the residue was taken up in chloroform (200 mL), 28% aq NH_{3} $(10 \mathrm{~mL})$ and 1% aq $\mathrm{NaOH}(70 \mathrm{~mL})$. After extraction the aqueous phase was separated from the organic phase followed by two more extractions with chloroform (100 mL each). The combined extracts were washed with water (40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated and the product was purified by column chromatography using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}$ and 28% aq NH_{3} as eluent ($R_{f}=0.4$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 80: 18: 2$). Removal of the solvent under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and removal of the solvent in vacuo afforded product 47 as a white glass ($2.63 \mathrm{~g}, 93 \%$) mp $65-68{ }^{\circ} \mathrm{C}$. Anal. calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$: C, 70.91; H, 7.44; N, 13.78; found: C, 70.75; H, $7.60 ; \mathrm{N}, 13.80$. IR (Nujol) $1660,1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm}) 0.97-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.45(\mathrm{p}$, $2 \mathrm{H}, \mathrm{J} 7.2 \mathrm{~Hz}$), 1.50-1.68 (m, 2H), 1.86-2.05 (m, 2H), 2.48-2.73 (m, $3 \mathrm{H}), 2.85(\mathrm{t}, 1 \mathrm{H}, \mathrm{J} 12.1 \mathrm{~Hz}), 3.00-3.30(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.32(\mathrm{~m}, 2 \mathrm{H})$, $7.36(\mathrm{t}, 0.45 \mathrm{H}, J 7.6 \mathrm{~Hz}), 7.42(\mathrm{t}, 0.55 \mathrm{H}, J 7.6 \mathrm{~Hz}), 7.46-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.86-7.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, 293 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 26.0,33.6 / 33.8,34.8$, 37.3, 38.3, 43.4, 55.7/55.8, 61.8/62.2, 123.8/123.9, 127.5, 127.8, 128.6, 129.8, 130.3, 130.8, 131.4, 131.9, 132.9/133.0, 135.1/135.6, 136.8, 137.8, 144.6/144.7, 170.0/170.2, 172.1/172.3. MS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}(\%) 469$ (25), 447 (93) $[M+K]^{+}, 407$ (100) $[M+\mathrm{H}]^{+}$. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{4} \mathrm{O}_{2}$ (406.5).

4.1.32. 5-((4-(3-Guanidinopropyl)piperidin-1-yl)acetyl)-5H-dib-enzo[b,e][1,4]diazepin-11(10H)-one bis(hydrotrifluoroacetate)

 (49)Guanidinylating reagent 48 ($146 \mathrm{mg}, 0.47 \mathrm{mmol}$), amine 46 ($176 \mathrm{mg}, \quad 0.45 \mathrm{mmol}$) and triethylamine ($23 \mathrm{mg}, 0.22 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL). The mixture was stirred at rt for 16 h and then subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1$ to $20: 1$) for purification of the Boc-protected intermediate ($R_{f}=0.3$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). The solvent was removed from the eluate under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL}$). Water ($100 \mu \mathrm{~L}$) and trifluoroacetic acid (TFA) (1 mL) were added and the solution was stirred at rt for $4 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added, the solvent was evaporated, and the process repeated. The residue was column chromatographed (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{TFA} 400: 40: 1$ to 300:100:1). The volatiles were removed from the eluate under reduced pressure, the oily residue was dissolved in 0.1% aq TFA (40 mL) and the solution was filtered through a $0.45 \mu \mathrm{~m}$ filter (Minisart RC 25, cellulose membrane, polypropylene housing, Sartorius Stedium Biotech GmbH, Goettingen, Germany). Lyophilisation afforded product 49 as a white hygroscopic solid (276.4 mg, 93\%). $R_{f}=0.2-0.3 \quad\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{TFA} \quad 200: 100: 1\right)$. Ratio of configurational isomers evident in the NMR spectra: ca 1.7:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 1.38 (br s, 2H), 1.47-1.66 (m, 5H), 1.91-2.02 (m, 2H), 2.98 (m, 1H), 3.09 (m, $1 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}$), $3.50(\mathrm{br} \mathrm{t}, 1 \mathrm{H}, J$ ca 10.6 Hz), $3.72-$ $3.85(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, 0.6 \mathrm{H}, J 16.7 \mathrm{~Hz}), 4.80(\mathrm{~d}, 0.35 \mathrm{H}, J$ $16.6 \mathrm{~Hz}), 7.28-7.33(\mathrm{~m}, 0.8 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 1.6 \mathrm{H}), 7.48-7.57$ $(\mathrm{m}, ~ 2.2 \mathrm{H}), 7.63-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{t}$, $0.35 \mathrm{H}, J 7.3 \mathrm{~Hz}), 7.93$ (d, $0.6 \mathrm{H}, J 7.7 \mathrm{~Hz}$), $8.00(\mathrm{~d}, 0.35 \mathrm{H}, J$ $7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 27.7,31.1,34.5$, 35.1, 43.2, 55.8/56.1, 58.9, 123.9, 124.5, 127.7, 128.4, 128.8, 129.4, 129.7, 130.3, 130.9, 131.4, 131.8, 132.1, 132.6, 132.8, $133.2 / 133.8,134.3,135.4,135.8,136.3,136.6,137.9,141.9$, 143.6, 159.6, 165.8/166.3, 169.4/169.7. MS (ESI, MeOH) m/z (\%) 435 (36) $[M+H]^{+}, 218$ (100) $[M+2 H]^{2+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+} 435.2508$, found: 435.2493, m/z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-} 112.9850$, found 112.9853. $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 2 \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(434.5+2 \times 114.025)$.
4.1.33. 5-((4-(4-Guanidinobutyl)piperidin-1-yl)acetyl)-5H-dibe-nzo[b,e][1,4]diazepin-11(10H)-one bis(hydrotrifluoroacetate) (50)

Compound 48 ($124 \mathrm{mg}, 0.4 \mathrm{mmol}$), amine 47 (148 mg , 0.36 mmol) and triethylamine ($18 \mathrm{mg}, 0.18 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The mixture was heated to $60^{\circ} \mathrm{C}$ in a microwave reactor for 50 min and then subjected to column chromatography. The Boc-protected intermediate was isolated using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH as eluent ($R_{f}=0.4$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). The solvent was removed under reduced pressure and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Water ($50 \mu \mathrm{~L}$) and TFA (1 mL) were added and the mixture was stirred at rt for $7 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added twice followed by evaporation. The product was purified by column chromatography using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH as eluent ($R_{f}=0.2-0.4$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{TFA} 200: 40: 1$). The eluent was supplemented with TFA (0.2%). After elution from column the solvent was evaporated and the oily residue was dissolved in 0.1% aq TFA (10 mL). Lyophilisation afforded the product as a white, hygroscopic solid ($167 \mathrm{mg}, 67 \%$). IR (KBr) 3385, 1675 , $1600 \mathrm{~cm}^{-1}$. Ratio of isomers evident in the NMR spectra: ca 1.8:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.32-1.48(\mathrm{~m}, 4.5 \mathrm{H})$, $1.48-1.66(\mathrm{~m}, 4.5 \mathrm{H}), 1.90-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.08$ (t, 1H, J 11.3 Hz), 3.19 (t, 2H, J 7.1 Hz), 3.48 (br s, 1H), 3.71-3.87 $(\mathrm{m}, 2 \mathrm{H}), 4.40-4.50(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dt}, 0.35 \mathrm{H}, \mathrm{J}$ $7.71 .3 \mathrm{~Hz}), 7.48-7.59(\mathrm{~m}, 2.2 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1.4 \mathrm{H}), 7.73$ (dt, $0.6 \mathrm{H}, ~ J 7.71 .5 \mathrm{~Hz}$), 7.79 (dt, $0.35 \mathrm{H}, J 7.71 .4 \mathrm{~Hz}$), 7.96 (dd, 0.6H, J $8.11 .5 \mathrm{~Hz}), 8.00(\mathrm{dd}, 0.35 \mathrm{H}, \mathrm{J} 7.71 .2 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{3}\right.$ OD) $\delta(\mathrm{ppm}) 25.4,30.7,31.3,35.2,37.1,43.2,55.9 / 56.2,58.8 / 58.9$, 116.0 (TFA), 117.8 (TFA), 123.9, 124.5, 127.7, 128.4, 128.8, 129.4, $129.8,130.3,131.0,131.4,131.8,132.1,132.6,132.8,133.2 / 133.9$, 134.3, 135.4/136.3, 135.8, 136.6, 137.9, 141.9, 143.6, 159.6, 165.8/166.3, 169.5/169.7. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{6} \mathrm{O}_{2}\right]^{+} 449.2665$, found: 449.2647, m / z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-}$ 112.9850, found 112.9845 . $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{6} \mathrm{O}_{2} \cdot 2 \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}$ $(448.6+2 \times 114.025)$.
4.1.34. N-tert-Butoxycarbonyl- $\mathrm{N}^{\mathbf{\prime}}$-(N -(2-tert-butoxycarbonylami-noethyl)aminocarbonyl)-S-methylisothiourea (51) ${ }^{58}$

N -Boc-S-methylisothiourea ($0.73 \mathrm{~g}, 3.84 \mathrm{mmol}$) and succinimidyl [2-(Boc-amino)ethyl]carbamate ($1.05 \mathrm{~g}, 3.49 \mathrm{mmol}$) were suspended in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). Triethylamine (0.18 g , 1.74 mmol) was added and the mixture was stirred at rt overnight. The volume was reduced by evaporation to about 8 mL and the solution was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 50: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). The volatiles were removed from the eluate under reduced pressure, the residue (colorless resin) was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$, the solvent evaporated, and the residue taken up in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ and n-hexane (5 mL). The volume was reduced by evaporation to about 2 mL resulting in the formation of two phases. Storage at $-20^{\circ} \mathrm{C}$ afforded 51 as white needles ($0.83 \mathrm{~g}, 63 \%$) $\mathrm{mp} 141-$ $142{ }^{\circ} \mathrm{C} . R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$: C, 47.86 ; H, 7.50 ; N, 14.88; found: C, 47.71 ; H, 7.50 ; N, 14.69 . ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm}) 1.43$ (s, 9H), 1.48 (s, 9H), 2.40 (br s, 3 H), $3.22-3.38$ (m, 4H), 4.91 (br s, 1H), 6.53 (br $\mathrm{s}, 1 \mathrm{H}), 12.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})$ 15.0, 28.3, 28.7, 40.5, 41.1, 80.0, 83.8, 151.0, 156.7. MS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}(\%) 399$ (100) $[M+\mathrm{Na}]^{+}, 299$ (27) $\left[M-\mathrm{C}_{4} \mathrm{H}_{8}-\mathrm{CO}_{2}+\mathrm{H}\right]^{+}$. $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$ (376.47).
4.1.35. 5-((4-(3-(2-(2-Aminoethylcarbamoyl)guanidin-1-yl)-propyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diazepin$\mathbf{1 1 (1 0 H)}$)-one tris(hydrotrifluoroacetate) (52)

Compound 51 ($397 \mathrm{mg}, 1.05 \mathrm{mmol}$) and amine 46 (455 mg , 1.16 mmol) were dissolved in DMSO (8 mL). Mercury(II)chloride ($429 \mathrm{mg}, 1.58 \mathrm{mmol}$) was added and the mixture was stirred at
rt overnight. Water (100 mL) and 28% aq NH_{3} (2 mL) were added and the Boc-protected intermediate was extracted with $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}(1: 1 \mathrm{v} / \mathrm{v}, 2 \times 100 \mathrm{~mL}$ and $2 \times 80 \mathrm{~mL})$. The pooled extracts were washed with brine (30 mL) and dried over Na_{2} SO_{4}. The volatiles were evaporated and the Boc-protected intermediate was isolated by column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1 ; R_{f}=0.6$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). Removal of the solvent under reduced pressure and drying in vacuo yielded a glass (585 mg), which was dissolved in MeOH $(10 \mathrm{~mL})$ and water (10 mL). TFA (1 mL) was added and the mixture was stirred for 72 h at rt , then concentrated under reduced pressure at $50^{\circ} \mathrm{C}$ to a volume of about 8 mL and filtered through a $0.45 \mu \mathrm{~m}$ filter (for filter type cf. exp. protocol of 49). The filtrate was diluted with water (80 mL) and lyophilisation afforded product 52 as a white fluffy, highly hygroscopic solid ($0.75 \mathrm{~g}, 82 \%$). Ratio of configurational isomers evident in the NMR spectra: ca $1.8: 1 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3}\right.$ OD) $\delta(\mathrm{ppm}) 1.40(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 1.47-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{p}, 2 \mathrm{H}, \mathrm{J}$ $7.5 \mathrm{~Hz}), 1.90-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.05-3.15(\mathrm{~m}$, $3 \mathrm{H}), 3.30(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 3.45-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{t}, 2 \mathrm{H}, J$ $5.7 \mathrm{~Hz}), 3.72-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{~d}, 0.65 \mathrm{H}, J 16.7 \mathrm{~Hz}), 4.49(\mathrm{~d}$, $0.35 \mathrm{H}, J 16.6 \mathrm{~Hz}$), $7.27-7.33(\mathrm{~m}, ~ 0.8 \mathrm{H}), 7.34-7.39(\mathrm{~m}, 1.2 \mathrm{H})$, 7.41 (t, $0.35 \mathrm{H}, J 7.3 \mathrm{~Hz}$), 7.48-7.57 (m, 2.3H), 7.63-7.73 (m, $2 \mathrm{H}), 7.78(\mathrm{t}, 0.35 \mathrm{H}, J 7.2 \mathrm{~Hz}), 7.93(\mathrm{~d}, 0.65 \mathrm{H}, J 8.0 \mathrm{~Hz}), 8.00$ (d, $0.35 \mathrm{H}, J 7.7 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 27.2, 31.2, 34.4, 35.0, 39.4, 41.6, 43.2, 55.8/56.1, 58.9, 115.8 (TFA), 117.7 (TFA), 119.6 (TFA), 121.6 (TFA), 123.9/124.5, 127.7, 128.4, 128.8, 129.4, 129.7, 130.3, 130.9, 131.4, 131.7, 132.1, 132.6, 132.8, 133.2/133.8, 134.3, 135.4, 135.8, 136.3, 136.6, 137.8, 141.8, 143.6, 156.6, 157.3, 162.9 (TFA), 163.2 (TFA), 163.4 (TFA), 163.6 (TFA), 165.8/166.3, 169.4/169.7. MS (ESI, MeOH) m/z (\%) 521 (6) $[M+H]^{+}, 261$ (100) $[M+2 H]^{2+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{37} \mathrm{~N}_{8} \mathrm{O}_{3}\right]^{+}$521.2989, found: 521.2978, m / z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-} 112.9850$, found 112.9868. $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{3} \cdot 3 \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(520.63+3 \times 114.025)$.
4.1.36. 5-((4-(4-(2-(2-Aminoethylcarbamoyl)guanidin-1-yl)-butyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diazepin11 (10 H)-one tris(hydrotrifluoroacetate) (53)

Compound 51 ($400 \mathrm{mg}, 1.06 \mathrm{mmol}$) and amine 47 (432 mg , 1.06 mmol) were dissolved in DMF (10 mL). Mercury(II)chloride ($432 \mathrm{mg}, 1.59 \mathrm{mmol}$) was added and the mixture was stirred at rt overnight. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(80 \mathrm{~mL})$ was added and insoluble material was removed by filtration. The volatiles were removed under reduced pressure, the residue was taken up in $\mathrm{Et}_{2} \mathrm{O}$ (100 mL), water (100 mL) and 28% aq $\mathrm{NH}_{3}(1 \mathrm{~mL})$ and the mixture was vigorously shaken. The aqueous phase was separated from the organic phase followed by two more extractions with $\mathrm{Et}_{2} \mathrm{O}$ (50 mL each). The pooled extracts were washed with brine $(30 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were evaporated and the Boc-protected intermediate was isolated by column chromatography using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH as eluent ($R_{f}=0.6$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1$). Removal of the solvent under reduced pressure and drying in vacuo yielded a glass, which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Water ($100 \mu \mathrm{~L}$) and trifluoroacetic acid (TFA) (1.5 mL) was added and the mixture was stirred for 4 h at $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added twice followed by evaporation. The product was purified by column chromatography using mixtures of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeOH as eluent. The eluent was supplemented with TFA (0.2%). As thin layer chromatography (TLC) analysis could not properly be performed using acidic conditions the product was analyzed using basic conditions ($R_{f}=0.3$ for CH_{2} $\mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 80: 18: 2$). The solvent was evaporated from the eluate and the oily residue was dissolved in 0.1% aq TFA (8 mL). Lyophilisation afforded product 53 as a pale brown, hygroscopic resin ($610 \mathrm{mg}, 66 \%$), which contained a small amount
of by-product (HRMS: found: $531.3182\left[\mathrm{M}^{\left.\left.+\mathrm{H}^{+}\right]\right) \text {. Using semi-pre- }}\right.$ parative reversed-phase HPLC, ${ }^{\dagger}$ a portion (40 mg) of this material was chromatographed to give pure product $53(24 \mathrm{mg})$ as a white, highly hygroscopic solid (after lyophilisation of the eluate). Ratio of configurational isomers evident in the NMR spectra: ca 1.7:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 1.33-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.61$ $(\mathrm{m}, 3 \mathrm{H}), 1.66(\mathrm{p}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 1.90-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.90-3.02(\mathrm{~m}$, $1 \mathrm{H}), 3.02-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{t}, 2 \mathrm{H}, J 5.7 \mathrm{~Hz}), 3.31(\mathrm{t}, 2 \mathrm{H}, J$ 7.1 Hz), 3.48 ($\mathrm{br} \mathrm{s}, 1 \mathrm{H}$), $3.53(\mathrm{t}, 2 \mathrm{H}, J 5.7 \mathrm{~Hz}$), $3.71-3.86(\mathrm{~m}, 2 \mathrm{H})$, $4.40-4.50(\mathrm{~m}, 1 \mathrm{H}), 7.30(\mathrm{t}, 0.6 \mathrm{H}, J 7.4 \mathrm{~Hz}), 7.33-7.44(\mathrm{~m}, 1.7 \mathrm{H})$, $7.48-7.59(\mathrm{~m}, 2.3 \mathrm{H}), 7.63-7.81(\mathrm{~m}, 2.4 \mathrm{H}), 7.93$ (dd, $0.65 \mathrm{H}, \mathrm{J} 8.0$ $1.3 \mathrm{~Hz}), 8.00(\mathrm{~d}, 0.35 \mathrm{H}, J 7.7 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 25.4, 30.1, 31.3, 35.2, 37.1, 39.4, 41.6, 43.2, 55.8/56.2, 58.9, 123.9/124.5, 127.7, 128.4, 128.7, 129.3, 129.7, 130.3, 131.0, 131.4, 131.7, 132.1, 132.6, 132.8, 133.2/133.9, 134.3, 135.4/136.3, 135.8, 136.6, 137.9, 141.9, 143.5, 156.6, 157.4, 163.3 (TFA), 163.6 (TFA), 164.0 (TFA), 164.4 (TFA), 165.8/166.3, 169.5/169.7. HRMS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{8} \mathrm{O}_{3}\right]^{+}$535.3145, found: 535.3132, m / z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-}$112.9850, found 112.9849. $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{~N}_{8} \mathrm{O}_{3} \cdot 3 \times$ $\mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(534.7+3 \times 114.025)$.

4.1.37. 5-((4-(3-(2-(2-Propionamidoethylcarbamoyl)guanidin-1-yl)propyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diaze-pin-11(10H)-one (54)

Compound 52 ($0.27 \mathrm{~g}, 0.31 \mathrm{mmol}$) and diisopropylethylamine ($0.15 \mathrm{~g}, 1.19 \mathrm{mmol}$) were dissolved in DMF (2 mL). Under stirring a solution of N -succinimidyl propionate ($51 \mathrm{mg}, 0.30 \mathrm{mmol}$) in DMF (0.3 mL) was added dropwise and the mixture was stirred at rt for 2.5 h . The solvent was removed under reduced pressure at $60^{\circ} \mathrm{C}$, the residue was dried in vacuo, then taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ and washed with 5% aq $\mathrm{NaOH}(10 \mathrm{~mL})$. As the product was evident in the aq phase by TLC analysis, it was extracted from the aq phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The organic layers were combined, washed with brine/water ($2: 1 \mathrm{v} / \mathrm{v}, 8 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles ware evaporated and the residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 400:20:1 to 200:40:1). Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$ and filtration of the solution with a cotton wool packed Pasteur pipette followed by removal of the solvent in vacuo afforded 54 as a white glass ($121 \mathrm{mg}, 70 \%$) $\mathrm{mp}>93^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 100: 20: 1\right)$. IR (Nujol) 3305 br , $1655,1600,1500 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca $1.2: 1 .{ }^{1} \mathrm{H}$ NMR $\left(700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$ $1.00-1.23$ (m, 5H), 1.27 (br s, 3H), 1.47-1.60 (m, 3.5H), 1.64 (br d, $0.5 \mathrm{H}, J$ ca 12 Hz), $1.89-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.22(\mathrm{q}, 2 \mathrm{H}, \mathrm{J} 7.6 \mathrm{~Hz}), 2.51$ (br s, 0.45 H), 2.65 (br s, 0.55 H), 2.79-2.89 (m, 1H), 3.02-3.09 (m, 0.5 H), $3.16(\mathrm{t}, 2 \mathrm{H}, J 6.6 \mathrm{~Hz}), 3.17-3.32(\mathrm{~m}, 5.5 \mathrm{H}), 7.24-7.32(\mathrm{~m}$, $2 \mathrm{H}), 7.35(\mathrm{t}, 0.45 \mathrm{H}, J 7.3 \mathrm{~Hz}), 7.42(\mathrm{t}, 0.55 \mathrm{H}, J 7.4 \mathrm{~Hz}), 7.46-7.52$ $(\mathrm{m}, 2.45 \mathrm{H}), 7.54(\mathrm{t}, 0.55 \mathrm{H}, J 7.2 \mathrm{~Hz}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.71$ $(\mathrm{m}, 1 \mathrm{H}), 7.89(\mathrm{~d}, 0.55 \mathrm{H}, J 7.5 \mathrm{~Hz}), 7.93(\mathrm{~d}, 0.45 \mathrm{H}, J 7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 11.3,28.3,31.1,33.5 / 33.7 / 33.8$, 35.4, 37.0, 41.2, 41.6, 43.0, 55.7, 61.8/62.2, 123.9, 127.4/127.8, 128.6, 129.76, 129.81, 130.2, 130.7, 131.4, 131.9, 132.8, 132.9/ 133.0, 135.1/135.5, 136.8, 137.7, 144.62/144.69, 161.5, 170.0/ 170.2, 172.1/172.3, 178.2. MS (ESI, MeOH) m / z (\%) 1153 (20) $[2 M+H]^{+}, 599(12)[M+N a]^{+}, 577(100)[M+H]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{8} \mathrm{O}_{4}\right]^{+}$577.3251, found: 577.3243. $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{8} \mathrm{O}_{4}$ (576.32).

[^1]
4.1.38. 5-((4-(4-(2-(2-Propionamidoethylcarbamoyl)guanidin-1-yl)butyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one (55)

Amine 53 ($265 \mathrm{mg}, 0.3 \mathrm{mmol}$) and triethylamine (153 mg , 1.51 mmol) were dissolved in a mixture of acetonitrile (4 mL) and DMF (0.8 mL). Two portions of N -succinimidyl propionate were added with a time lag of $15 \mathrm{~min}(1.20 .7 \mathrm{mg}, 0.12 \mathrm{mmol}$ in 0.4 mL of acetontrile; $2.10 .3 \mathrm{mg}, 0.06 \mathrm{mmol}$ in 0.2 mL of acetonitrile) and the mixture was stirred at rt for 45 min . The volatiles were removed under reduced pressure, the residue was taken up in a mixture of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL}), 1 \%$ aq $\mathrm{NaOH}(10 \mathrm{~mL})$ and 28% aq $\mathrm{NH}_{3}(0.5 \mathrm{~mL})$, and the mixture was vigorously shaken. The phases were separated and three more extractions with $\mathrm{Et}_{2} \mathrm{O}$ followed (10 mL each). The product could not be extracted using $\mathrm{Et}_{2} \mathrm{O}$, but an impurity which appeared nearby the product spot in TLC analysis. The product was extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL}, 8 \mathrm{~mL}$ and 6 mL). The EtOAc extracts were pooled, washed with water (5 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the product was column chromatographed using mixtures of CH_{2} Cl_{2}, MeOH and 28% aq NH_{3} as eluent ($R_{f}=0.5$ for $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq $\mathrm{NH}_{3} 80: 19: 1$). Removal of the solvent under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and removal of the solvent in vacuo afforded the product as a pale yellow solid ($93 \mathrm{mg}, 87 \%$) $\mathrm{mp}>80^{\circ} \mathrm{C}$ (turned to a resin). A portion (53 mg) of the product was dissolved in 0.2% aq TFA (28 mL) and the slightly cloudy solution was filtered through a $0.45 \mu \mathrm{~m}$ filter (for filter type cf. exp. protocol of 49). Lyophilisation yielded a white fluffy, hygroscopic solid ($\mathbf{5 5 . 2}$ TFA, 63 mg). IR (Nujol) (free base of 55) 3290, 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.7:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \mathbf{5 5} \cdot 2 \mathrm{TFA}$) δ (ppm) $1.14(\mathrm{t}, 3 \mathrm{H}, \mathrm{J} 7.7 \mathrm{~Hz}), 1.34-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.47-$ 1.61 (m, 3H), 1.66 (p, 2H, J 7.2 Hz), 1.95 (d, 1H, J 13.9 Hz), 2.01 (d, 1H, J 11.9 Hz), 2.23 (q, 2H, J 7.6 Hz), 2.92-3.01 (m, 1H), 3.08 (t, 1H, J 11.5 Hz), $3.30(\mathrm{t}, 2 \mathrm{H}, J 7.0 \mathrm{~Hz}$), $3.33(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 3.49(\mathrm{t}, 1 \mathrm{H}$, $J 11.5 \mathrm{~Hz}), 3.72-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (d, $0.65 \mathrm{H}, J 16.7 \mathrm{~Hz}), 4.48$ (d, $0.35 \mathrm{H}, J 16.7 \mathrm{~Hz}$), $7.28-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dt}, 0.4 \mathrm{H}, J 7.71 .1 \mathrm{~Hz})$, $7.49-7.58(\mathrm{~m}, 2.2 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1.4 \mathrm{H}), 7.72(\mathrm{dt}, 0.6 \mathrm{H}, J 7.7$ $1.4 \mathrm{~Hz}), 7.79(\mathrm{t}, 0.4 \mathrm{H}, J 7.4 \mathrm{~Hz}), 7.93$ (dd, $0.6 \mathrm{H}, J 8.01 .3 \mathrm{~Hz}$), 8.00 (dd, $0.4 \mathrm{H}, J 7.81 .0 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, 55 \cdot 2 \mathrm{TFA}$) δ (ppm) 11.2, 25.4, 30.1, 31.0, 31.3, 35.2, 37.1, 40.7, 41.3, 43.1, 55.9/56.2, 58.8/58.9, 115.6 (TFA), 117.5 (TFA), 119.4 (TFA), 121.3 (TFA), 124.0/124.5, 127.7, 128.4, 128.7, 129.3, 129.7, 130.3, 131.0, 131.4, 131.7, 132.1, 132.6, 132.8, 133.2/133.9, 134.3, 135.4/136.3, $135.8,136.6,137.9,141.9,143.5,156.7,162.4$ (TFA), 162.7 (TFA), 162.9 (TFA), 163.2 (TFA), 165.8/166.3, 169.4/169.7, 178.4. MS (ESI, MeOH) m/z (\%) 613 (11) $[M+N a]^{+}, 591[M+]^{+}(100), 475$ (13), 432 (27). HRMS (ESI, MeOH, $\mathbf{5 5 . 2}$ TFA) m / z calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{43} \mathrm{~N}_{8} \mathrm{O}_{4}\right]^{+}$591.3407, found: 591.3396, m/z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-}$ 112.9850 , found 112.9849. $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{~N}_{8} \mathrm{O}_{4}$ (590.7).

4.1.39. 5-((4-(3-(2-(2-(4-Fluorobenzamido)ethylcarbamoyl)gua-nidin-1-yl)propyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]-diazepin-11(10H)-one (56)

Compound 56 was prepared from amine $52(0.26 \mathrm{~g}, 0.30 \mathrm{mmol})$ and N-succinimidyl 4-fluorobenzoate ($68 \mathrm{mg}, 0.29 \mathrm{mmol}$) using the procedure for the synthesis of 54 . The product 56 was obtained as a white glass ($103 \mathrm{mg}, 56 \%$) $\mathrm{mp}>97^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq $\left.\mathrm{NH}_{3} 100: 20: 1\right)$. Anal. calcd for C_{34} $\mathrm{H}_{39} \mathrm{FN}_{8} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 61.80 ; \mathrm{H}, 5.95 ; \mathrm{N}, 16.96$; found: C, 61.82 ; H , 6.29 ; N, 16.56. IR (Nujol) $3325 \mathrm{br}, 1655,1600,1500 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ 0.98-1.20 (m, 2H), 1.25 (br $\mathrm{s}, 3 \mathrm{H}$), $1.43-1.58(\mathrm{~m}, 3.5 \mathrm{H}), 1.62$ (br d, $0.5 \mathrm{H}, \mathrm{J}$ ca 11 Hz), $1.87-$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{br} \mathrm{s}, 0.45 \mathrm{H}), 2.64$ (br s, 0.55 H$), 2.78-2.87$ (m, 1 H), $3.02-3.08(\mathrm{~m}, 0.5 \mathrm{H}), 3.14(\mathrm{t}, 2.5 \mathrm{H}, J 6.5 \mathrm{~Hz}), 3.16-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.50(\mathrm{t}, 2 \mathrm{H}, J 5.8 \mathrm{~Hz}), 7.15-7.21(\mathrm{~m}, 2 \mathrm{H})$,
$7.24-7.31$ (m, 2H), 7.34 (t, 0.45H, J 7.2 Hz), 7.41 (t, 0.55H, J 7.4 Hz), $7.45-7.51(\mathrm{~m}, 1.45 \mathrm{H}), 7.53(\mathrm{t}, 0.55 \mathrm{H}, J 7.3 \mathrm{~Hz}), 7.56-7.60(\mathrm{~m}, 1 \mathrm{H})$, $7.64-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.94(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 28.4,33.5 / 33.7 / 33.8,35.6,37.0,41.2,42.8,42.9,55.6,61.8 /$ $62.2,117.1,117.2,123.9,127.4 / 127.8,128.6,129.75,129.81,130.3$, 130.7, 131.4, 131.7, 131.8, 131.9, 132.9/133.0, 135.1/135.5, 136.8, 137.8, 144.6/144.7, 162.2, 166.2, 167.4 (br), 167.8, 170.1 (two carbons), 170.2, 172.1/172.4. MS (ESI, MeOH) m/z (\%) 1307 (27) $[2 M+N a]^{+}, 1285$ (21) $[2 M+H]^{+}, 665$ (88) $[M+N a]^{+}, 643$ (100) $[M+H]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{FN}_{8} \mathrm{O}_{4}\right]^{+}$ 643.3157, found: 643.3150. $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{FN}_{8} \mathrm{O}_{4}$ (642.72).

4.1.40. 5-((4-(4-(1H-Imidazol-1-yl)butyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one $1 \mathrm{H}_{2} \mathrm{O}$ (57)

Compound 57 was prepared from piperidine $\mathbf{3 0}$ (0.35 g , 1.22 mmol) and compound 43 ($254 \mathrm{mg}, 1.22 \mathrm{mmol}$) using the procedure for the preparation of $\mathbf{2 9}$ (instead of a $20-\mathrm{mL}$ vial a $5-\mathrm{mL}$ vial was used). Eluent for column chromatography: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ $100: 1$ to $10: 1$. Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake of the resin-like residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette, evaporation, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and n-pentane (3 mL) followed by removal of the solvent in vacuo afforded product 57 as a white glass ($409 \mathrm{mg}, 73 \%$) mp $>83{ }^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for C_{27} $\mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 68.19 ; \mathrm{H}, 6.99 ; \mathrm{N}, 14.73$; found: C, 68.67; H, 6.82; $\mathrm{N}, 14.64$. IR (Nujol) $1665,1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) $\delta(\mathrm{ppm}) 0.97-1.18(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 1.44(\mathrm{~d}, 0.45 \mathrm{H}, J$ 11.6 Hz), $1.52(\mathrm{~d}, 1 \mathrm{H}, J 12.4 \mathrm{~Hz}), 1.60(\mathrm{~d}, 0.55 \mathrm{H}, J 11.9 \mathrm{~Hz}), 1.76$ (p, 2H, J 6.9 Hz), 1.87-2.02 (m, 2H), 2.48 (br s, 0.45H), 2.64 (br s, $0.55 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 3.03-3.24(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz})$, $6.98(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, 0.45 \mathrm{H}, J$ $6.6 \mathrm{~Hz}), 7.41(\mathrm{t}, 0.55 \mathrm{H}, J 7.1 \mathrm{~Hz}), 7.45-7.59(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H})$, 7.66 (br s, 1H), 7.87-7.94 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 25.5, 33.1, 33.5/33.7/33.8, 37.1, 37.7, 48.8, 55.5/55.8, 61.8/ $62.2,121.4,123.8,127.4,127.8,128.6,129.8,130.3,130.7,131.4$, 132.0, 132.9/133.0, 135.1, 135.5, 136.8, 137.8, 139.2, 144.7, 170.0/170.2, 172.2/172.3. MS (ESI, MeOH) m/z (\%) 937 (18) $[2 M+N a]^{+}, 915$ (42) $[2 M+\mathrm{H}]^{+}, 480$ (32) $[M+\mathrm{Na}]^{+}, 458$ (100) $[M+\mathrm{H}]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{2}\right]^{+} 458.2556$, found: 458.2547. $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{2}$ (457.6).

4.1.41. 5-((4-(4-(4-Methylpiperazin-1-yl)butyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one $0.5 \mathrm{H}_{2} \mathrm{O}$ (58)

Compound $\mathbf{5 8}$ was prepared from $\mathbf{3 1}$ ($213 \mathrm{mg}, 0.89 \mathrm{mmol}$) and compound 43 ($255 \mathrm{mg}, 0.89 \mathrm{mmol}$) using the procedure for the preparation of 29. Eluent for column chromatography: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{MeOH} 100: 1$ to $10: 1$. Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(10 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette, evaporation, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ and n-pentane (6 mL) followed by removal of the solvent in vacuo afforded 58 as a white glass ($355 \mathrm{mg}, 81 \%$) $\mathrm{mp}>75^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.35\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$: C, 69.85; H, 7.88; N, 14.05; found: C, 69.87; H, 8.22; N, 13.93. IR (Nujol) 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 0.97-1.20 (m, 2H), 1.20-1.36 (m, 5H), 1.44-1.53 (m, 2.5 H), 1.56 (d, 1H, J 11.3 Hz), 1.63 (d, $0.5 \mathrm{H}, J 11.8 \mathrm{~Hz}$), $1.87-2.04$ (m, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.31-3.00(\mathrm{br} \mathrm{m}, 12 \mathrm{H}), 3.02-3.36(\mathrm{~m}, 2 \mathrm{H})$, $7.22-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, 0.45 \mathrm{H}, J 6.9 \mathrm{~Hz}), 7.41(\mathrm{t}, 0.55 \mathrm{H}, \mathrm{J}$ $7.2 \mathrm{~Hz}), 7.45-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.71(\mathrm{~m}$, $1 \mathrm{H}), 7.86-7.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm})$ $26.6,28.5,33.6 / 33.8 / 33.9,37.3,38.2,46.8,54.5,55.8,56.4,60.5$,
61.9/62.2, 123.8, 127.4, 127.8, 128.6, 129.77, 129.84, 130.3, 130.7, 131.4, 132.0, 132.9/133.0, 135.1/135.5, 136.8, 137.8, 144.6/144.7, 170.0/170.2, 172.1/172.3. MS (ESI, MeOH) m/z (\%) 979 (47) $[2 M+\mathrm{H}]^{+}, 512$ (12) $[M+\mathrm{Na}]^{+}, 490$ (100) $[M+\mathrm{H}]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{~N}_{5} \mathrm{O}_{2}\right]^{+}$490.3182, found: 490.3169. $\mathrm{C}_{29} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{2}$ (489.65).

4.1.42. 5-((4-(Ureidobutyl)piperidin-1-yl)acetyl)-5H-dibenzo-[b,e][1,4]diazepin-11(10H)-one (59)

Amine 47 ($0.34 \mathrm{~g}, 0.84 \mathrm{mmol}$) was dissolved in ethanol (4 mL) and water (5 mL). $1 \mathrm{M} \mathrm{HCl}(0.84 \mathrm{~mL})$ and potassium cyanate ($88 \mathrm{mg}, 1.09 \mathrm{mmol}$) were added and the mixture was stirred in a bath at $80^{\circ} \mathrm{C} .1 \mathrm{M} \mathrm{HCl}(0.84 \mathrm{~mL})$ was added (pH of the mixture: $7-8$) and the formation of the product was traced by TLC analysis. As a considerable amount of amine $\mathbf{4 7}$ could still be detected after 6 h , more potassium cyanate ($380 \mathrm{mg}, 4.69 \mathrm{mmol}$) was added and the pH was adjusted to ca 8 through addition of 1 M HCl (ca 1.5 mL). After continued stirring at $80^{\circ} \mathrm{C}$ for 2 h the heater was turned off and stirring was continued overnight. 10% aq $\mathrm{K}_{2} \mathrm{CO}_{3}$ was added and the product was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (30 and 25 mL). The extracts were combined, washed with brine/water ($5: 1 \mathrm{v} / \mathrm{v}, 5 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles ware evaporated and the glassy residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 100: 1$ to $10: 1$). Removal of the solvent from the eluate under reduced pressure and drying in vacuo yielded product 59 as a white glass $(0.22 \mathrm{~g}, 59 \%) \mathrm{mp}$ $>113^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right), 0.3$ ($\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 2: 1$). Anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.26$; H, 6.90; N, 15.46; found: C, 66.22; H, 7.20; N, 15.08. IR (Nujol) $3345 \mathrm{br}, 1660,1600,1500 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca $1.2: 1 .{ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO$\left.d_{6}\right) \delta(\mathrm{ppm}) 0.68-0.83(\mathrm{~m}, 1 \mathrm{H}), 0.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.04-1.15(\mathrm{~m}, 3 \mathrm{H})$, 1.19 (br s, 2H), 1.25-1.34 (m, 2.5H), 1.39 (br t, 1H, J ca 14 Hz), 1.49 (br d, $0.5 \mathrm{H}, \mathrm{J}$ ca 12 Hz), $1.75-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (br d, $0.45 \mathrm{H}, J$ ca 10 Hz), 2.30 (br d, $0.55 \mathrm{H}, J$ ca 10 Hz), 2.60 (br t, 1 H , J ca 11 Hz), $2.84-2.97(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~d}, 0.55 \mathrm{H}, J 14.4 \mathrm{~Hz}), 3.30$ (d, $0.45 \mathrm{H}, J 14.3 \mathrm{~Hz}), 5.38(\mathrm{~m}, 2 \mathrm{H}), 5.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.10-7.22(\mathrm{~m}$, 2H), 7.24-7.32 (m, 1H), 7.36-7.47 (m, 2H), 7.54-7.63 (m, 2H), 7.74 (d, $0.55 \mathrm{H}, J 7.5 \mathrm{~Hz}$), 7.78 (d, $0.45 \mathrm{H}, J 7.5 \mathrm{~Hz}$), 10.6 (br s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) δ (ppm) 23.5, 30.2, 31.3/ $31.6 / 31.9,34.6,35.7,39.1,52.6 / 52.9 / 53.2,60.2 / 60.6,121.7$, 124.1, 124.2, 126.1, 127.1, 127.8, 127.9, 128.0, 128.4, 128.9, $130.5,130.8,132.2,132.6,134.3,134.7,135.5,136.7,142.3 /$ 142.7, 158.8, 166.5/166.6, 168.6/169.0. MS (ESI, MeOH) m/z (\%) 937 (7) $[2 \mathrm{M}+\mathrm{K}]^{+}, 921$ (52) $[2 \mathrm{M}+\mathrm{Na}]^{+}, 899$ (13) $[2 \mathrm{M}+\mathrm{H}]^{+}, 488$ (11) $[M+K]^{+}, 472$ (53) $[M+\mathrm{Na}]^{+}, 450$ (100) $[M+\mathrm{H}]^{+}$. HRMS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{5} \mathrm{O}_{3}\right]^{+} 450.2505$, found: 450.2496 . $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{3}$ (449.55).
4.1.43. 5-((4-(4-(4-(((N-(N-tert-Butoxycarbonyl-2-aminoethyl))-3-amino-3-oxo)propyl)1H-imidazol-1-yl)butyl)piperidin-1-yl)-acetyl)-5H-dibenzo[b,e][1,4]diazepin-11(10H)-one. $0.5 \mathrm{H}_{2} \mathrm{O}$ (60)

Compound 36 ($2.64 \mathrm{~g}, 6.26 \mathrm{mmol}$, included a minor amount of the respective 1,5 -disubstitued imidazole derivative (ratio ca $7: 1$), cf. prep. of $\mathbf{3 6}$) and finely ground potassium carbonate ($3.46 \mathrm{~g}, 25.05 \mathrm{mmol}$) were suspended in anhydrous acetonitrile (20 mL). Chloride 43 ($1.63 \mathrm{~g}, 5.69 \mathrm{mmol}$) was added and the mixture was vigorously stirred under reflux for $4 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and 2% aq $\mathrm{NaOH}(80 \mathrm{~mL})$ were added, the mixture was vigorously shaken, the phases were separated, and the aqueous phase treated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. The organic phases were combined, washed with water (40 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the brown resin-like residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:1 to $10: 1$), which afforded a mixture of product $\mathbf{6 0}$ and the by-product, namely the respective 1,5 -disubstitued 1 H -imidazole
derivative (ratio ca 7:1) as a white glass-like solid ($2.67 \mathrm{~g}, 70 \%$). A portion $(0.97 \mathrm{~g})$ of this material was re-chromatographed (eluent: as above) to yield pure product $\mathbf{6 0}$ as a white glass-like solid $(0.50 \mathrm{~g}) \mathrm{mp} 69-73{ }^{\circ} \mathrm{C} . R_{f}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 10: 1\right)$. Anal. calcd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{5} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 65.27 ; \mathrm{H}, 7.25$; $\mathrm{N}, 14.40$; found: C, 64.97 ; H, 7.57; N, 14.11. IR (Nujol) 1660, 1600, $1500 \mathrm{~cm}^{-1}$. Ratio of isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3}$ OD) $\delta(\mathrm{ppm}) 0.95-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{br} \mathrm{s}, 5 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.48-$ 1.55 (m, 1.5H), 1.60 (d, $0.5 \mathrm{H}, J 12.1 \mathrm{~Hz}$), 1.73 (p, 2H, J 6.8 Hz), $1.87-$ 2.03 (m, 2H), 2.45-2.53 (m, 2.45H), 2.65 (br d, 0.55H, J ca 9.5 Hz), 2.78-2.88 (m, 3H), $3.05(\mathrm{~d}, 0.55 \mathrm{H}, J 15.5 \mathrm{~Hz}), 3.10-3.18(\mathrm{~m}$, $2.45 \mathrm{H}), 3.20-3.27(\mathrm{~m}, 3 \mathrm{H}), 3.94(\mathrm{t}, 2 \mathrm{H}, J 7.0 \mathrm{~Hz}), 6.86(\mathrm{~s}, 1 \mathrm{H})$, $7.23-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.35(\mathrm{t}, 0.45 \mathrm{H}, J 7.0 \mathrm{~Hz}), 7.41(\mathrm{t}, 0.55 \mathrm{H}, J$ $7.3 \mathrm{~Hz}), 7.45-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.70(\mathrm{~m}, 1 \mathrm{H})$, 7.87-7.95 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 25.5, 26.0, 29.6, 33.0, 33.5/33.7/33.8, 37.1, 37.7, 37.8, 41.3, 41.8, 48.7, $55.5 / 55.8,61.8 / 62.2,81.0,117.8,123.9,127.4,127.8,128.6$, 129.77, 129.83, 130.3, 130.7, 131.4, 132.0, 132.9/133.0, 135.1/ 135.5, 136.8, 137.8, 138.7, 142.57/142.60, 144.7, 159.3, 170.0/ 170.2, 172.1/172.3, 176.4. MS (ESI, MeOH) m/z (\%) 1365 (10) $[2 M+\mathrm{Na}]^{+}, 694$ (64) $\left[\mathrm{M}^{+} \mathrm{Na}\right]^{+}, 672$ (100) $[\mathrm{M}+\mathrm{H}]^{+}, 364$ (20). HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{37} \mathrm{H}_{50} \mathrm{~N}_{7} \mathrm{O}_{5}\right]^{+} 672.3873$, found: 672.3871. $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{7} \mathrm{O}_{5}$ (671.83).

There followed a $5: 1$ mixture of $\mathbf{6 0}$ and the respective 1,5disubstitued 1 H -imidazole derivative as a white glass (0.38 g).
4.1.44. 5-((4-(4-(4-(((N-2-Aminoethyl)-3-amino-3-oxo)propyl)-1H-imidazol-1-yl)butyl)piperidin-1-yl)acetyl)-5H-dibenzo[b,e]-[1,4]diazepin-11(10H)-one tris(hydrotrifluoroacetate) (61)

Compound $\mathbf{6 0}(1.70 \mathrm{~g}, 2.52 \mathrm{mmol}$, included a minor amount of the respective 1,5 -disubstitued imidazole derivative (ratio ca $7: 1$), cf. prep. of $\mathbf{6 0}$) was dissolved in $\mathrm{MeOH}(8 \mathrm{~mL})$ and water $(2 \mathrm{~mL})$. TFA (1 mL) was added, the mixture was stirred for 2 min and then water (8 mL) and TFA (1.5 mL) were added. Stirring was continued at rt for 24 h , the mixture was concentrated under reduced pressure at $50^{\circ} \mathrm{C}$ to a volume of about 8 mL and filtered through a $0.45 \mu \mathrm{~m}$ filter (for filter type cf. exp. protocol of 49). The filtrate was diluted with water (200 mL) and lyophilisation afforded a mixture of product $\mathbf{6 1}$ and the respective 1,5disubstitued $1 H$-imidazole derivative (ratio ca $7: 1$) as a white fluffy, highly hygroscopic solid ($2.37 \mathrm{~g}, 94 \%$). Applying the same procedure another batch of compound $\mathbf{6 1}$ was prepared from isomerically pure carbamate $\mathbf{6 0}(434 \mathrm{mg}, 0.65 \mathrm{mmol})$ to yield pure product 61 as a white fluffy, highly hygroscopic solid ($570 \mathrm{mg}, 96 \%$). Ratio of configurational isomers evident in the NMR spectra: ca $1.8: 1 .{ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) $1.38(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.86-$ $1.95(\mathrm{~m}, 3 \mathrm{H}), 1.98$ (br d, $1 \mathrm{H}, J$ ca 10.8 Hz), 2.67 (t, $2 \mathrm{H}, J$ $7.4 \mathrm{~Hz}), 2.91-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{t}, 2 \mathrm{H}, J 7.1 \mathrm{~Hz}), 3.05-3.11(\mathrm{~m}$, $3 \mathrm{H}), 3.45-3.52(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.84(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{t}, 2 \mathrm{H}, J$ $7.4 \mathrm{~Hz}), 4.44(\mathrm{~d}, 0.65 \mathrm{H}, J 16.7 \mathrm{~Hz}), 4.48$ (d, $0.35 \mathrm{H}, J 16.7 \mathrm{~Hz})$, 7.27-7.33 (m, 0.8H), 7.34-7.39 (m, 1.2H), 7.39-7.44 (m, 1.35H), 7.51 (dt, $0.65 \mathrm{H}, J 7.71 .3 \mathrm{~Hz}), 7.52-7.57$ (m, 1.65H), 7.63-7.68 (m, 1H), 7.68-7.74 (m, 1H), 7.78 (dt, 0.35H, J 7.71 .3 Hz), 7.93 (dd, $0.65 \mathrm{H}, J 8.21 .4 \mathrm{~Hz}$), 8.00 (dd, $0.35 \mathrm{H}, J 7.81 .3 \mathrm{~Hz}$), 8.85 (d, $1 \mathrm{H}, J 1.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 22.1,25.0$, 31.3, 31.9, 35.1, 35.6, 36.9, 39.1, 41.6, 51.2, 55.8/56.2, 58.9, 118.0 (TFA), 120.0 (TFA), 120.7, 123.9, 124.5, 127.7, 128.4, 128.8, 129.4, 129.7, 130.3, 131.0, 131.4, 131.8, 132.1, 132.6, $132.8,133.2 / 133.8,134.3,135.4,135.8,136.2,136.3,136.6$, 137.9, 141.9, 143.6, 162.9 (TFA), 163.1 (TFA), 163.4 (TFA), 163.6 (TFA), 165.8/166.3, 169.4/169.7, 175.7. MS (ESI, MeOH) $m / z(\%) 572$ (7) $[M+H]^{+}, 286.5$ (100) $[M+2 H]^{2+}$. HRMS (ESI, $\mathrm{MeOH}) \mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{7} \mathrm{O}_{3}\right]^{+} 572.3349$, found: 572.3338, m / z calcd for $\left[\mathrm{C}_{2} \mathrm{~F}_{3} \mathrm{O}_{2}\right]^{-} 112.9850$, found 112.9868. $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{3-}$ $.3 \times \mathrm{C}_{2} \mathrm{HF}_{3} \mathrm{O}_{2}(571.71+3 \times 114.025)$.
4.1.45. 5-((4-(4-(4-(((N-(2-Propionamidoethyl))-3-amino-3-oxo)-propyl)1H-imidazol-1-yl)butyl)piperidin-1-yl)acetyl)-5H-dibenzo-[b,e][1,4]diazepin-11(10H)-one (62)

Amine $\mathbf{6 1}(0.31 \mathrm{~g}, 0.34 \mathrm{mmol}$, included a minor amount of the respective 1,5 -disubstitued imidazole derivative (ratio 7:1), cf. prep. of $\mathbf{6 1}$) and diisopropylethylamine ($0.17 \mathrm{~g}, 1.29 \mathrm{mmol}$) were dissolved in DMF (2 mL). N-Succinimidyl propionate (51 mg , 0.30 mmol) dissolved in DMF (0.3 mL) was added and the mixture was stirred at rt for 2.5 h . The solvent was removed under reduced pressure at $60^{\circ} \mathrm{C}$, the residue was dried in vacuo, then taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and washed with 5% aq $\mathrm{NaOH}(10 \mathrm{~mL})$. As the product was evident in the aq phase by TLC analysis, it was extracted from the aq phase with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 and 15 mL). The organic layers were combined, washed with brine/water ($2: 1 \mathrm{v} / \mathrm{v}, 8 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles ware evaporated and the residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 40: 1$ to 7.5:1). Pure product 62 was obtained from the first fraction of the eluate. The residual eluate afforded 62 as major component and the respective 1,5 -disubstitued imidazole derivative as minor component (ca 30%). The solvent was removed from the eluates under reduced pressure, the residues were dried in vacuo and redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 and 5 mL , respectively). The solutions were filtered through a cotton wool packed Pasteur pipette, the solvent was removed in vacuo and the residue taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$-pentane ($1: 1 \mathrm{v} / \mathrm{v}, 2 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, respectively. Removal of the solvent in vacuo afforded pure $\mathbf{6 2}(103 \mathrm{mg}, 55 \%) \mathrm{mp}>80^{\circ} \mathrm{C}$ (turned to a resin) as well as a mixture of $\mathbf{6 2}$ and the above mentioned byproduct (ratio $2.5: 1$) ($68 \mathrm{mg}, 36 \%$), each as a white glass. $R_{f}=0.5$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{4} \cdot 0.2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.58$; H, 7.18; N, 15.53; found: C, 66.34; H, 7.67; N, 15.08. IR (Nujol) $3295 \mathrm{br}, 1655,1600,1545,1500 \mathrm{~cm}^{-1}$. Ratio of isomers evident in the NMR spectra: ca 1.2:1. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ (ppm) 0.96-1.12 (m, 2H), 1.14 (t, 3H, J 7.6 Hz), 1.24 (br s, 5H), 1.45 (br d, $0.5 \mathrm{H}, J$ ca 11 Hz), 1.53 (br d, $1 \mathrm{H}, J$ ca 12 Hz), 1.60 (br d, $0.5 \mathrm{H}, J$ ca 12 Hz), 1.69-1.76 (m, 2H), 1.87-2.05 (m, 2H), 2.21 (q, 2H, J $7.6 \mathrm{~Hz}), 2.46-2.53$ (m, 2.45H), 2.66 (br d, $0.55 \mathrm{H}, J$ ca 10 Hz), 2.79$2.89(\mathrm{~m}, 3 \mathrm{H}), 3.07(\mathrm{br} \mathrm{d}, 0.55 \mathrm{H}, J$ ca 15 Hz$), 3.17(\mathrm{br} \mathrm{d}, 0.45 \mathrm{H}, J$ ca 15 Hz), 3.21-3.31 (m, 5H), 3.94 (t, 2H, J 6.9 Hz), 6.87 (s, 1H), 7.237.32 (m, 2H), 7.35 (t, $0.45 \mathrm{H}, J 7.1 \mathrm{~Hz}$), 7.42 (t, $0.55 \mathrm{H}, J 7.2 \mathrm{~Hz}$), 7.45-7.56 (m, 3H), 7.56-7.61 (m, 1H), 7.64-7.70 (m, 1H), $7.89(\mathrm{~d}$, $0.55 \mathrm{H}, J 7.4 \mathrm{~Hz}), 7.92(\mathrm{~d}, 0.45 \mathrm{H}, J 7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CD}_{3-}\right.$ OD) $\delta(\mathrm{ppm}) 11.6,25.4 / 25.5,26.0,31.0,33.0,33.4 / 33.65 / 33.74$, 37.1, 37.7, 37.8, 40.8, 40.9, 48.7, 55.5/55.8, 61.8/62.2, 117.8, 123.8/123.9, 127.4, 127.8, 128.6, 129.77, 129.82, 130.3, 130.7, 131.4, 132.0, 132.8/133.0, 135.1/135.5, 136.76, 136.83, 137.8, 138.7, 142.6, 144.6/144.7, 170.0/170.2, 172.0/172.2, 176.4, 178.1 . MS (ESI, MeOH) $m / z(\%) 1277$ (22) [2M+Na] ${ }^{+}, 650$ (100) $[M+N a]^{+}$, 628 (44) $[M+H]^{+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{~N}_{7} \mathrm{O}_{4}\right]^{+}$ 628.3611, found: 628.3602. $\mathrm{C}_{35} \mathrm{H}_{45} \mathrm{~N}_{7} \mathrm{O}_{4}$ (627.78).
4.1.46. $\mathrm{N}, \mathrm{N}^{\prime}$-Bis(4-((1-(2-(5H-dibenzo[b,e][1,4]diazepin-11(10H)-one-5-yl)-2-oxo)ethyl)piperidin-4-yl)butyl)piperazine $\mathbf{0 . 5 H}_{\mathbf{2}} \mathrm{O}$ (63)

Compound 63 was prepared from amine 39 (186 mg , $0.51 \mathrm{mmol})$ and chloride $43(307 \mathrm{mg}, 1.07 \mathrm{mmol})$ using the procedure for the preparation of 29. Potassium carbonate: 0.56 g , 4.08 mmol . Eluent for column chromatography: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ 100:1 to 10:1. Removal of the solvent from the eluate under reduced pressure, drying in vacuo, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, filtration of the solution with a cotton wool packed Pasteur pipette, evaporation, re-uptake in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and n-pentane (2 mL) followed by removal of the solvent in vacuo afforded product 63 as a pale tan colored glass ($165 \mathrm{mg}, 37 \%$) $\mathrm{mp}>170^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.5\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 5: 1\right)$. Anal. calcd for $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{4} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}$, 71.45 ; H, 7.38; N, 12.82; found: C, 71.40; H, 7.49; N, 12.78. IR (Nujol) 1660, $1600 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca $1 \cdot 2: 1 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta(\mathrm{ppm})$
0.97-1.20 (m, 4H), 1.20-1.36 (m, 10H), 1.44-1.53 (m, 5H), 1.56 (d, $2 \mathrm{H}, \mathrm{J} 11.8 \mathrm{~Hz}$), 1.63 (d, 1H, J 11.5 Hz), 1.86-2.04 (m, 4H), 2.20-2.95 (br m, 16H), 3.02-3.36 (m, 4H), 7.22-7.31 (m, 4H), 7.32-7.44 (m, 2H), 7.46-7.56 (m, 4H), 7.56-7.61 (m, 2H), 7.64-7.70 (m, 2H), $7.89(\mathrm{~d}, 1.1 \mathrm{H}, J 7.3 \mathrm{~Hz}), 7.92$ (d, $0.9 \mathrm{H}, J 7.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta(\mathrm{ppm}) 26.6,28.5,33.6 / 33.8 / 33.9,37.2,38.2$, $54.6,55.6 / 55.8,60.5,61.9 / 62.2,123.9,127.4,127.8,128.6$, 129.77, 129.83, 130.3, 130.7, 131.4, 132.0, 132.9/133.0, 135.1/ 135.5, 136.8, 137.8, 144.6/144.7, 170.0/170.2, 172.1/172.4. MS (ESI, MeOH) $\mathrm{m} / \mathrm{z}(\%) 865(100)[\mathrm{M}+\mathrm{H}]^{+}, 444(76)[\mathrm{M}+\mathrm{H}+\mathrm{Na}]^{2+}, 433$ (29) $[M+2 \mathrm{H}]^{2+}$. HRMS (ESI, MeOH) m / z calcd for $\left[\mathrm{C}_{52} \mathrm{H}_{65} \mathrm{~N}_{8} \mathrm{O}_{4}\right]^{+}$ 865.5129, found: 865.5119. $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{~N}_{8} \mathrm{O}_{4}$ (865.12).
4.1.47. $N, N^{\prime}-\operatorname{Bis}(N$-($(1-(4-((1-(2-(5 H-d i b e n z o[b, e][1,4]$ diazepin-11(10 H)-one-5-yl)-2-oxo)ethyl)piperidin-4-yl)butyl)) 1 H -imidazol-4-yl)propanoyl-2-aminoethyl)terephthalic acid diamide $2 \mathrm{H}_{2} \mathrm{O}$ (64)

Amine $\mathbf{6 1}(1.05 \mathrm{~g}, 1.15 \mathrm{mmol}$, included a minor amount of the respective 1,5 -disubstitued imidazole derivative (ratio ca $7: 1$), cf. prep. of $\mathbf{6 1}$) and diisopropylethylamine ($0.57 \mathrm{~g}, 4.38 \mathrm{mmol}$) were dissolved in anhydrous DMF (1.5 mL) and the mixture was cooled at $0^{\circ} \mathrm{C}$. Terephthaloyl choride $(0.11 \mathrm{~g}, 0.55 \mathrm{mmol})$ dissolved in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was added dropwise over a period of 10 min , the ice bath was removed and the mixture was stirred at rt for 1 h . The solvent was removed under reduced pressure at $50^{\circ} \mathrm{C}$, the residue was dried in vacuo, and taken up in $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ ($50: 1 \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL}$) and 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{~mL}$). The mixture was vigorously shaken, the phases were separated, and the aqueous phase treated with $\mathrm{CHCl}_{3} / \mathrm{MeOH}(20: 1 \mathrm{v} / \mathrm{v}, 4 \times 40 \mathrm{~mL})$. The extracts were combined, washed with water (30 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles ware evaporated and the residue was subjected to column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 30: 1$ to $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%$ aq NH_{3} 200:30:1). The first major fraction of the eluate was re-chromatographed (eluent: $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} 3: 1$ to $\mathrm{Et}_{2} \mathrm{O} / \mathrm{MeOH} / 28 \%$ aq NH_{3} $100: 100: 1$) to give pure product 64 . The solvent was removed from the eluate under reduced pressure, the residue was dried in vacuo and then redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The solution was filtered through a cotton wool packed Pasteur pipette and removal of the volatiles in vacuo afforded product $\mathbf{6 4}$ as a white glass (183 mg , $27 \%) \mathrm{mp}>145^{\circ} \mathrm{C}$ (turned to a resin). $R_{f}=0.25\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / 28 \%\right.$ aq NH_{3} 200:20:1). Anal. calcd for $\mathrm{C}_{72} \mathrm{H}_{84} \mathrm{~N}_{14} \mathrm{O}_{8} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 66.03 ; \mathrm{H}$, 6.47; N, 14.97; found: C, 65.91; H, 6.83; N, 14.79. IR (Nujol) 1655, $1600,1540 \mathrm{~cm}^{-1}$. Ratio of configurational isomers evident in the NMR spectra: ca 1.1:1. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta(\mathrm{ppm})$ $0.64-0.79$ (m, 2H), 0.95 (br s, 2H), 1.00-1.18 (m, 10H), 1.26 (br d, $1 \mathrm{H}, J$ ca 11 Hz), $1.30-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.45$ (br d, $1 \mathrm{H}, J$ ca 11 Hz), 1.57 (br s, 4H), 1.73-1.85 (m, 4H), 2.12 (br d, $0.95 \mathrm{H}, \mathrm{J}$ ca 9 Hz), 2.27 (br d, $1.05 \mathrm{H}, J$ ca 9 Hz), $2.34(\mathrm{t}, 4 \mathrm{H}, J 7.8 \mathrm{~Hz}$), 2.58 (br t, $2 \mathrm{H}, J$ ca $12 \mathrm{~Hz}), 2.66(\mathrm{t}, 4 \mathrm{H}, J 7.7 \mathrm{~Hz}), 2.85(\mathrm{~d}, 0.95 \mathrm{H}, J 14.2 \mathrm{~Hz}), 2.92$ (d, $1.05 \mathrm{H}, J 14.4 \mathrm{~Hz}$), 3.12 (d, $0.95 \mathrm{H}, J 14.3 \mathrm{~Hz}$), $3.20-3.26$ (m, 4H), $3.27-3.34(\mathrm{~m}, 5.05 \mathrm{H}), 3.80(\mathrm{t}, 4 \mathrm{H}, \mathrm{J} 6.6 \mathrm{~Hz}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.24$ $(\mathrm{m}, 4 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.64(\mathrm{~m}, 4 \mathrm{H})$, $7.74-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 4 \mathrm{H}), 8.01(\mathrm{t}, 2 \mathrm{H}, J 5.7 \mathrm{~Hz}), 8.65(\mathrm{t}, 2 \mathrm{H}, J$ $5.5 \mathrm{~Hz}), 10.54(\mathrm{~s}, 0.95 \mathrm{H}), 10.70(\mathrm{~s}, 1.05 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta(\mathrm{ppm}) 23.1,24.2,30.7,31.2 / 31.5 / 31.7,34.46 / 34.52$, 35.3, 35.5, 38.2, 39.4, 45.8, 52.5/52.8/53.2, 60.2/60.6, 115.0, 121.4/ $121.5,124.4 / 124.7,126.1 / 127.2,127.1,127.8,127.9,128.1,128.5$, $128.9,130.0,130.5,130.6,132.5 / 132.8,134.3,134.7,135.0,135.7$, 136.3, 136.7, 140.7, 142.3/142.8, 165.7, 166.4, 168.6/169.0, 172.1 . MS (ESI, MeOH/0.1\% aq TFA 8:1 v/v) $m / z(\%) 1273(4)[M+H]^{+}, 637$ (58) $[M+2 H]^{2+}, 425(100)[M+3 H]^{3+}, 319(29)[M+4 H]^{4+}, 260(32)$ $[M+4 \mathrm{H}+\mathrm{Na}]^{5+}$. HRMS (ESI, MeOH) m/z calcd for $\left[\mathrm{C}_{72} \mathrm{H}_{85} \mathrm{~N}_{14} \mathrm{O}_{8}\right]^{+}$ 1273.6675, found: 1273.6701. $\mathrm{C}_{72} \mathrm{H}_{84} \mathrm{~N}_{14} \mathrm{O}_{8}$ (1273.53).

There followed a mixture of product $\mathbf{6 4}$ and the hetero bivalent compound with the respective 1,5 -disubstitued imidazole moiety at one side of the molecule (ratio ca $2.5: 1$) as a white glass ($261 \mathrm{mg}, 37 \%$).

4.2. Radioligand binding studies at muscarinic receptors $\mathbf{M}_{\mathbf{1}}-\mathbf{M}_{\mathbf{5}}$

CHO-K9 cells, stably transfected with the human muscarinic receptors $\mathrm{M}_{1}-\mathrm{M}_{5}$, were purchased from Missouri S\&T cDNA Resource Centre and were cultured in HAM's F12 medium supplemented with fetal calf serum (Biochrom, Berlin, Germany) (10\%) and geneticin ($750 \mu \mathrm{~g} / \mathrm{mL}$). The M receptor antagonist [$\left.{ }^{3} \mathrm{H}\right] N$-methylscopolamine ($\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$) (specific activity $=80 \mathrm{Ci} / \mathrm{mmol}$), purchased from American Radiolabeled Chemicals Inc. (St. Louis, MO) via Hartman Analytics GmbH (Braunschweig, Germany)), was used as radioligand.

Cells were seeded in tissue culture treated white 96 -well plates with clear bottom (Corning Incorporated Life Sciences, Tewksbury, MA; Corning cat. no. 3610) one or two days prior to the experiment. Depending on the level of receptor expression (receptor expression by the cells decreased with passaging) the confluency of the cells was $10-20 \%$ (high receptor density, approx. 500,000 sites per cell), 40-60\% (medium receptor density, 100,000300,000 sites per cell) or 100% (low receptor level, $<100,000$ sites per cell) on the day of the experiment. All experiments were performed at $23 \pm 1^{\circ} \mathrm{C}$. The culture medium was removed by suction, the cells were washed with phosphate buffered saline (PBS) ($200 \mu \mathrm{~L}$) and covered with $150 \mu \mathrm{~L}$ of Leibovitz's L15 culture medium (Gibco, Life Technologies GmbH, Darmstadt, Germany) supplemented with 1% bovine serum albumin (Serva, Heidelberg, Germany), in the following referred to as L15 medium. For total binding L15 medium ($18.8 \mu \mathrm{~L}$) and L15 medium ($18.8 \mu \mathrm{~L}$) containing the radioligand (10 -fold concentrated) were added. For nonspecific binding and displacement of [$\left.{ }^{3} \mathrm{H}\right] \mathrm{NMS}$, L 15 medium $(18.8 \mu \mathrm{~L})$ containing the competitor (10 -fold concentrated) and L15 medium ($18.8 \mu \mathrm{~L}$) containing the radioligand (10 -fold concentrated) were added. During incubation (3 h in case of saturation and equilibrium competition binding studies) the plates were gently shaken. After incubation the liquid was removed by suction, the cells were washed twice with ice-cold PBS ($200 \mu \mathrm{~L}$; washing period $\leqslant 2 \mathrm{~min}$) and lysis solution (urea (8 M), acetic acid (3 M) and Triton-X-100 (1%) in water) ($25 \mu \mathrm{~L}$) was added. The plates were shaken for 20 min , liquid scintillator (Optiphase Supermix, PerkinElmer, Überlingen, Germany) ($200 \mu \mathrm{~L}$) was added, and the plates were sealed with a transparent sealing tape (permanent seal for microplates, PerkinElmer, prod. no. 1450-461). The plates were turned up-side down several times in order to achieve complete mixing of scintillator and lysis solution. The samples were kept in the dark for at least 1 h prior to the measurement of radioactivity (dpm) with a MicroBeta2 plate counter (PerkinElmer, Rodgau, Germany). The radioligand concentration was 0.2 nM for equilibrium binding studies on $\mathrm{CHO}-\mathrm{M}_{1} / \mathrm{M}_{2} / \mathrm{M}_{3}$ cells, 0.1 nM for experiments on $\mathrm{CHO}-\mathrm{M}_{4}$ cells and 0.3 nM in case of $\mathrm{CHO}-\mathrm{M}_{5}$ cells. Nonspecific binding was determined in the presence of atropine (1000 -fold excess) and amounted to $<10 \%$ of total binding.

To investigate the effect of compounds 1,58, 62-64 on the dissociation of $\left[{ }^{3} \mathrm{H}\right]$ NMS from the M_{2} receptor, $\mathrm{CHO}-\mathrm{M}_{2}$ cells were incubated with $1 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right] \mathrm{NMS}$ for 60 min before removal of the liquid by suction and addition of L-15 medium ($200 \mu \mathrm{~L}$) containing $500 \mu \mathrm{M}$ atropine alone or in combination with the compound of interest. Radioligand dissociation was monitored for a time period of $120 \mathrm{~min}(0,0.5,2,5,10,20,35,60,90,120 \mathrm{~min})$. In the absence of test compound, the half-life of $\left[{ }^{3} \mathrm{H}\right]$ NMS dissociation amounted to $t_{1 / 2}=7.5 \pm 0.4 \mathrm{~min}$ (mean \pm SEM, $n=14$).

4.3. Data analysis

Specific binding data (dpm) from saturation binding experiments were analyzed by an equation describing hyperbolic radioligand binding (one site saturation) using SigmaPlot Software version 11.0 (Systat Software Inc., Chicago, IL) to obtain K_{d} and $B_{\text {max }}$
values. Data of total radioligand binding (\%) from equilibrium binding studies were plotted over log concentration of test compound and analyzed by a four-parameter logistic equation, followed by normalization of the data ($100 \% Y$ defined as upper plateau of the initial fit, $0 \% Y$ defined as 0) to yield $\%$ specific radioligand binding. (GraphPad Prism Software version 5.0, GraphPad Software, San Diego, CA).

For the determination of dissociation rate constants (k_{-1} values), data from radioligand dissociation experiments were plotted as $\ln B$ ($B=$ specifically bound radioligand) over time and analyzed by linear regression. To obtain concentration effect curves for the deceleration of radioligand dissociation, the ratios $k_{-1} / k_{-1(0)}$ ($k_{-1(0)}=$ rate constant in the absence of test compound) were plotted in \% over log concentration of test compound and analyzed by a four parameter logistic function. Statistical significance was assessed by a one-sample t-test (deviation of the curve slope and bottom level of concentration-effect curves from -1 and 0 , respectively) or a Welch two-sample t-test for unpaired samples (comparison of two given pIC_{50} or $\mathrm{pEC}_{50 \text {, diss }}$ values).

Acknowledgements

This work was substantially supported by the Alexander von Humboldt Foundation through the award of a Feodor Lynen Research Fellowship to Dr Max Keller. NMR spectroscopic analyses and mass spectrometric analyses were carried out within the UNSW Nuclear Magnetic Resonance Facility and Bioanalytical Mass Spectrometry Facility, respectively, which are housed within the Mark Wainwright Analytical Centre, UNSW. These facilities are supported in part by infrastructure funding from the New South Wales Government as part of its co-investment in the National Collaborative Research Infrastructure Strategy. In particular, the authors are grateful to Dr Donald Thomas (University of NSW) for expert assistance in acquiring the NMR spectra, and to Brigitte Wenzl, Judith Mayr, Maria Beer-Krön (University of Regensburg) and Mechthild Kepe (University of Bonn) for excellent technical assistance in radioligand binding studies. This work was supported by the Graduate Training Program (Graduiertenkolleg) GRK1910 of the Deutsche Forschungsgemeinschaft.

Supplementary data

Supplementary data (characterization of [$\left.{ }^{3} \mathrm{H}\right]$ NMS in saturation binding experiments at muscarinic receptors $\mathrm{M}_{1}-\mathrm{M}_{5}$; M receptor binding data of atropine, pirenzepine, 4-DAMP and propantheline; ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of compounds $\mathbf{4 6}, 47,49,50,52-59$, 61-64) associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.bmc.2015.01.015. These data include MOL files and InChiKeys of the most important compounds described in this article.

References

1. Ellis, J.; Seidenberg, M. Mol. Pharmacol. 1992, 42, 638.
2. Tränkle, C.; Mohr, K. Mol. Pharmacol. 1997, 51, 674.
3. Lanzafame, A.; Christopoulos, A.; Mitchelson, F. J. Pharmacol. Exp. Ther. 1997, 282, 278.
4. Lazareno, S.; Popham, A.; Birdsall, N. J. M. Mol. Pharmacol. 2000, 58, 194.
5. Lazareno, S.; Popham, A.; Birdsall, N. J. M. Mol. Pharmacol. 2002, 62, 1492.
6. Mohr, K.; Traenkle, C.; Holzgrabe, U. Recept. Channels 2003, 9, 229.
7. Tränkle, C.; Weyand, O.; Voigtlander, U.; Mynett, A.; Lazareno, S.; Birdsall Nigel, J. M.; Mohr, K. Mol. Pharmacol. 2003, 64, 180.
8. Birdsall, N. J. M.; Lazareno, S. Mini-Rev. Med. Chem. 2005, 5, 523.
9. Miao, Y.; Nichols, S. E.; McCammon, J. A. Chem. Biol. Drug Des. 2014, 83, 237.
10. Conn, P. J.; Lindsley, C. W.; Meiler, J.; Niswender, C. M. Nat. Rev. Drug Disc. 2014, 13, 692.
11. Sheardown, M. J. Expert Opin. Ther. Pat. 2002, 12, 863.
12. Clader, J. W.; Wang, Y. Curr. Pharm. Des. 2005, 11, 3353.
13. Jakubik, J.; Santruckova, E.; Randakova, A.; Janickova, H.; Zimcik, P.; Rudajev, V.; Michal, P.; El-Fakahany, E. E.; Dolezal, V. Physiol. Res. 2014, 63, S177.
14. Greig, N. H.; Reale, M.; Tata, A. M. Rec. Pat. CNS Drug Discovery 2013, 8, 123.
15. Kruse, A. C.; Kobilka, B. K.; Gautam, D.; Sexton, P. M.; Christopoulos, A.; Wess, J. Nat. Rev. Drug Disc. 2014, 13, 549.
16. Hammer, R.; Berrie, C. P.; Birdsall, N. J. M.; Burgen, A. S. V.; Hulme, E. C. Nature (London) 1980, 283, 90.
17. Eberlein, W. G.; Engel, W.; Mihm, G.; Rudolf, K.; Wetzel, B.; Entzeroth, M.; Mayer, N.; Doods, H. N. Trends Pharmacol. Sci. 1989
18. Eberlein, W. G.; Engel, W. W.; Trummlitz, G.; Schmidt, G.; Hammer, R. J. Med. Chem. 1988, 31, 1169.
19. Gitler, M. S.; Reba, R. C.; Cohen, V. I.; Rzeszotarski, W. J.; Baumgold J. Brain Res. 1992, 582, 253.
20. Cohen, V. I.; Baumgold, J.; Jin, B.; De la Cruz, R.; Rzeszotarski, W. J.; Reba, R. C. J. Med. Chem. 1993, 36, 162.
21. Keller, M.; Bhadbhade, M. M.; Read, R. W. Acta Crystallogr., Sect. C Cryst. Struct. Commun. 2012, 68, 0240.
22. Esqueda, E. E.; Gerstin, E. H., Jr.; Griffin, M. T.; Ehlert, F. J. Biochem. Pharmacol. 1996, 52, 643.
23. Döerje, F.; Wess, J.; Lambrecht, G.; Tacke, R.; Mutschler, E.; Brann, M. R. J. Pharmacol. Exp. Ther. 1991, 256, 727.
24. Doods, H. N.; Quirion, R.; Mihm, G.; Engel, W.; Rudolf, K.; Entzeroth, M.; Schiavi, G. B.; Ladinsky, H.; Bechtel, W. D., et al. Life Sci. 1993, 52, 497.
25. Kassiou, M.; Read, R. W.; Shi, X.-Q. Bioorg. Med. Chem. Lett. 1997, 7, 799.
26. Maggio, R.; Barbier, P.; Bolognesi, M. L.; Minarini, A.; Tedeschi, D.; Melchiorre, C. Eur. J. Pharmacol. 1994, 268, 459.
27. Entzeroth, M.; Mayer, N. Biochem. Pharmacol. 1990, 40, 1674.
28. Miller, J. H.; Gibson, V. A.; McKinney, M. J. Pharmacol. Exp. Ther. 1991, 259, 601.
29. Aubert, I.; Cecyre, D.; Gauthier, S.; Quirion, R. Eur. J. Pharmacol. 1992, 217, 173.
30. Mohr, M.; Heller, E.; Ataie, A.; Mohr, K.; Holzgrabe, U. J. Med. Chem. 2004, 47, 3324.
31. Tränkle, C.; Andresen, I.; Lambrecht, G.; Mohr, K. Mol. Pharmacol. 1998, 53, 304.
32. Holzgrabe, U.; De Amici, M.; Mohr, K. J. Mol. Neurosci. 2006, 30, 165.
33. Melchiorre, C.; Bolognesi, M. L.; Chiarini, A.; Minarini, A.; Spampinato, S. J. Med. Chem. 1993, 36, 3734.
34. Roffel, A. F.; Davids, J. H.; Elzinga, C. R. S.; Wolf, D.; Zaagsma, J.; Kilbinger, H. Br. J. Pharmacol. 1997, 122, 133.
35. Darroch, S.; Irving, H. R.; Mitchelson, F. J. Eur. J. Pharmacol. 2000, 402, 161.
36. Chiarini, A.; Burdriesi, R.; Bolognsei, M. L.; Minarini, A.; Melchiorre, C. Br. J. Pharmacol. 1995, 114, 1507.
37. Steinmetzer, T.; Schweinitz, A.; Stuerzebecher, A.; Doennecke, D.; Uhland, K.; Schuster, O.; Steinmetzer, P.; Mueller, F.; Friedrich, R.; Than, M. E.; Bode, W.; Stuerzebecher, J. J. Med. Chem. 2006, 49, 4116.
38. Pearson, W. H.; Lin, K. C. Tetrahedron Lett. 1990, 31, 7571.
39. Kitbunnadaj, R.; Zuiderveld, O. P.; De Esch, I. J. P.; Vollinga, R. C.; Bakker, R.; Lutz, M.; Spek, A. L.; Cavoy, E.; Deltent, M.-F.; Menge, W. M. P. B.; Timmerman, H.; Leurs, R. J. Med. Chem. 2003, 46, 5445.
40. Sugimoto, H.; Nakamura, T.; Tsuchiya, Y.; Sugumi, H.; Higurashi, K.; Karibe, N.; Yamanishi, Y.; Ogura, H.; Araki, S. et al. EP Patent 229391, 1987; Chem. Abstr. 1987, 108, 112237.
41. Ciganek, E.; Tam, S. W.; Wright, A. S. WO Patent 9322310, 1993; Chem. Abstr. 1993, 120, 270118.
42. Takasugi, H.; Kuno, A.; Ohkubo, M. WO Patent 9313083, 1993; Chem. Abstr. 1993, 120, 30773.
43. Galli, U.; Ercolano, E.; Carraro, L.; Roman, C. R. B.; Sorba, G.; Canonico, P. L.; Genazzani, A. A.; Tron, G. C.; Billington, R. A. ChemMedChem 2008, 3, 771.
44. Mandelli, G. R.; Maiorana, S.; Terni, P.; Lamperti, G.; Colibretti, M. L.; Imbimbo, B. P. Chem. Pharm. Bull. 2000, 48, 1611.
45. Chang, M.-Y.; John, Y.-C. L.; Chen, S.-T.; Chang, N.-C. J. Chin. Chem. Soc. (Taipei) 2002, 1079, 49.
46. Giani, R. P.; Borsa, M.; Parini, E.; Tonon, G. C. Synthesis 1985, 550.
47. Ehlert, F. J. Mol. Pharmacol. 1988, 33, 187.
48. Melchiorre, C.; Minarini, A.; Angeli, P.; Giardina, D.; Gulini, U.; Quaglia, W. Trends Pharmacol. Sci. 1989
49. Lee, N. H.; El-Fakahany, E. E. J. Pharmacol. Exp. Ther. 1991, 256, 468.
50. Lanzafame, A.; Christopoulos, A.; Mitchelson, F. Eur. J. Pharmacol. 2001, 416, 235.
51. Tränkle, C.; Dittmann, A.; Schulz, U.; Weyand, O.; Buller, S.; Johren, K.; Heller, E.; Birdsall Nigel, J. M.; Holzgrabe, U.; Ellis, J.; Holtje Hans, D.; Mohr, K. Mol. Pharmacol. 2005, 68, 1597.
52. Valant, C.; Lane, J. R.; Sexton, P. M.; Christopoulos, A. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 153.
53. Ghorai, P.; Kraus, A.; Keller, M.; Gotte, C.; Igel, P.; Schneider, E.; Schnell, D.; Bernhardt, G.; Dove, S.; Zabel, M.; Elz, S.; Seifert, R.; Buschauer, A. J. Med. Chem. 2008, 51, 7193.
54. Brennauer, A. Doctoral thesis, University of Regensburg, Regensburg 2006, http://www.opus-bayern.de/uni-regensburg/volltexte/2006/742/.
55. Keller, M.; Pop, N.; Hutzler, C.; Beck-Sickinger, A. G.; Bernhardt, G.; Buschauer, A. J. Med. Chem. 2008, 51, 8168.
56. Henichart, J. P.; Houssin, R.; Bernier, J. L.; Catteau, J. P. J. Chem. Soc., Chem. Commun. 1982, 1295
57. Keller, M.; Erdmann, D.; Pop, N.; Pluym, N.; Teng, S.; Bernhardt, G.; Buschauer, A. Bioorg. Med. Chem. 2011, 19, 2859.
58. Pluym, N.; Baumeister, P.; Keller, M.; Bernhardt, G.; Buschauer, A. ChemMedChem 2013.

[^0]: * Corresponding authors. Tel.: +49 9419433329 ; fax: +49 9419434820 (M.K.); tel.: +61 29385 4457; fax: +61 293856040 (R.W.R.).

 E-mail addresses: max.keller@chemie.uni-regensburg.de (M. Keller), r.read@ unsw.edu.au (R.W. Read).

[^1]: Column: RESTEK Pinnacle BD C18 ($150 \times 10 \mathrm{~mm}, 5 \mu \mathrm{~m}$) (RESTEK, Bellefonte, PA); column temperature: ambient; mobile phase: mixtures of acetonitrile (A) and 0.1% aqueous TFA (B), linear gradient: $0-2 \mathrm{~min}: ~ A / B 15: 85,2-6 \mathrm{~min}: 15: 85$ to $28: 72,6-$ 12 min : $28: 72$ to $33: 67,12-14 \mathrm{~min}$: 33:67 to $70: 30,14-16 \mathrm{~min}$: 70:30; flow rate: $3 \mathrm{~mL} / \mathrm{min}$; detection: $190-800 \mathrm{~nm}$; retention times: 53: 10.5 min , by-component: 11.2 min .

