CHEMISTRY AN ASIAN JOURNAL

www.chemasianj.org

Accepted Article

Title: Tandem IBX-Promoted Primary Alcohol Oxidation/Opening of Intermediate β, γ-Diolcarbonate Aldehydes to (E)- γ-Hydroxy- α, β enals

Authors: Rodney Agustinho Fernandes, Anupama Kumari, and Sachin P Gholap

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Chem. Asian J. 10.1002/asia. 201900421

Link to VoR: http://dx.doi.org/10.1002/asia. 201900421

A Journal of
A sister journal of Angewandte Chemie and Chemistry - A European Journal
ACES
Asian Chemical
Editorial Society

WILEY-VCH

Tandem IBX-Promoted Primary Alcohol Oxidation/Opening of Intermediate β, γ-Diolcarbonate Aldehydes to (E) $-\gamma$-Hydroxy- α, β-enals

Anupama Kumari, ${ }^{[a]}$ Sachin P. Gholap ${ }^{[a]}$ and Rodney A. Fernandes* ${ }^{\star[a]}$
Dedication ((optional))

Abstract: A tandem IBX-promoted oxidation of primary alcohol to aldehyde and opening of intermediate β, γ-diolcarbonate aldehyde to (E) - γ-hydroxy- α, β-enal has been developed. Remarkably, the carbonate opening delivered exclusively (E)-olefin and no overoxidation of γ-hydroxy was observed. The method developed has been extended to complete the stereoselective total synthesis of both (S) - and (R)-coriolides and D-xylo- and D-arabino-C-20 guggultetrols.

Introduction

γ-Hydroxy- α, β-enals are a group of reactive aldehydes that have dose-dependent regulatory roles, as well as detrimental effects in various cell types and organs. Their origin and cellular functions are well documented. ${ }^{[1]}$ These can act as Michael acceptors and are also involved in Schiff base formation with biological nucleophiles, which very well explains their bioactivity. ${ }^{[1]}$ While γ -hydroxy- α, β-enals are the degradation products of lipid peroxidation, the major product is 4-hydroxy-2E-nonenal (HNE), which is involved in several biological processes, oxidative stress, regulation of mitochondrial uncoupling, etc. ${ }^{[2,3]}$ Apart from this, the γ-hydroxy- α, β-enal moiety is formally present as skeletal unit in many natural products, for e.g. as vicinal diene-hydroxy unit in coriolide 1a, ${ }^{[4 a]}$ and 4-hydroxy enoic ester moiety in patulolides 1b and 1c ${ }^{[46, c]}$ aspicilin 1d, ${ }^{[4 d]}$ cineromycin B 1e, ${ }^{[44]}$ albocycline $1 f,{ }^{[4 f]}$ and macrosphelides A $\mathbf{1 g}$ and $\mathrm{E} \mathbf{1 h},{ }^{[49, h]}$ etc (Figure 1). Thus, this renders the γ-hydroxy- α, β-enal as a compelling moiety on both bioactivity and synthesis fronts.

The early synthesis of γ-hydroxy- α, β-enals has been described by Esterbauer et al. ${ }^{[5]}$ and then by Erickson ${ }^{[6]}$ using conventional routes. This was followed by the work of Grée et al. ${ }^{[7 \mathrm{a}]}$ based on alkyl Grignard addition to fumaraldehyde monodimethyl acetal. A similar approach was used by Iriye and co-workers ${ }^{[7]]}$ based on orthogonal functionalization of 2 -butene-1,4-diol. Wittig reaction based approaches ${ }^{[88, b]}$ and opening of β, γ-epoxy aldehyde with NaOH or $\mathrm{Et}_{3} \mathrm{~N}$ with limited examples ${ }^{[9 a-d]}$ are also explored. Chakraborty et al. employed Swen oxidation, PDC, IBX or TPAP/NMO conditions for oxidative opening of epoxide 2 in the synthesis of γ-hydroxy- α, β-enals 3 (only four examples, Scheme 1A). ${ }^{[9]]}$ The recent interesting report by Sasaki and Takeda ${ }^{[10]}$ involved γ-p-toluenesulfonyl- α, β-epoxysilane $\mathbf{2}^{\prime}$ as acrolein
[a] A. Kumari, S. P. Gholap, Prof. Dr. R. A. Fernandes
Department of Chemistry, Indian Institute of Technology Bombay,
Powai Mumbai 400076, Maharashtra, India
E-mail: rfernand@chem.iitb.ac.in
Supporting information for this article is given via a link at the end of the document.

X-ray data and NMR spectra (PDF)

Accession Codes

CCDC 1882370 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Figure 1. Natural Products with Formal γ-Hydroxy- α, β-enal Moiety
β-anion equivalent for a tandem base-promoted Brook-type epoxide opening, allylsilane-based aldehyde allylation and subsequent γ - p-toluenesulfonyl elimination, giving the γ-hydroxyα, β-enals 3, in one-pot manner (Scheme 1B). Our work reported herein, on preparing γ-hydroxy- α, β-enals was a serendipitous discovery. In the 2-iodoxybenzoic acid (IBX) oxidation of compound $5 \mathbf{i}\left(\mathrm{R}=\mathrm{C}_{5} \mathrm{H}_{11}\right)$ to get aldehyde $6 \mathbf{i}$, we observed exclusive formation of γ-hydroxy- α, β-enal 3i, stereoselectively with (E)-olefin bond (Scheme 1C). The reaction involved IBXpromoted primary alcohol oxidation/opening of intermediate $\beta, \gamma-$ diolcarbonate aldehyde providing stereoselectively (E) γ-hydroxyα, β-enal. IBX-mediated oxidation of saturated carbonyl compounds to α, β-unsaturated carbonyls has been developed by Nicolaou et al. ${ }^{[11]}$ This method may not be applicable for γ -hydroxy- α, β-enals synthesis (γ-hydroxy being susceptible to oxidation). Our work compliments Takeda's approach and is simpler in terms of starting materials required and reagents involved. No over-oxidation of the γ-hydroxy group was observed. Hence we took up this reaction for further optimization and to study its scope and applications in natural product synthesis.
[A] Chakraborty et al

(only 4 examples)
[B] Sasaki and Takeda

[C] This work

Scheme 1. Methods for the Synthesis of γ-Hydroxy- α, β-enals

Results and Discussion

We chose compound $\mathbf{5 i}$ to investigate various oxidants and to optimize the reaction conditions. In EtOAc, of the various oxidants investigated (Table 1, entries 1-6), IBX and Des-Martin periodinane (DMP) provided reasonable yields of $3 \mathbf{i}$ (entries 1 and 2). $\mathrm{Phl}(\mathrm{OAc})_{2}$ with TEMPO or oxone was not successful for this reaction (entries 5 and 6) and the substare $5 \mathbf{i}$ was mostly recovered, in the latter case even after reflux. IBX (1.5 equiv) in different solvents (entries 7-13) was next examined and EtOAc (entry 1) was revealed as the best solvent. In 1,2-dichloroethane (DCE) solvent under reflux, trace of furan product was isolated, which may get formed through the hydroxy-enal cyclization. Increase in reaction temperature from room temperature to $60^{\circ} \mathrm{C}$ increased the yield marginally (entry $1 \mathrm{v} / \mathrm{s} 14$). Further use of additives such as NaOAc , pyridine, $p-\mathrm{TsOH}$ or DMSO at $60^{\circ} \mathrm{C}$ did not improve the yield (entries 15-18). A reaction at reflux conditions improved the yield of $\mathbf{3 i}$ to 81% (entry 19). An increase in amount of IBX (entries 20-22) showed best results with 2.0 equiv IBX providing $\mathbf{3 i}$ in 94% yield in a 3 h reaction (entry 20). The higher loading of IBX over 2.0 equiv was not beneficial

Table 1. Screening of Reaction Conditions. ${ }^{a}$

(syn-diol carbonate)

TEMPO (1.5)/

 $\mathrm{PhI}(\mathrm{OAc})_{2}(1.5)$$\mathrm{PhI}(\mathrm{OAc})_{2}(1.5) /$ Oxone(1.5)
IBX (1.5)
IBX (1.5)/ $\mathrm{NaOAc}(1.0)$
6 IBX (1.5)/ Pyr (1.0)
7 IBX (1.5)/ p-TsOH (1.0)
$\begin{array}{lllll}\text { IBX (1.5)/ } & \text { EtOAc } & 60 & 78\end{array}$ DMSO (1.0) IBX (1.5) EtOAc IBX (2.0) EtOA IBX (2.5) $\begin{array}{lllll}\text { IBX (3.0) } & \text { EtOAc } & \begin{array}{lll}\text { reflux } & 3 & 94 \\ 2.5\end{array} & 93\end{array}$
${ }^{a}$ Reaction conditions: $5 \mathbf{i}$ (1.0 mmol), oxidant (1.5-3.0 equiv), solvent, rt-reflux, 2.5-30 h. ${ }^{b}$ Isolated yield. ${ }^{c}$ Traces of furan product observed. $\mathrm{NR}=$ No reaction, $\mathrm{rt}=$ room temperature

$3 i$

With the optimized conditions, the scope of this tandem oxidation of primary alcohol/subsequent opening of intermediate diol carbonate aldehyde was investigated. As shown in Scheme 2, the IBX-promoted reaction of various diolcarbonates 5a-n with aliphatic or aryl groups delivered the γ-hydroxy- α, β-enals 3a-n in good to excellent yields in 3-4 h reactions. A few chiral vicinal diol carbonates 5i' and 5m' prepared through Sharpless asymmetric dihydroxylation, yielded the chiral γ-hydroxy- α, β-enals $3 i^{\prime}$ and $3 \mathbf{m}^{\prime}$ in 93 and 78% yields, respectively with no loss in optical purity at the γ-hydroxy centre

3e, 57\% (3 h)

3h, 86\% (3 h)

3j, 90\% (3.5 h)

$3 \mathrm{~m}, 76 \%$ (4 h) $3 b, R^{\prime}=\mathrm{Me}, 80 \%(3 \mathrm{~h})$
3 c, $\mathrm{R}^{\prime}=\mathrm{OMe}, 75 \%(3 \mathrm{~h})$

3d, 62\% (3 h)

3g, 72\% (3 h)
3f, 54\% (3 h)

3i, 94\% (3 h)

3i', 93\% (3 h)

3k, 87\% (3.5 h

$3 m^{\prime}, 78 \%$ (4 h)
3n, 88\% (3 h)
Scheme 2. Substrate Scope for γ-Hydroxy- α, β-unsaturated Aldehyde Synthesis. Reaction Conditions: 5a-n (1.0 mmol), IBX (2.0 equiv), EtOAc, reflux, 3-4 h.

A selectivity reaction was investigated with acetonide group v / s the carbonate (Scheme 3). The reaction of 1,2-diol-acetonide compound (prepared from 7i) with IBX (2.0 equiv) delivered the aldehyde $8 \mathbf{i}$ with no opening of the acetonide moiety. In the carbonate case 5 m , a reaction quenched after 1 h showed the presence of starting material 5 m and the carbonate aldehyde $\mathbf{6 m}$ in 1:1.5 ratio. The reaction for 3 h , with the complete consumption of 5 m showed the presence of product 3 m and the intermediate $\mathbf{6 m}$ in 5:1 ratio. Further continuation of this reaction for another 1 h resulted in complete conversion to 3 m . Thus, the reaction involves first oxidation of primary hydroxy to the aldehyde followed by opening of the carbonate to give the enal 3 m . The reaction also requires the presence of the labile carbonate rather than the acetonide. The 1,2-diol carbonates used in this study were prepared by cis-dihydroxylation of (E)-olefins (see Experimental Section). The IBX-mediated reaction resulted exclusively in (E)- $\alpha \beta$-unsaturated aldehydes. To determine the stereospecificity of the reaction, we prepared the anti-diol carbonate 5 il " (through cis-dihydroxylation of cis-olefin) and subjected to IBX oxidation (Scheme 3). This resulted in the same product, (E)- $\alpha \beta$-unsaturated aldehyde $\mathbf{3 i}$ in 80% yield. Thus, the reaction is not stereospecific with regards to relative stereochemistry of the diol carbonate and the geometry of olefin formed in the enal.

We further considered the synthetic modifications of the $\gamma-$ hydroxy- α, β-enal compounds (Scheme 4). Pinnick oxidation of aldehyde group of 3 m delivered the corresponding γ-hydroxy- α, β unsaturated acid 9 in 76% yield. Further esterification of 9 gave the γ-hydroxy- β, γ-unsaturated ester 10 in 83% yield. Homologation of enals $\mathbf{3 I}, \mathbf{3 m}$ and $\mathbf{3 n}$ with the ylide from triethylphosphonoacetate gave the dienoates 11a, 11b and 11c, respectively in 63-76\% yields. Addition of lithiated phenylacetylene to enal 3 m furnished the skipped ene-yne alcohol 12 in 58% yield, with no conjugate addition being observed.

Scheme 3. Selectivity Experiments and Stepwise Formation of 3m

Scheme 4. Synthetic Modifications of γ-Hydroxy- α, β-enals
The application of a synthetic methodology toward the synthesis of natural products is an important validation of its synthetic potential and usefulness. Thus, the developed reaction
was also utilized in the total synthesis of both enantiomers of coriolide. It is a major component in the scent gland extracts of the male long wing tropical butterflies, Heliconius pachinus. ${ }^{[4 a, 12]}$ It was also isolated from the seed oil of Monninae marginata (polygalaceae), a plant native to Uruguay. ${ }^{[13]}$ A few syntheses of coriolide are reported in the literature. ${ }^{[12,14]}$ Our synthesis started from 1,9-nonanediol 13, which on monobromination (90\%) and further oxidation of the remaining hydroxy group delivered the carboxylic acid 14 in 98% yield (Scheme 5). The phosphonium salt 15 was prepared from bromo acid 14 in 72% yield. This was converted into its ylide using KHMDS and reacted with the (S)- γ -hydroxy- α, β-enal $3 \mathbf{i}^{\prime}$ at $-78^{\circ} \mathrm{C}$ to provide stereoselectively the Z, E-diene acid 16 in 64% yield. The latter on macrolactonization by the Yamaguchi method ${ }^{[15]}$ afforded (S)-coriolide 1a in 58% yield. ${ }^{[14 b]}$ On the other hand, inversion-cyclization of 16 under Mitsunobu's conditions ${ }^{[16]}$ delivered (R)-coriolide ent-1a. ${ }^{[14 b]}$

Scheme 5. Total Synthesis of (S) -and (R)-Coriolides

Further, the total synthesis of D-xylo- and D-arabino-C20 guggultetrols was undertaken. These are long chain aliphatic 1,2,3,4-tetrols, with the former as major naturally occurring lipid isolated from the gum resin of the tree Commiphora mukul, known as guggul. ${ }^{[17]}$ It has been used in Ayurveda, the ancient Indian medicinal system for the treatment of inflammation, rheumatoid arthritis, obesity, and disorders of lipid metabolism besides several other ailments. ${ }^{[18]}$ The C18 and C20 guggultetrols have been synthesized before by various methods. ${ }^{[19]}$ Our synthesis of C20 guggultetrol is shown in Scheme 6. The reduction of the aldehyde group in compound $\mathbf{3 m}^{\prime}$ with DIBAL-H gave the ene-diol 17 in 80% yield. This was converted into its diacetate 18 (85% yield) and then subjected to asymmetric dihydroxylation using (DHQ) $)_{2}$-PHAL ligand to afford the diol diacetate 19, which without further purification was converted into its tetraacetate as a diastereomer mixture ($\mathrm{dr}=9: 1$). The mixture was separated by column chromatography to furnish the D-xylo-C20 guggultetrol tetraacetate 20a ${ }^{[20]}$ in 70% overall yield. The minor diastereomer D-arabino-C20 guggultetrol 20b was obtained in 8% yield. While compound 17 could be subjected directly for dihydroxylation, the tetrol product purification was hampered due to its high polarity and resulted in lower yields of the tetraacetate in the subsequent reaction. The stepwise conversion, first into the diacetate and then dihydroxylation resulted in better overall yields and diastereomeric ratio.

18

Scheme 6. Total Synthesis of D-xylo- and D-arabino-C20 Guggultetro Tetraacetates

Conclusions

In summary, in this paper we have executed an interesting chemistry of IBX promoted primary alcohol oxidation to aldehyde and the subsequent opening of the intermediate β, γ-diolcarbonate aldehyde to give stereoselectively the (E)- γ-hydroxy- α, β-enals. These are important compounds for their inherent bioactivity and also as useful synthons in natural products synthesis. This has been demonstrated by completing the total synthesis of both enantiomers of coriolide and the C20 D-xylo- and D-arabinoguggultetrol tetraacetates.

Experimental Section

General information. Solvents were dried by using standard procedures. Thin-layer chromatography was performed on EM 250 Kieselgel 60 F254 silica gel plates. The spots were visualized by staining with KMnO_{4} or by using a UV lamp. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ were recorded with a spectrometer operating at 400 or 500 and 100 or 125 MHz for proton and carbon nuclei, respectively. The chemical shifts are based on the TMS peak at $\delta=0.00 \mathrm{pm}$ for proton NMR and the CDCl_{3} peak at $\delta=77.00 \mathrm{ppm}$ (t) for carbon NMR. For other deuterated solvents the standard chemical shifts were considered. IR spectra were obtained on an FT-IR spectrometer. Optical rotations were measured using sodium D-line (589 nm). HRMS (ESI-TOF) spectra were recorded using positive electrospray ionization by the TOF method. The enantiomeric excess was determined by the HPLC method using Chiralpak OD-H or AD-H columns at wavelength 230 nm .

General Procedure for the Synthesis of Alcohols (22a-e). To a stirred solution of malonic acid ($2.71 \mathrm{~g}, 26.0 \mathrm{mmol}, 1.3$ equiv) in pyridine (4 mL) was added piperidine ($0.2 \mathrm{~mL}, 2.0 \mathrm{mmol}, 0.1$ equiv) and then aryl aldehyde 21a-e (20 mmol) drop wise under N_{2} atmosphere. The resulting mixture was stirred for 6 h at $85^{\circ} \mathrm{C}$, when TLC indicated the disappearance of the starting material. The mixture was cooled to room temperature and neutralized with 10% aq. $\mathrm{HCl}(5 \mathrm{~mL})$ to give a white solid that was filtered
and washed with cold water. Recrystallization from aqueous EtOH (1:1) afforded (E)-3-(aryl)-acrylic acids, which were used directly for the next reaction.
To a suspension of $\mathrm{LiAlH}_{4}(1.52 \mathrm{~g}, 40.0 \mathrm{mmol}, 2.0$ equiv) in THF (60 mL) under N_{2} atmosphere at $0^{\circ} \mathrm{C}$ was added the solution of above (E)-3-(aryl)acrylic acids in THF (15 mL) dropwise. The resulting mixture was stirred at reflux for 6-8 h. The mixture was then cooled to room temperature and quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (15 mL) at $0^{\circ} \mathrm{C}$. Then EtOAc $(100 \mathrm{~mL})$ was added and the mixture stirred for 1 h . It was then filtered through a sintered glass funnel and the filtrate was concentrated. The residue was purified by a silica gel column chromatography using petroleum ether/EtOAc (3:1) as eluent to give the corresponding alcohols 22a-e in 44-58\% overall yields over two steps.

3-Phenylpropan-1-ol (22a). ${ }^{[21]}$ Colourless oil (1.362 g, 50\%). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.88-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{t}, J=7.9 \mathrm{~Hz}$, 2H), 3.68 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.18-7.22 (m, 3H), 7.28-7.31 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.0,34.2,62.2,125.8,128.36,128.4$, $141.8 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{Umax}^{2}=3361,3084,3062,3026,2937,2863,1603$, $1583,1496,1454,1266,1218,1154,1059,1032,918,805,753,699,668$, $574 \mathrm{~cm}^{-1}$
3-(p-Tolyl)propan-1-ol (22b). ${ }^{[21]}$ Colourless oil (1.683 g, 56\%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61$ (brs, $1 \mathrm{H}, \mathrm{OH}$), 1.87-1.90 (m, 2H), $2.33(\mathrm{~s}, 3 \mathrm{H})$, $2.68(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~s}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,31.6,34.3,62.3,128.3,129.1,135.3$, 138.7 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3351,3018,2927,2862,1515,1452,1266$, 1160, 1112, 1046, 911, 837, 805, 781, 756, 669, $561 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ONa} 173.0937$; Found 173.0935.
3-(4-Methoxyphenyl)propan-1-ol (22c). ${ }^{[21]}$ Colourless oil (1.928 g, 58\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.65$ (t, J=7.6 Hz, 2H), 3.65 (t, J = $6.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.79 (s, 3H), 6.84 (d, $J=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $31.0,34.3,55.1,61.9,113.6,129.2,133.8,157.6 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{Umax}_{\max }=$ $3389,2994,2939,1612,1584,1513,1465,1372,1299,1247,1178,1111$, 1038, 912, 832, 814, 748, 701, 638, 563, $522 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [$\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{Na}$ 189.0886; Found 189.0888.
3-(4-Fluorophenyl)propan-1-ol (22d). ${ }^{[22]}$ Colourless oil (1.357 g, 44\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.83-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.94-6.99(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.17(\mathrm{~m}$, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 31.2,34.3,62.0,115.08$ (d, $J=$ $20.9 \mathrm{~Hz}), 129.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 137.34(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 161.30(\mathrm{~d}, J=$ 242.8 Hz) ppm. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-117.73 \mathrm{ppm}$. IR ($\left.\mathrm{CHCl}_{3}\right)$: $u_{\max }=3343,2932,2868,1664,1511,1450,1273,1222,1158,1094,1041$, 912, 822, 760, $552 \mathrm{~cm}^{-1}$.
3-(3-Bromophenyl)propan-1-ol (22e). ${ }^{[23]}$ Colourless oil ($2.151 \mathrm{~g}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.75(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.87-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{t}$, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}$, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 32.0,34.2,62.2,125.8,126.9$, 128.4, 129.9, 131.4, 141.8 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3344,2928,2854,1664$, $1535,1454,1278,1149,1085,946,758,700 \mathrm{~cm}^{-1}$.
General Procedure for the Synthesis of Homoallyl Alcohols (23a-n). Oxalyl chloride ($1.523 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.5$ equiv) was gradually added to a solution of DMSO ($1.875 \mathrm{~g}, 24.0 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $78^{\circ} \mathrm{C}$ over a period of 2 min . After stirring for 15 min , a solution of alcohol 22a-n (8.0 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added and the reaction mixture stirred for 45 min . A solution of $\mathrm{NEt}_{3}(4.5 \mathrm{~mL}, 32.0 \mathrm{mmol}, 4.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added and the reaction mixture stirred for 30 min and then gradually warmed to room temperature over 1 h . After addition of water (20 mL), the organic layer was separated and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude aldehyde, which was used directly in the next reaction.

To the solution of above aldehyde in DMSO (30 mL) was added sequentially malonic acid ($1.665 \mathrm{~g}, 16.0 \mathrm{mmol}, 2.0$ equiv) and piperidinium acetate $(34.8 \mathrm{mg}, 0.24 \mathrm{mmol}, 0.03$ equiv). The mixture was stirred vigorously at $100{ }^{\circ} \mathrm{C}$ for $6-12 \mathrm{~h}$ and then cooled to room temperature. EtOAc (30 mL) was added and the organic layer was separated and the aqueous layer was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered through a plug of silica gel. The filtrate was concentrated and the residue was used in the next reaction.

FULL PAPER

To a slurry of $\mathrm{LiAlH}_{4}(0.607 \mathrm{~g}, 16.0 \mathrm{mmol}, 2.0$ equiv) in dry THF $(50 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added dropwise a solution of the above acid in THF $(20 \mathrm{~mL})$. The reaction mixture was refluxed for 14 h and then quenched with saturated aq. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (15 mL) at $0^{\circ} \mathrm{C}$. Then $\mathrm{EtOAc}(80 \mathrm{~mL})$ was added and the mixture stirred for 1 h . The mixture was filtered through a sintered glass funnel and the filtrate was concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (3:1) as eluent to give the corresponding alcohols 23a-n.

23a-n
(E)-5-Phenylpent-3-en-1-ol (23a). ${ }^{[24]}$ Pale yellow oil ($0.856 \mathrm{~g}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl3): $\delta 2.31$ (q, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, 2H), 3.66 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.49 (tdt, $J=14.5,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dtt, $J=14.5,6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.8,39.0,61.9,125.9,127.4,128.35,128.4$, $132.3,140.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3408,2952,1654,1636,1219,1104$, 1042, 855, 822, $775 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ONa}$ 185.0936; Found 185.1049.
(E)-5-(p-Tolyl)pent-3-en-1-ol (23b). Colourless oil ($0.902 \mathrm{~g}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.28-2.32(\mathrm{~m}, 5 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{dtt}, J=14.8,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.73 (dtt, $J=14.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 4 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,35.9,38.7,62.0,127.1,128.3,129.1,132.8$, $135.5,137.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=3399,3092,3020,3002,2924,2858$, 1619, 1514, 1432, 1378, 1258, 1182, 1109, 1045, 969, 806, 618, 552 cm ${ }^{1}$. LRMS (ESI-TOF) m / z. [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ONa} 199.1093$; Found 199.0438.
(E)-5-(4-Methoxyphenyl)pent-3-en-1-ol (23c). Pale yellow oil (0.969 g , 63%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.58$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.30 ($\mathrm{q}, \mathrm{J}=6.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.30(\mathrm{~d}, J=6.7,2 \mathrm{H}), 3.65(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 5.46$ (dtt, $J=14.7,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.70$ (dtt, $J=14.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 35.9,38.2,55.3,62.0,113.8,127.1,129.4,132.5,132.9,157.9$ ppm. IR $\left(\mathrm{CHCl}_{3}\right) u_{\max }=3392,3030,2996,2932,2835,1611,1511,1440$, 1300, 1245, 1176,1108, 1036, 969, 817, 708, 638, 563, $513 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{Na} 215.1042$; Found 215.0425
(E)-5-(4-Fluorophenyl)pent-3-en-1-ol (23d). Colourless oil (1.081 g, 75\%). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.31$ (q, $\left.J=7.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.35(\mathrm{dd}, J=11.7$, $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{dtt}, J=14.5,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.66-5.76(\mathrm{~m} 1 \mathrm{H}), 6.95-6.99(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}$, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.9,38.2,62.0,115.15$ (d, J $=21.1 \mathrm{~Hz}), 127.7,129.7,129.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 132.2,136.10(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 161.4(\mathrm{~d}, \mathrm{~J}=243.4 \mathrm{~Hz}) \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-117.5$ ppm. IR $\left(\mathrm{CHCl}_{3}\right): U_{\max }=3343,2931,1660,1510,1453,1222,1158,968$, 909, 826, 759, $669 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FONa} 203.0842$; Found 203.0536 .
(E)-5-(3-Bromophenyl)pent-3-en-1-ol (23e). Colourless oil (1.543 g, 80\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.31(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.49(\mathrm{dtt}, J=14.9,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73$ (dtt, $J=14.4,6.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 35.9,39.1,62.0,126.0,127.4$, 128.4, 128.44, 132.5, 140.5 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3352,2931,2878$, 1665, 1535, 1453, 1240, 1159, 1046, $769 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrONa} 265.0022$; Found 265.0888.
(E)-4-Phenylbut-3-en-1-ol (23f). Pale yellow oil ($0.901 \mathrm{~g}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.79$ (br s, 1H, OH), $2.49(\mathrm{q}, \mathrm{J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}$), $3.76(\mathrm{t}$, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{dt}, J=15.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.21-7.24 (m, 1H), 7.29-7.32 (m, 2H), 7.36-7.38 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 36.4,62.0,126.0,126.3,127.2,128.5,132.8$, 137.2 ppm . IR (CHCl_{3}) $U_{\max }=3399,3025,2922,2850,1656,1493,1449$, 1377, 1046, 966, 693, $668 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ONa} 171.0780$; Found 171.0729.
(E)-Hex-3-en-1-ol (23g). ${ }^{[25]}$ Colourless oil ($0.553 \mathrm{~g}, 69 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.97(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.28(\mathrm{~m}$ $2 \mathrm{H}), 3.61(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36$ (dtt, $J=14.6,6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.59$ (dtt, $J=14.1,6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.7$, $25.6,35.9,62.0,124.7,135.8 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): u_{\max }=3393,2952,2925$, 2854, 1654, 1464, 1374, 1266, 1048, 911, 802, $764 \mathrm{~cm}^{-1}$
(E)-Oct-3-en-1-ol (23h). ${ }^{[26]}$ Pale yellow oil ($0.667 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.36(\mathrm{~m}, 4 \mathrm{H}), 1.99-2.03(\mathrm{~m}$, $2 \mathrm{H}), 2.25(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{dtt}, J=14.8$,
$6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 5.54 (dtt, $J=14.5,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 13.9,22.2,31.6,32.3,36.0,62.0,125.7,134.3 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3368,2957,2927,2873,2857,1653,1466,1378,1266$, 1049, 969, 911, 738, 706, 541, $472 \mathrm{~cm}^{-1}$
(E)-Non-3-en-1-ol (23i). ${ }^{[26]}$ Pale yellow oil ($0.774 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.38(\mathrm{~m}, 6 \mathrm{H}), 2.00(\mathrm{q}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.25(\mathrm{q}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{dtt}, J=$ $14.6,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dtt}, J=14.5,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.5,29.1,31.4,32.6,36.0,62.0,125.6$, 134.5 ppm . IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=3365,2956,2927,2857,1668,1542,1467$, 1376, 1171, 1127, 1049, $969 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) $m / z:[M+K]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{OK} 181.0989$; Found 181.1087.
(E)-Dec-3-en-1-ol (23j). ${ }^{[26]}$ Pale yellow oil ($0.788 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 8 \mathrm{H}), 2.06(\mathrm{q}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.26(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{dtt}, J=$ $14.6,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dtt}, J=14.5,6.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.6,28.8,29.4,31.7,32.7,36.0,62.0$, 125.6, 134.4 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3367,2952,2925,2854,1465,1378$, 1176, 1049, $967 \mathrm{~cm}^{-1}$.
(E)-Undec-3-en-1-ol (23k). ${ }^{[26]}$ Pale yellow oil ($\left.0.844 \mathrm{~g}, 62 \%\right) .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.36(\mathrm{~m}, 10 \mathrm{H}), 2.00(\mathrm{q}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{q}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{dtt}, J=$ $14.7,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.54 (dtt, $J=15.26 .7,1.5 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.6,27.3,29.1,29.4,31.8,32.6,36.0$, 62.0, 125.6, 134.4 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3363,2952,2929,2854,1629$, 1465, 1377, 1259, 1177, 1047, 968, 887, 758, 722, $668 \mathrm{~cm}^{-1}$.
(E)-Tetradec-3-en-1-ol (23I). Pale yellow oil ($1.0 \mathrm{~g}, 59 \%$). ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 16 \mathrm{H}), 2.00(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), $2.25(\mathrm{q}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36$ (dt, $J=$ $14.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dt}, J=14.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,22.7,27.4,29.2,29.3,29.4,29.5,29.6,31.9,32.7$, $36.0,62.0,125.6,134.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{U}_{\max }=3411,2924,2853,1466$, 1378, 1264, 1178, 1047, 970, 909, 743, $705 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z. $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{ONa}$ 235.2032; Found 235.2027.
(E)-Icos-3-en-1-ol (23m). White semisolid (1.73 g, 73\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 28 \mathrm{H}), 2.00(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.36$ (dtt, J $=14.6,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{dtt}, J=14.6,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.7,29.2,29.4,29.48,29.5,29.6,29.7$, $31.9,32.7,36.0,62.0,125.6,134.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right) \mathrm{U}_{\max }=3429,3052$, $2925,2854,1466,1378,1264,1183,1047,970,909,742,706 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:[M+N a]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{ONa} 319.2971$; Found 319.2971 .
(E)-6-(Benzyloxy)hex-3-en-1-ol (23n). Pale yellow oil (1.106 g, 67\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.26(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $2 \mathrm{H}), 3.49(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.47(\mathrm{dt}$, $J=14.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 5 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 33.1,36.0,61.8,69.7,72.8,127.5$, 127.6, 128.1, $128.3,130.0,138.3 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3398,2929$, 2859, 1605, 1448, 1356, 1097, 1048, $973 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M $+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{Na}$ 229.1199; Found 229.1172.
(Z)-Non-3-en-1-ol (23i"). Was prepared following literature procedure. ${ }^{[27]}$

23i"

General Procedure for the Synthesis of Diol Carbonates (5a-n). To a mixture of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ (3.951 g , $12.0 \mathrm{mmol}, 3.0$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.658 \mathrm{~g}$, $12.0 \mathrm{mmol}, 3.0$ equiv) and few drops of pyridine or (DHQD) ${ }_{2}$ PHAL or $(\mathrm{DHQ})_{2} \mathrm{PHAL}(31.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$ in $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,20 \mathrm{~mL})$ cooled at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{OsO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(5.9 \mathrm{mg}, 0.016 \mathrm{mmol}, 0.4 \mathrm{~mol} \%)$ followed by methanesulfonamide ($380.5 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min at $0{ }^{\circ} \mathrm{C}$, the olefin 23a-n (4.0 mmol) was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(0.4 \mathrm{~g})$. The stirring was continued for an additional 45 min and the solution extracted with EtOAc $(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. Silica gel column chromatography of the crude product using petroleum ether/EtOAc (2:3) as eluent gave the triol as a colourless oil, which was used for the next reaction.
To the solution of above triol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added pyridine (1.3 $\mathrm{mL}, 16.0 \mathrm{mmol}, 4.0$ equiv) under N_{2} atmosphere. The reaction mixture was stirred for $5-10 \mathrm{~min}$ and then triphosgene ($1.19 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv) was
added under N_{2} atmosphere and stirring was maintained at room temperature for 40 min . The reaction was quenched with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The phases were separated and the organic layer was diluted with EtOAc (30 mL), washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to afford 5an.

4-Benzyl-5-(2-hydroxyethyl)-1,3-dioxolan-2-one (5a). Colourless semisolid ($0.435 \mathrm{~g}, 49 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.68-1.76(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.00(\mathrm{dd}, J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H})$, 3.11 (dd, $J=14.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55-4.63(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.24 (m, 2H), 7.28-7.35 (m, 3H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz $\left.\mathrm{CDCl}_{3}\right): \delta 35.9,39.2,57.9,78.8,82.1,127.4,128.9,129.4,134.1,154.4$ ppm. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3432,2919,2850,1788,1631,1453,1381,1266$, 1169, 1055, 755, 701, $465 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Na} 245.0784$; Found 245.0786.
4-(2-Hydroxyethyl)-5-(4-methylbenzyl)-1,3-dioxolan-2-one
(5b).
Colourless semisolid ($0.482 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.68-$ $1.76(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=14.3,5.6 \mathrm{~Hz}$ $1 \mathrm{H}), 3.07$ (dd, $J=14.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.72(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.60(\mathrm{~m}, 2 \mathrm{H})$, 7.09-7.15 (m, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.0,36.0,38.8$, $58.0,78.7,82.2,129.3,129.6,131.0,137.2,154.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\max }$ $=3433$, 2923, 1796, 1639, 1516, 1383, 1169, 1057, 808, 774, 697, 618, $526,489 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}$ 259.0940; Found 259.0568.

4-(2-Hydroxyethyl)-5-(4-methoxybenzyl)-1,3-dioxolan-2-one
Colourless semisolid ($0.484 \mathrm{~g}, 48 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.70-$ $1.77(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.92(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=14.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{dd}$, $J=14.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.54-4.57(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 36.0,38.4,55.3,58.1,78.6,82.2,114.3,126.0,130.5$, 154.3, 159.0 ppm. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3479,2936,2838,1791,1612,1514$, 1442, 1383, 1331, 1302, 1249, 1178, 1112, 1031, 904, 822, 774, 696, 617, $527 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}$ 275.0889; Found 275.0433.

4-(4-Fluorobenzyl)-5-(2-hydroxyethyl)-1,3-dioxoan-2-one (5d). Pale yellow semisolid ($0.490 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74-1.82$ (m, 1H), 1.87-1.95 (m, 1H), 2.98-3.09 (m, 2H), 3.73-3.77 (m, 2H), 4.53$4.61(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.9,38.4,58.0,78.7,82.0,115.76(\mathrm{~d}, J=21.4, \mathrm{~Hz})$, 130.0 (d, $J=3.4, H z), 131.0(d, J=8.0, H z), 154.2,162.2(d, J=247.9$, $\mathrm{Hz})$ ppm. ${ }^{19} \mathrm{~F}$ NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-114.87 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{vmax}=$ 3378, 2931, 1796, 1663, 1511, 1455, 1384, 1337, 1279, 1221, 1159, 1054, $826,771 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{FO}_{4} \mathrm{Na}$ 263.0690; Found 263.0690.

4-(3-Bromobenzyl)-5-(2-hydroxyethyl)-1,3-dioxoan-2-one (5e). Colourless semisolid ($0.650 \mathrm{~g}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.68-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.91(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.00(\mathrm{dd}, J=14.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{dd}, J=14.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54-4.63(\mathrm{~m}, 2 \mathrm{H})$, 7.22-7.35 (m, 4H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.9,39.2,57.9$ $78.8,82.1,127.4,128.6,128.8,129.3,129.4,134.2,154.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3414,2927,2888,1795,1660,1546,1497,1455,1384$, 1242, 1215, 1166, 1058, 756, 701 cmr . LRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{Na}$ 303.0050; Found 303.1249.
4-(2-Hydroxyethyl)-5-phenyl-1,3-dioxolan-2-one (5f). Pale yellow oil ($0.566 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.05(\mathrm{q}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.76-3.86(m, 2H), $4.72(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=7.6$ $\mathrm{Hz} 1 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.3$, $57.9,81.7,83.3,126.1,129.1,129.7,135.2,154.5 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }$ $=3433,3020,2918,2849,1805,1498,1458,1376,1353,1279,1186$, 1159, 1069, 1050, 1027, 973, 699, 667, 626, 588, $496 \mathrm{~cm}^{-1}$. LRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{Na} 231.0627$; Found 231.0729
5-Ethyl-4-(2-hydroxyethyl)-1,3-dioxolan-2-one (5g). Colourless oil (0.333 g , 52%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.72-1.79(\mathrm{~m}$, $2 \mathrm{H}), 1.89-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31$ $(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.52(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 8.7,26.5,36.2,57.9,79.1,83.3,154.8 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=$ 3432, 2969, 2925, 2854, 1794, 1551, 1464, 1377, 1264, 1185, 1055, 910, $775,734 \mathrm{~cm}^{-1}$. LRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{4} \mathrm{~K}$ 199.0367; Found 199.0581.

4-(2-Hydroxyethyl)-5-butyl-, 3 -dioxolan-2-one (5h). Pale yellow oil (0.496 $\mathrm{g}, 66 \%)$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.90(\mathrm{t}, J=6.7 \mathrm{HZ}, 3 \mathrm{H}), 1.34-1.45$ $(\mathrm{m}, 4 \mathrm{H}), 1.66-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.96(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.32-4.37 (m, 1H), 4.46-4.51 (m, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 13.7,22.2,26.6,33.1,36.1,58.0,79.4,82.3,154.8 \mathrm{ppm} . \mathrm{IR}$ $\left(\mathrm{CHCl}_{3}\right): v_{\text {max }}=3434,2959,2931,2871,1797,1556,1466,1381,1264$, 1215, 1181, 1057, 914, 776, $754 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na} 211.0941$; Found 211.0959.
(4S,5S)-4-(2-Hydroxyethyl)-5-pentyl-1,3-dioxolan-2-one (5i'). Prepared using (DHQ $)_{2}$-PHAL ligand in asymmetric dihydroxylation. Pale yellow oil $(0.501 \mathrm{~g}, 62 \%) .[\alpha]^{25}=-32.7\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.87(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.49(\mathrm{~m}, 6 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.96$ $(\mathrm{m}, 2 \mathrm{H}), 2.53(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 3.81(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.32-4.37(\mathrm{~m}, 1 \mathrm{H})$, $4.46-4.51(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.8,22.3,24.2$, $31.2,33.4,36.1,58.0,79.5,82.3,154.8 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=3458$, 2955, 2932, 2864, 1801, 1654, 1552, 1464, 1381, 1175, 1061, 773, 668 cm^{-1}. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na} 225.1097$; Found 225.1099. Following a similar procedure, racemic 5 i was prepared from 24i using catalytic pyridine instead of (DHQ) 2 -PHAL ligand, followed by preparation of the carbonate. Analytical data is same as $5 \mathrm{i}^{\prime}$. The enantiomeric excess was determined by converting the triol 7i' obtained after asymmetric dihydroxylation of $\mathbf{2 3 i}$ into its tribenzoate 24i' as described below.
(3S,4S)-Nonane-1,3,4-triyl tribenzoate (24i'). To a stirred solution of $(3 S, 4 S)$-nonane-1,3,4-triol $7 \mathrm{i}^{\prime}(25 \mathrm{mg}, 0.142 \mathrm{mmol})$ in pyridine (1.5 mL) was added benzoyl chloride ($0.17 \mathrm{~mL}, 1.43 \mathrm{mmol}, 10.0$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h and then quenched with ice water. The solution was extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$. The combined organic layers were concentrated and the residue purified by silica gel coloumn chromatography using petroleum ether/EtOAc (19:1) to give the tribenzoate 24i' as colourless semisolid ($59 \mathrm{mg}, 85 \%$).

$[\alpha]{ }^{25}=-0.8\left(c=0.25, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.81-0.85$ (m, 3H), 1.26-1.38 (m, 4H), 1.39-1.43 (m, 2H), 1.78-1.79 (m, 2H), 2.24$2.27(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.54(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.50(\mathrm{~m}, 1 \mathrm{H})$, 5.65-5.69 (m, 1H), 7.36-7.45 (m, 6H), 7.50-7.57 (m, 3H), 7.98-8.07 (m, $6 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,22.4,24.9,30.4,30.7$, $31.5,61.2,71.6,74.6,128.3,128.4,129.6,129.66,129.7,129.8,129.9$, 132.9, 133.06, 133.1, 165.9, 166.1, 166.4 ppm. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3063$, 3032, 2955, 2928, 2857, 1720, 1602, 1584, 1491, 1451, 1378, 1314, 1268, 1176, 1108, 1070, 1026, 1001, 937, 913, 850, 803, 757, 711, 687, $617 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI-TOF) m/z. [M + Na] + Calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{Na} 511.2091$; Found 511.2090. The racemic tribenzoate was prepared following similar procedure. HPLC analysis: Chiralpak OD-H coloumn, hexane-iPrOH = $92: 8$, flow rate $=0.7 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\text {major }}=9.90 \mathrm{~min}, 100 \% \mathrm{ee}$.
4-(2-Hydroxyethyl)-5-hexyl-1,3-dioxolan-2-one (5j). Pale yellow oil (0.450 $\mathrm{g}, 52 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.50$ (m, 8H), 1.69-1.73 (m, 2H), 1.95-2.01 (m, 2H), $3.85(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H})$, 4.33-4.37 (m, 1H), 4.47-4.51 (m, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 14.0,22.4,24.5,28.8,31.5,33.5,36.1,58.2,79.4,82.2,154.6$ ppm. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3433,2952,2928,2857,1796,1464,1380,1268$, 1213, 1174, 1057, 903, 692, $666 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}$ 239.1254; Found 239.1257.
4-(2-Hydroxyethyl)-5-heptyl-1,3-dioxolan-2-one (5k). Pale yellow oil $(0.442 \mathrm{~g}, 48 \%) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.24-1.49 (m, 8H), 1.66-1.78 (m, 4H), 1.92-1.99 (m, 2H), 3.83-3.85 (m, $2 \mathrm{H}), 4.33-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.50(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 14.0,22.6,24.6,29.0,29.1,31.6,33.5,36.1,58.2,79.4,82.2$, 154.6 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3485,3018,2926,2855,1801,1655,1465$, 1379, 1349, 1180, 1056, 893, 695, 667, 620, 520, $488 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$ 253.1410; Found 253.1412.
4-(2-Hydroxyethyl)-5-decyl-1,3-dioxolan-2-one (5I). Pale yellow oil (0.534 $\mathrm{g}, 49 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.48$ $(\mathrm{m}, 16 \mathrm{H}), 1.67-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.97(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.34(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,22.6,24.6,29.1,29.25,29.3,29.4,29.5,31.8,33.5$, $36.1,58.1,79.4,82.2,154.6 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{vmax}_{\max }=3482,3018,2925$, $2855,1794,1561,1465,1379,1344,1181,1058,889,760,694,667,620$, $536 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z : [$\left.\mathrm{M}+\mathrm{Na}\right]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}$ 295.1880, Found 295.1876.
(3R,4R)-4-(2-Hydroxyethyl)-5-hexadecyl-1,3-dioxolan-2-one (5m'). Prepared using (DHQD) $)_{2}$-PHAL ligand in asymmetric dihydroxylation. White solid ($0.813 \mathrm{~g}, 57 \%$), m.p. $=48-50^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{25}=+15.4\left(c=0.3, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.48(\mathrm{~m}, 26 \mathrm{H})$,
1.65-1.77 (m, 4H), 1.92-1.98 (m, 2H), 3.83-3.85 (m, 2H), 4.31-4.37 (m, $1 \mathrm{H}), 4.46-4.50(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.7$, 24.6, 29.2, 29.3, 29.5, 29.56, 29.6, 29.63, 29.7, 31.9, 33.5, 36.1, 58.2, 79.4, 82.2, 154.7 ppm . IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=3396,2918,2852,1778,1760,1471$, 1378, 1051, $771 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Na} 379.2819$; Found 379.2814 . Following a similar procedure, racemic 5 m was prepared from 23m using catalytic pyridine instead of (DHQD) 2_{2}-PHAL, followed by preparation of the carbonate. Analytical data is same as $5 \mathbf{m}^{\prime}$. The enantiomeric excess was determined by converting the triol $\mathbf{7 m}$ ' obtained after asymmetric dihydroxylation of $\mathbf{2 3 m}$ into its tribenzoate $\mathbf{2 4 m} \mathbf{m}^{\prime}$ as described below.
(3R,4R)-Icosane-1,3,4-triyl tribenzoate ($\mathbf{2 4 m} \mathbf{m}^{\prime}$). The tribenzoate $\mathbf{2 4 m}$ ' was prepared from $\mathbf{7 m}$ ' by a similar procedure as described for 24i' to afford 24m' as white semisolid (85\%).

$[\alpha]{ }^{25}=+16.3\left(c=2.0, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.30(\mathrm{~m}, 26 \mathrm{H}), 1.37-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.81(\mathrm{~m}, 2 \mathrm{H})$, $2.25(\mathrm{q}, \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.46-4.52(\mathrm{~m}, 1 \mathrm{H}), 5.46-5.50$ $(\mathrm{m}, 1 \mathrm{H}), 5.65-5.69(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.98-$ 8.07 (m, 6H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.7,25.2,29.3$, 29.4, 29.45, 29.5, 29.7, 30.4, 30.8, 31.9, 61.2, 71.6, 74.6, 128.3, 128.4, 129.56, 129.67, 129.7, 129.8, 129.9, 132.9, 133.05, 133.1, 165.9, 166.1, 166.4 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=2925,2853,1723,1695,1603,1585,1492$, 1452, 1315, 1269, 1179, 1111, 1070, 1027, 802, 759, 711, 686, $547 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z : [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{41} \mathrm{H}_{54} \mathrm{O}_{6} \mathrm{Na} 665.3813$; Found 665.3804. The racemic tribenzoate was prepared following similar procedure. HPLC analysis: Chiralpak AD-H coloumn, hexane-iPrOH = $97: 3$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \mathrm{t}_{\text {major }}=8.88 \mathrm{~min}, 100 \%$ ee.
4-(2-Benzyloxyethyl)-5-(2-hydroxyethyl)-1,3-dioxolan-2-one (5n). Colourless semisolid ($0.543 \mathrm{~g}, 51 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.88-$ $1.92(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.03(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.70-3.74(\mathrm{~m}$, $2 \mathrm{H})$, 4.49-4.52 (m, 2H), 4.55-4.59 (m, 2H), 7.29-7.37 (m, 5H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 33.6,35.9,57.9,65.3,73.3,79.6,79.7$, $127.76,127.8,128.4,137.6,154.6 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3427,2924$, 2871, 1798, 1369, 1178, 1072, 750, $700 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}$ 289.1046; Found 289.1047.
(\pm)-anti-4-(2-Hydroxyethyl)-5-pentyl-1,3-dioxolan-2-one (5i").

cis-Dihydroxylation of (Z)-non-3-en-1-ol (23i", $142 \mathrm{mg}, 1.0 \mathrm{mmol}$) and subsequent carbonate preparation by following similar procedure as described for $5 \mathbf{i}$ produced $5 \mathrm{i}^{\prime \prime}$ ($103 \mathrm{mg}, 51 \%$) as pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.44(\mathrm{~m}, 6 \mathrm{H}), 1.53-1.57$ $(\mathrm{m}, 2 \mathrm{H}), 1.84-1.93(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.88(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.88-$ $4.93(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,22.4,25.2,29.1$, $31.3,31.4,58.5,76.8,79.9,154.6 \mathrm{ppm} . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): u_{\max }=3471,3020$, 2917, 2850, 1778, 1757, 1469, 1378, 1310, 1178, 1051, 997, 959, 924, 912, 876, 848, 715, 666, $624 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}$ 225.1097; Found 225.1096.
General Procedure for the Synthesis of Enals (3a-n). To a stirred solution of $5 \mathrm{a}-\mathrm{n}(1.0 \mathrm{mmol})$ in EtOAc $(5 \mathrm{~mL})$ was added IBX $(0.56 \mathrm{~g}, 2.0$ $\mathrm{mmol}, 2.0$ equiv) under N_{2} atmosphere. The resulting suspension was refluxed for $3-4 \mathrm{~h}$ (TLC monitoring). The reaction was cooled to room temperature and filtered through a sintered glass funnel. The filter cake was washed with EtOAc $(3 \times 2 \mathrm{~mL})$ and the combined filtrates were concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (7:2) as eluent to afford 3an (54-94\%).
(E)-4-Hydroxy-5-phenylpent-2-enal (3a). Pale yellow oil ($155 \mathrm{mg}, 88 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.35$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.87 (dd, $J=13.6,8.3 \mathrm{~Hz}$, 1 H), 2.96 (dd, $J=13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.62-4.66 (m, 1H), 6.31 (ddd, $J=15.7$, $7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=15.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.27-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 9.54(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 43.0,71.7,127.1,128.7,129.4,130.9,136.4$, 157.8, $193.6 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{vmax}_{\max }=3426,2925,2851,2361,1686,1636$,

1450, 1138, 1095, 1020, 976, 773, 701, $464 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z. $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{O}_{2}$ 177.0910; Found 177.0913.
(E)-4-Hydroxy-5-(p-tolyl)pent-2-enal (3b). Pale yellow oil (152 mg, 80\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{dd}, J=13.7,8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.94 (dd, $J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.65(\mathrm{~m}, 1 \mathrm{H}), 6.32$ (ddd, $J=15.7,7.9$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=15.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.16(\mathrm{~m}, 4 \mathrm{H}), 9.56(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.0,42.6,71.8$, $129.3,129.5,130.9,133.1,136.8,157.6,193.5 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{u}_{\max }=$ 3434, 2921, 2857, 1686, 1515, 1438, 1263, 1136, 1090, 1022, 978, 911, 866, 803, 752, $735,672,529,507 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$ Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~K}$ 229.0625; Found 229.0623.
(E)-4-Hydroxy-5-(4-methoxyphenyl)pent-2-enal (3c). Pale yellow oil (155 $\mathrm{mg}, 75 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.80$ (dd, $J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94 (dd, $J=13.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.59-4.64(\mathrm{~m}, 1 \mathrm{H}), 6.33$ (ddd, $J=15.6,7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (dd, $J=15.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.89(\mathrm{~m}$, $2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 9.57(\mathrm{~d}, J=7.8,1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.2,55.3,71.9,114.3,128.1,130.4,131.0,157.5,158.8$, 193.4 ppm . IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{U}_{\max }=3436,2916,2836,1687,1612,1513,1464$, 1441, 1399, 1301, 1248, 1178, 1136, 1110, 1090, 1033, 981, 827, 735, $672,600,527 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z : [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}$ 229.0835; Found 229.0839.
(E)-5-(4-Fluorophenyl)-4-hydroxypent-2-enal (3d). Pale yellow oil (120 mg , $62 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.84$ (dd, $J=13.8,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (dd, $J=13.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61-4.65 (m, 1H), 6.32 (ddd, $J=15.7,7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{dd}, \mathrm{J}=15.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.21(\mathrm{~m}$, $2 \mathrm{H}), 9.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 42.2$, $71.7,115.65$ (d, $J=21.2 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 131.2,132.0(\mathrm{~d}, J=$ $2.9 \mathrm{~Hz}), 156.9,162.0(\mathrm{~d}, J=245.5 \mathrm{~Hz}), 193.2 \mathrm{ppm} .{ }^{19} \mathrm{~F}$ NMR (470 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta-115.5 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right) \mathrm{Umax}^{2}=3425,2924,2847,1685,1601$, $1510,1222,1159,1138,1101,1016,979,913,830,758,736,534 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:[M+K]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{FO}_{2} \mathrm{~K}$ 233.0375; Found 233.0372.
(E)-5-(3-Bromophenyl)-4-hydroxypent-2-enal (3e). Pale yellow oil (0.145 g , 57%). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.09$ (br s, $1 \mathrm{H}, \mathrm{OH}$), 2.86 (dd, $J=13.6$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (dd, $J=13.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.67(\mathrm{~m}, 1 \mathrm{H}), 6.32$ (ddd, $J=15.7,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=15.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.36(\mathrm{~m}$, $4 \mathrm{H}), 9.56(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 43.1$, $71.7,127.1,128.3,128.7,128.8,129.4,131.0,136.3,157.4,193.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): u_{\max }=3435,3029,2926,2849,1686,1639,1605,1495,1454$, 1138, 1094, 1027, 981, 912, 751, 702, $521 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z : [M + K] ${ }^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{2} \mathrm{~K}$ 292.9574; Found 292.9586.
(E)-4-Hydroxy-4-phenylbut-2-enal (3f). Colourless oil ($87.6 \mathrm{mg}, 54 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.48$ (dd, $\left.J=4.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.43$ (ddd, $J=$ $15.6,7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91$ (dd, $J=15.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.42(\mathrm{~m}, 5 \mathrm{H})$, $9.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 73.6$, 126.6, 128.7, 129.0, 130.3, 140.4, 157.0, $193.6 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=$ 3430, 2921, 2852, 1686, 1136, 1093, 1010, 978, 912, 738, $702 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:[M+K]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{~K}$ 201.0312; Found 201.0312.
(E)-4-Hydroxyhex-2-enal (3g). Colourless oil ($82.2 \mathrm{mg}, 72 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.0(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}, \mathrm{OH}$) , 4.36-4.41 (m, 1H), 6.31 (ddd, $J=15.7,7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.4,29.5,72.3,130.9,158.5,193.5 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): u_{\max }$ $=3433$, 2955, 2924, 2853, 1685, 1559, 1463, 1377, 1261, 1086, 1041, 1024, 980, 859, 801, 762, 671,540 cm^{-1}. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{2} \mathrm{Na}$ 137.0573; Found 137.0568.
(E)-4-Hydroxyoct-2-enal (3h). Colourless oil ($122.3 \mathrm{mg}, 86 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.46(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.66$ (m, 2H), 2.05 (br s, 1H, OH), 4.42 (q, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.30 (ddd, $J=15.7$, $7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{dd}, J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.9,22.5,27.3,36.2,71.1,130.6$, 159.1, 193.7 ppm . IR (CHCl_{3}): $\mathrm{v}_{\max }=3429$, 2955, 2927, 2856, 1689, 1505, 1465, 1378, 1261, 1124, 1095, 1022, 978, 801, $761 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $m / z:[M+H]^{+}$Calcd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{O}_{2}$ 143.1067; Found 143.1061.
(S,E)-4-Hydroxynon-2-enal (3i'). ${ }^{[28]}$ Colourless oil ($145.4 \mathrm{mg}, 93 \%$). [a]d ${ }^{25}$ $=+43.8\left(c=0.6, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{[28]}[\alpha]_{\mathrm{D}}^{25}=+48.0\left(\mathrm{c}=0.69, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.47(\mathrm{~m}, 6 \mathrm{H}), 1.59-1.66$ $(\mathrm{m}, 2 \mathrm{H}), 1.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, O H), 4.43(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (ddd, $J=15.7$, $7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.82 (dd, $J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 9.58 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,22.5,24.8,31.6,36.4,71.1$, 103.6, 159.0, 193.6 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3429,2955,2930,2858,1692$, $1635,1466,1380,1312,1260,1219,1185,1125,1023,973,909,797$,

758, 699, $595 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z^{[}[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~K}$ 193.0782; Found 193.0778.

Following a similar procedure, racemic $\mathbf{3 i}$ (94\%) was prepared from $\mathbf{5 i}$. Analytical data is same as $\mathbf{3 i}{ }^{\prime}$. Aslo anti-diol carbonate $5 \mathrm{i}^{\prime \prime}$ on oxidation with IBX (2.0 equiv) produced $\mathbf{3 i}$ in 80% yield.
(E)-4-Hydroxydec-2-enal (3j): Pale yellow oil ($153 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.45(\mathrm{~m}, 8 \mathrm{H}), 1.60-1.66(\mathrm{~m}$, 2H), 1.75 (br s, 1H, OH), 4.43 (q, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.31 (ddd, $J=15.7,7.9$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.5,25.1,29.1,31.6,36.5,71.1$, 130.6, 159.2, 193.7 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3436,2952,2930,2856,2733$, 1691, 1682, 1639, 1467, 1288, 1146, 1126, 1076, $976,757,724 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $m / z:$: $\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~K}$ 209.0938; Found 209.0943.
(E)-4-Hydroxyundec-2-enal (3k). Pale yellow oil ($160 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.46(\mathrm{~m}, 10 \mathrm{H}), 1.59-$ $1.69(\mathrm{~m}, 2 \mathrm{H}), 4.41-4.46(\mathrm{~m}, 1 \mathrm{H}), 6.31$ (ddd, $J=15.7,7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,22.6,25.2,29.1,29.3,31.7,36.5,71.1,130.6,159.2$, 193.7 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3434,2952,2927,2855,1693,1639,1466$, 1378, 1144, 1125, 1078, 975, 760, $577 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~K}$ 223.1095; Found 223.1092.
(E)-4-Hydroxytetradec-2-enal (3I). Pale yellow oil ($172 \mathrm{mg}, 76 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.46(\mathrm{~m}, 16 \mathrm{H}), 1.59-$ $1.65(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, O H), 4.42(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (ddd, $J=$ $15.7,7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82$ (dd, $J=15.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 1H) ppm. ${ }^{13}{ }^{2}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.7,25.2,29.3,29.4$, $29.46,29.5,29.6,31.9,36.5,71.1,130.6,159.9,193.6 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right)$: $u_{\max }=3433,2927,2855,1693,1467,1378.1272,1035,978,925,823$, 763, 617, 556, $469 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{2} \mathrm{Na} 249.1825$; Found 249.1823.
(R,E)-4-Hydroxyicos-2-enal ($3 m^{\prime}$). White solid ($242 \mathrm{mg}, 78 \%$), m.p. $=55$ ${ }^{\circ} \mathrm{C} .[\alpha]{ }^{25}=-9.5\left(c=1.85, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.48(\mathrm{~m}, 28 \mathrm{H}), 1.60-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH})$, $4.41-4.45(\mathrm{~m}, 1 \mathrm{H}), 6.30$ (ddd, $J=15.7,7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=15.6$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.58(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 14.1,22.7,25.2,29.4,29.44,29.5,29.6,29.63,29.66,29.7,31.9,36.5$, $71.2,130.7,158.9,193.6 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): u_{\max }=3454,2923,2852,1742$, 1685, 1600, 1527, 1488, 1463, 1437, 1378, 1347, 1268, 1247, 1225, 1164 , 1082, 1016, 852, 712, 669, $534 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Na} 333.2764$; Found 333.2765 .
Following a similar procedure, racemic $\mathbf{3 m}(76 \%)$ was prepared from 5 m . Analytical data is same as $\mathbf{3} \mathbf{m}^{\prime}$. The enantiomeric excess of $\mathbf{3} \mathrm{m}^{\prime}$ was determined by converting it into its benzoate derivative $\mathbf{2 6 m}$ ' as described below.
(R, E)-1-oxoicos-2-en-4-yl benzoate ($26 \mathbf{m}^{\prime}$): To a stirred solution of (R, E) 4-Hydroxyicos-2-enal $3 \mathrm{~m}^{\prime}(20 \mathrm{mg}, 0.064 \mathrm{mmol})$ in pyridine $(1.5 \mathrm{~mL})$ was added benzoyl chloride ($0.074 \mathrm{~mL}, 0.64 \mathrm{mmol}, 10.0$ equiv) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 12 h and then quenched with ice water. The solution was extracted with $\mathrm{CHCl}_{3}(2 \times 10 \mathrm{~mL})$. The combined organic layers were concentrated and the residue purified by silica gel coloumn chromatography using petroleum ether/EtOAc $(19: 1)$ as eluent to give the tribenzoate $\mathbf{2 6 m} \mathbf{m}^{\prime}$ as colourless semisolid ($20 \mathrm{mg}, 80 \%$).

$[\alpha]{ }^{25}=-20.0\left(c=0.10, \mathrm{CHCl}_{3}\right) \cdot{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.35(\mathrm{~m}, 26 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.90(\mathrm{~m}, 2 \mathrm{H})$, $5.74-5.80(\mathrm{~m}, 1 \mathrm{H}), 6.29$ (ddd, $J=15.8,7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=15.8$, $4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{tt}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}$, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 9.59(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(100 \mathrm{MHz}$, CDCl_{3}): $\delta 14.1,22.7,25.0,29.3,29.34,29.4,29.5,29.6,29.7,31.9,33.8$, $72.8,128.5,129.6,129.7,131.5,133.4,154.1,165.6,193.0 \mathrm{ppm} . \operatorname{IR}$ $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3792,3701,3434,2928,2857,2413,2304,1720,1586$, 1461, 1272, 1108, 986, 837, 793, 713, $639 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3} \mathrm{~K} 453.2766$; Found 437.2758. The racemic benzoate was prepared following similar procedure. HPLC analysis: Chiralpak AD-H coloumn, hexane- $\mathrm{PrOH}=93: 7$, flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{t}_{\text {major }}$ $=6.39 \mathrm{~min}, 100 \%$ ee.
(E)-6-(Benzyloxy)-4-hydroxyhex-2-enal (3n). Pale yellow oil (194 mg, $88 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H})$, $3.65-3.74(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.65(\mathrm{~m}, 1 \mathrm{H}), 6.34$ (ddd,
$J=15.6,7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=15.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.36(\mathrm{~m}$, $5 \mathrm{H}), 9.54(\mathrm{~d}, J=7.9,1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 35.3$, $67.9,70.1,73.3,127.7,127.9,128.4,130.6,137.3,158.7,193.6 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3451,2921,2863,1685,1636,1367,1249,1114,977,910$, 738, 700, 609, $464 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M} \mathrm{+} \mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na} 243.0992$; Found 243.0986.
3,4-Isopropylidinedioxy-nonanol (25i).To a stirred solution of triol $7 \mathbf{7 i}$ (30 mg , 0.170 mmol) in acetone (3 mL) was added $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 mg , catalytic) followed by 2,2-dimethoxypropane ($19.5 \mathrm{mg}, 0.187 \mathrm{mmol}, 1.1$ equiv) at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 1 h under N_{2} atmosphere and then quenched with 2 drops of saturated aq. NaHCO_{3} and stirred for additional 5 min . The solvents were removed and the residue purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) as eluent to afford $\mathbf{2 5 i}(28.5 \mathrm{mg}, 77 \%)$ as colorless oil.

${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.89(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.45(\mathrm{~m}, 6 \mathrm{H})$, $1.38(\mathrm{~s}, 6 \mathrm{H}), 1.51-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.84(\mathrm{~m}, 1 \mathrm{H})$, 2.16 (br s, $1 \mathrm{H}, \mathrm{OH}$), 3.66-3.67 (m, 1H), 3.74-3.77 (m, 1H), 3.81 (t, J = 4.9 $\mathrm{Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,22.5,25.8,27.2$, $27.3,31.9,32.5,34.8,60.9,80.2,81.0,108.4 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{u}_{\max }=3441$, 2955, 2926, 2855, 1632, 1463, 1378, 1242, 1166, 1054, 876, 761, $722 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (ESI-TOF) m/z. [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na} 239.1618$; Found 239.1614.

3,4-Isopropylidinedioxy-nonanal (8i). Reaction of compound $25 i(25 \mathrm{mg}$, 0.115 mmol) with IBX ($64.4 \mathrm{mg}, 0.230 \mathrm{mmol}, 2.0$ equiv) following similar procedure as described for 3a-n for 10 h gave $\mathbf{8 i}(14.6 \mathrm{mg}, 59 \%)$ as pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28-1.39$ $(\mathrm{m}, 4 \mathrm{H}), 1.38,1.40(2 \mathrm{~s}, 6 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.63(\mathrm{~m}, 2 \mathrm{H}), 3.68$ (q, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{q}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.0,22.5,25.7,27.1,27.2,31.9,32.3,46.5$, $75.5,80.7,108.8,200.2 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{u}_{\max }=3440,2956,2928,2856$, $2728,1729,1629,1460,1241,1167,1090,1031,988,911,874,735,511$ cm^{-1}. HRMS (ESI-TOF) m / z : $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ 237.1461; Found 237.1464.
The IBX oxidation of compound 5 m after 1 h showed the presence of 5 m and 6 m in 1:1.5 ratio. The ${ }^{1} \mathrm{H}$ NMR of the crude reaction mixture (after concentration) showed characteristic peaks for 6 m at $\delta=2.90(\mathrm{dd}, J=18.4$, $6.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $3.10(\mathrm{dd}, J=18.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. These correspond to the α-hydrogens of compound 6 m (See SI for the spectra). In a 3 h reaction of 5 m , we found the presence of $\mathbf{6 m}$ in minor amount and the corresponding peaks (as above) completely disappeared after another 1 h of reaction giving the final product 3 m .
(E)-4-Hydroxyicos-2-enoic acid (9). To a solution of aldehyde 3 m (0.05 g , 0.16 mmol) and cyclohexene ($39.4 \mathrm{mg}, 0.48 \mathrm{mmol}, 3.0$ equiv) in $t-\mathrm{BuOH}$ $(0.5 \mathrm{~mL})$ was added sodium chlorite ($14.5 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ ($1 \mathrm{~mL}, \mathrm{pH} 3.5$ buffer) dropwise at $-5^{\circ} \mathrm{C}$. The resulting colourless solution was stirred for 10 h at room temperature. Then the mixture was basified with $6 \mathrm{~N} \mathrm{NaOH}(\mathrm{pH} 10)$, and $t-\mathrm{BuOH}$ was removed at reduced pressure. The residue was dissolved in water and extracted with hexane $(2 \times 10 \mathrm{~mL})$. The hexane layer was discarded and the aqueous layer was acidified $(6 \mathrm{~N} \mathrm{HCl}, \mathrm{pH} 3)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 5 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (1:1) to give 9 ($40 \mathrm{mg}, 76 \%$) as white solid, m.p. $=55-60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.15-1.45(\mathrm{~m}, 28 \mathrm{H}), 1.52-1.64(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{q}, ~ J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05$ (dd, $J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{dd}, J=15.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,22.7,25.2,29.3,29.4,29.5,29.55$, $29.6,29.64,29.7,31.9,36.5,71.1,119.2,152.8,170.9 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right)$: $v_{\text {max }}=3475,2914,2848,1676,1644,1471,1286,1202,1141,1078,976$, $893,741,710 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Na}$ 349.2713; Found 349.2717.

Methyl (E)-4-hydroxyicos-2-enoate (10). The α, β-unsaturated acid 9 (35 $\mathrm{mg}, 0.107 \mathrm{mmol}$) was treated with a solution of concentrated sulphuric acid (1 drop) in methanol (2 mL) and refluxed for one hour. The solution was cooled to room temperature and concentrated in vacuo. $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added and the organic layer was washed with 5% aqueous solution of NaHCO_{3} followed by brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The crude compound was purified by silica gel coloumn chromatography using petroleum ether/EtOAc (7:3) as eluent to give the ester 10 ($30.2 \mathrm{mg}, 83 \%$) as light brown solid, m.p. $=48-52^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87$
-
(t, J = $7.0 \mathrm{~Hz}, 3 \mathrm{H}$), 1.24-1.46 (m, 28H), 1.54-1.60 (m, 2H), 1.89 (br s, 1H, $O H$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 4.29(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{dd}, J=15.7,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.95 (dd, $J=15.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 14.1, 22.7, 25.2, 29.3, 29.4, 29.5, 29.54, 29.6, 29.7, 31.9, 36.6, 51.6, 71.1, 119.6, 150.6, 167.0 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3361,3244,2918,2847,1726$, 1662, 1464, 1430, 1325, 1274, 1191, 1178, 1137, 980, 909, $734 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z : [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{Na} 363.2870$; Found 363.2869 .

General Procedure for the Synthesis of Diene Esters (11a-c). To a stirred solution of triethylphosphonoacetate ($33.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) in dry THF (3 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{NaH}(3.6 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred for 0.5 h at room temperature and then cooled to $0^{\circ} \mathrm{C}$ and the aldehyde $3(0.1 \mathrm{mmol})$ in THF (1 mL) was added dropwise. The reaction mixture was stirred for 4 h from $0^{\circ} \mathrm{C}$ to room temperature (monitored through TLC). The reaction mixture was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1 mL). The solution was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel coloumn chromatography using petroleum ether/EtOAc (4:1) as eluent to afford the diene esters 11a-c (63-76\%).
Ethyl (2E,4E)-6-hydroxyhexadeca-2,4-dienoate (11a). Pale yellow oil (22.5 $\mathrm{mg}, 76 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-$ $1.30(\mathrm{~m}, 19 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 3 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$, 5.88 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.11$ (dd, $J=15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.38$ (m, 1H), $7.24-7.29(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,14.3$, 22.7, 25.2, 29.3, 29.48, 29.5, 29.54, 29.6, 31.9, 37.1, 60.3, 72.0, 121.5, 127.4, 143.8, 144.9, 167.0 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3372,3237,2953,2919$, 2849, 1714, 1641, 1617, 1463, 1366, 1306, 1261, 1233, 1179, 1139, 1093, 1068, 1039, 1000, 955, 921, 868, 825, 721, $656 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na} 319.2244$; Found 319.2247
Ethyl (2E,4E)-6-hydroxydocosa-2,4-dienoate (11b). White semisolid (26.3 $\mathrm{mg}, 69 \%)$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88$ (t, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$), $1.25-$ $1.33(\mathrm{~m}, 32 \mathrm{H}), 1.54-1.58(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.26(\mathrm{~m}, 3 \mathrm{H}), 5.89(\mathrm{~d}, \mathrm{~J}=15.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11$ (dd, $J=15.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.33-6.39(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.28(\mathrm{~m}, 1 \mathrm{H})$ ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1,22.7,24.7,25.3,29.1,29.2$, 29.3, 29.4, 29.5, 29.53, 29.6, 29.64, 29.7, 31.9, 33.7, 37.1, 60.4, 72.0, $121.5,127.4,143.8,144.9,167.0 \mathrm{ppm} . \mathrm{IR}\left(\mathrm{CHCl}_{3}\right): v_{\max }=2922,2851$, 1714, 1644, 1608, 1466, 1374, 1302, 1259, 1181, 1139, 1042, 995, 910, $735 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:\left[\mathrm{M} \mathrm{+} \mathrm{Na]}^{+}\right.$Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Na}$ 403.3183; Found 403.3179.

Ethyl (2E,4E)-8-(benzyloxy)-6-hydroxyocta-2,4-dienoate (11c). Pale yellow oil ($18.3 \mathrm{mg}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.78-1.94(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.73(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.46-$ $4.49(\mathrm{~m}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=15.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.37-6.44(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 5 \mathrm{H}) \mathrm{ppm}$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.3,36.0,60.3,68.3,70.9,73.4,121.3$, $127.2,127.7,127.9,128.5,137.6,143.9,144.3,167.0 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right)$: $u_{\max }=3306,2933,2877,1667,1532,1452,1412,1278,1239,1150,1097$, 947, $762,665 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m / z. $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{Na}$ 313.1410; Found 313.1413.
(E)-1-Phenyldocos-4-en-1-yne-3,6-diol (12). To a stirred solution of phenylacetylene ($36.2 \mathrm{mg}, 0.354 \mathrm{mmol}$, 2.2 equiv) in dry THF (1 mL) was added n-BuLi ($0.22 \mathrm{~mL}, 1.6 \mathrm{M}$ solution in THF, 2.2 equiv) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min and then aldehyde $3 \mathrm{~m}(50 \mathrm{mg}$, 0.161 mmol) in THF (1 mL) was added dropwise and stirred for additional 1.5 h . After completion of reaction, it was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (few drops) and the solution was concentrated. The residue was purified by silica gel coloumn chromatography using petroleum ether/EtOAc (4:1) as eluent to afford the diol 12 ($38.5 \mathrm{mg}, 58 \%$) as white semisolid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25-1.34(\mathrm{~m}, 28 \mathrm{H}), 1.51-1.59(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{ddd}, J=15.4,5.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-6.03(\mathrm{~m}, 1 \mathrm{H})$, 7.29-7.33 (m, 3H), 7.44-7.46 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 14.1,22.7,25.4,29.4,29.5,29.58,29.6,29.65,29.7,31.9,37.1$, $62.8,71.9,86.3,87.9,122.3,128.3,128.6,129.2,131.7,135.7 \mathrm{ppm}$. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3286,2920,2849,1790,1652,1466,1266,1137,1078$, 970, 917, 818, 723, 686, 564, $529 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + Na] ${ }^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{2} \mathrm{Na} 435.3234$; Found 435.3233.
9-Bromononanol (27). ${ }^{[29]}$ To a solution of nonane-1,9-diol $13(0.5 \mathrm{~g}, 3.12$ $\mathrm{mmol})$ in toluene (15 mL) was added aqueous $\mathrm{HBr}(48 \%, 0.360 \mathrm{~mL}, 3.12$ $\mathrm{mmol}, 1.0$ equiv) dropwise with stirring. The mixture was refluxed for 10 h and then cooled to room temperature and washed with dilute aqueous NaOH and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was purified by silica gel column
chromatography using petroleum ether/EtOAc (4:1) as eluent to afford 9bromononanol 27 ($0.627 \mathrm{~g}, 90 \%$) as a colourless oil.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.31(\mathrm{~m}, 8 \mathrm{H}), 1.40-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.59$ (m, 2H), 1.85 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 25.7,28.1,28.7,29.3$, 29.4, 32.7, 32.8, 34.0, 63.0 ppm . IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3390,2930,2855$, 1659, 1464, 1437, 1264, 1247, 1220, 1057, $758 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{K}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{19}$ BrOK 261.0251; Found 261.0248.
9-Bromononanoic acid (14). ${ }^{[29]}$ A solution of $\mathrm{CrO}_{3}(238 \mathrm{mg}, 2.386 \mathrm{mmol}$, 1.5 equiv) in water (1.0 mL) was cooled to $0^{\circ} \mathrm{C}$ and conc $\mathrm{H}_{2} \mathrm{SO}_{4}(0.17 \mathrm{~mL}$, $3.18 \mathrm{mmol}, 2.0$ equiv), was added cautiously followed by water (0.5 mL). After 5 min , a solution of 9-bromononanol 27 ($355 \mathrm{mg}, 1.591 \mathrm{mmol}$) in acetone (2 mL) was added dropwise. The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ before warming to room temperature and then stirred for 12 h . $\mathrm{Et}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{~mL})$ were added and the aq. layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2 \mathrm{~mL})$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc ($4: 1$) as eluent to afford the acid 14 ($370 \mathrm{mg}, 98 \%$) as colourless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.32-1.37(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.62$ (quint., $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 1.84 (quint., $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 3.39(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 24.6$, 28.0, 28.5, 28.9, 29.0, 32.7, 33.9, 34.0, 180.2 ppm. IR $\left(\mathrm{CHCl}_{3}\right): v_{\max }=3420$, 2932, 2852, 1702, 1464, 1434, 1410, 1302, 1204, 1098, 937, 760, 721, $648,542 . \mathrm{cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{BrO}_{2} \mathrm{Na}$ 259.0304; Found 259.0304.

Preparation of Wittig Salt (15). ${ }^{[29]} 9-B r o m o n o n a n o i c ~ a c i d ~ 14(230 ~ m g, ~$ 0.970 mmol) and triphenylphosphine ($254 \mathrm{mg}, 0.970 \mathrm{mmol}, 1.0$ equiv) were dissolved in toluene (10 mL). This mixture was heated to reflux for 24 h . On cooling, the upper layer was decanted and the lower layer was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated in vacuo. The resulting brown viscous solid was washed with boiling EtOAc, and a white viscous solid 15 ($349 \mathrm{mg}, 72 \%$) was collected by filtration and dried in vacuo.
(S,9Z,11E)-13-Hydroxyoctadeca-9,11-dienoic acid (16). To a slurry of Wittig salt 15 ($0.831 \mathrm{~g}, 1.664 \mathrm{mmol}, 2.0$ equiv) in THF (5 mL), stirred at $78{ }^{\circ} \mathrm{C}$ was added KHMDS ($3.33 \mathrm{~mL}, 1 \mathrm{M}$ solution in toluene, 3.33 mmol , 4.0 equiv) dropwise. The mixture was warmed to room temperature over 2 h before re-cooling to $-78^{\circ} \mathrm{C}$. To this was added the aldehyde $3 \mathrm{i}^{\prime}(130 \mathrm{mg}$, 0.832 mmol) in THF (3 mL) dropwise and the mixture stirred for 12 h at room temperature. EtOAc (5 mL) and $1 \mathrm{M} \mathrm{HCl}(5 \mathrm{~mL})$ were added and the aq. layer was separated. This was further extracted with EtOAc $(2 \times 10$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent evaporated under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (7:3) as eluent to give $16(157.8 \mathrm{mg}, 64 \%)$ as colourless oil. $[\alpha] \mathrm{D}^{25}=+6.3\left(c=0.6, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.39(\mathrm{~m}, 14 \mathrm{H})$, $1.46-1.64(\mathrm{~m}, 4 \mathrm{H}), 2.14-2.19(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J$ $=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.39-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=15.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}) 5.96(\mathrm{t}, J$ $=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=15.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0,22.6,24.6,25.1,25.8,27.6,28.8,28.82,29.3,31.7$, $33.9,37.2,72.9,125.8,127.8,132.8,135.7,179.0 \mathrm{ppm}$ IR $\left(\mathrm{CHCl}_{3}\right): u_{\max }$ $=3429,2928,2855,1724,1713,1590,1449,1402,1380,1242,1220$, 1047, 1024, 948, 770. cm^{-1}. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Na} 319.2244$; Found 319.2243.
(S, 10Z, 12E)-14-Pentyloxacyclotetradeca-10,12-dien-2-one, (S)-coriolide (1a). ${ }^{[12,14 \mathrm{~b}]}$ A mixture of acid $16(50 \mathrm{mg}, 0.169 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(18.8 \mathrm{mg}$, $0.186 \mathrm{mmol}, 1.1$ equiv) in dry THF (3 mL) was stirred for 10 min at room temperature and then 2,4,6-tri-chlorobenzoyl chloride ($41.2 \mathrm{mg}, 0.169$ mmol, 1.0 equiv) was added under N_{2} atmosphere. After stirring for 2 h at room temperature, the resulting precipitate was filtered and washed with a small amount of THF (1 mL). The filtrate was diluted with benzene $(90 \mathrm{~mL})$ and slowly added to a refluxing solution of 4-dimethylaminopyridine (DMAP) ($124 \mathrm{mg}, 1.014 \mathrm{mmol}, 6.0$ equiv) in benzene (22 mL) over a period of 8 h with dropping condenser. The reaction mixture was washed successively with a saturated aq. citric acid solution, water, and aq. NaHCO_{3}, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9.5:0.5) as eluent to afford 1a ($27.3 \mathrm{mg}, 58 \%$) as colourless oil. $[a]_{\mathrm{D}}{ }^{25}=+31.9$ ($c=$ 0.5 , hexane), lit. ${ }^{[14 b]}[\alpha]_{\mathrm{D}}{ }^{25}=+33.0\left(c=2.82\right.$, hexane). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.36(\mathrm{~m}, 14 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 4 \mathrm{H})$, 1.83-1.92 (m, 2H), 2.35-2.41 (m, 1H), 2.53-2.61 (m, 1H), 5.41-5.45 (m,

1H), $5.48-5.55(\mathrm{~m}, 1 \mathrm{H}), 5.72$ (dd, $J=15.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{t}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.46-6.54(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.0$, $22.5,24.8,24.9,25.1,25.4,26.3,26.7,27.0,31.6,33.0,35.1,72.3,123.8$, $128.3,131.2,132.0,172.9 \mathrm{ppm} . \operatorname{IR}\left(\mathrm{CHCl}_{3}\right): \mathrm{v}_{\max }=2929,2856,1739,1464$, 1373, 1261, 1180, 1156, 1094, 1024, 949, 804, 545. cm^{-1}. HRMS (ESITOF) $m / z:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Na}$ 301.2138; Found 301.2134.
(R,10Z,12E)-14-Pentyloxacyclotetradeca-10,12-dien-2-one, (R)-coriolide (ent-1a). ${ }^{[14 \mathrm{~b}]}$ To a stirred solution of diethyl azodicarboxylate ($60 \mathrm{mg}, 0.202$ $\mathrm{mmol}, 2.0$ equiv) and acid $16(30 \mathrm{mg}, 0.101 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ was added triphenylphosphine ($53 \mathrm{mg}, 0.202 \mathrm{mmol}, 2.0$ equiv) under vigorous stirring. The reaction mixture was stirred for 2 h and then at room temperature for 12 h and the precipitate formed was removed by filtration. The filtrate was concentrated and the residue was purified by silica gel column chromatography using petroleum ether/EtOAc (9.5:0.5) as eluent to give ent-1a ($13.8 \mathrm{mg}, 49 \%$) as colorless oil. [a]D ${ }^{25}=-30.7$ (c $=0.5$, hexane), lit. ${ }^{[14 \mathrm{~b}]}[\alpha]_{\mathrm{D}}{ }^{25}=-31.9(c=1.73$, hexane $)$. Spectral data is same as 1a.
(R,E)-Icos-2-ene-1,4-diol (17). To stirred solution of $\mathbf{3 m}^{\prime}$ (125 mg, 0.402 $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added DIBAL-H ($0.58 \mathrm{~mL}, 1.75 \mathrm{M}$ solution in toluene, $1.006 \mathrm{mmol}, 2.5$ equiv) dropwise under N_{2} atmosphere at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h and then quenched with saturated aq. solution of sodium-potassium tartrate (5 mL) and further stirred for 3 h until two separate layers were formed. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 4 \mathrm{~mL})$ and the combined organic layers were dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (3:2) as eluent to afford 17 $(100 \mathrm{mg}, 80 \%)$ as white solid, m.p. $=76^{\circ} \mathrm{C} .[\alpha] \mathrm{D}^{25}=-4.6\left(c=0.2, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.41(\mathrm{~m}, 28 \mathrm{H})$, $1.47-1.57(\mathrm{~m}, 2 \mathrm{H}), 4.11-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.72-5.76$ (m, 1H), 5.81-5.86 (m, 1H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 14.1$, 22.7, 25.4, 29.4, 29.5, 29.58, 29.6, 29.65, 29.66, 29.7, 31.9, 37.3, 63.0, 72.3, 129.7, 134.6 ppm. IR ($\left.\mathrm{CHCl}_{3}\right): v_{\max }=3285,2916,2849,1685,1463$, 1315, 1273, 1071, 1025, 912, $770 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{Na} 335.2921$; Found 335.2921.
(R,E)-Icos-2-ene-1,4-diyl diacetate (18). To a stirred solution of 17 (50 mg , 0.160 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL) was sequentially added DMAP (2 mg , catalytic), anhydrous $\mathrm{Et}_{3} \mathrm{~N}$ ($65 \mathrm{mg}, 0.64 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}$ (49 mg , $0.48 \mathrm{mmol}, 3.0$ equiv) under N_{2} atmosphere at room temperature. The mixture was stirred for 12 h and concentrated. The residue was purified by silica gel coloumn chromatography using petroleum ether/EtOAc (5:1) as eluent to give 18 ($53.9 \mathrm{mg}, 85 \%$) as white semisolid. $[\alpha]{ }^{25}=-5.00(c=$ $\left.0.10, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-$ $1.39(\mathrm{~m}, 28 \mathrm{H}), 1.52-1.62(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=$ $5.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.80(\mathrm{~m}, 2 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 14.1,20.9,21.2,22.7,25.1,29.3,29.47,29.5,29.6$, 29.7, 31.9, 34.2, 64.1, 73.7, 126.3, 132.6, 170.3, 170.7 ppm . IR ($\left.\mathrm{CHCl}_{3}\right)$: $U_{\max }=2959,2927,2858,1713,1466,1417,1380,1290,1219,1171,1080$, 1028, 969, 931, 760, 705, 671, $627 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{K}]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{~K} 435.2871$; Found 435.2871.
(2S,3S,4R)-Icosane-1,2,3,4-tetrayl tetraacetate, D-xylo-C20-guggultetrol (20a) ${ }^{[19 f]}$ and (2R,3R,4R)-Icosane-1,2,3,4-tetrayl tetraacetate, D-arabino-C20-guggultetrol (20b). To a mixture of $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ ($183.7 \mathrm{mg}, 0.558$ mmol, 3.0 equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}\left(77.1 \mathrm{mg}, 0.558 \mathrm{mmol}, 3.0\right.$ equiv), (DHQ) ${ }_{2} \mathrm{PHAL}$ $(2.2 \mathrm{mg}, 0.0028 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$ in $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(1: 1,1 \mathrm{~mL})$ cooled at 0 ${ }^{\circ} \mathrm{C}$ was added $\mathrm{K}_{2} \mathrm{OsO}_{4} .2 \mathrm{H}_{2} \mathrm{O}(0.8 \mathrm{mg}, 0.00188 \mathrm{mmol}, 1.0 \mathrm{~mol} \%)$ followed by methanesulfonamide ($18.6 \mathrm{mg}, 0.186 \mathrm{mmol}, 1.0$ equiv). After stirring for 5 min at $0^{\circ} \mathrm{C}$, the olefin $18(74 \mathrm{mg}, 0.186 \mathrm{mmol})$ was added in one portion. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 24 h and then quenched with solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(60 \mathrm{mg})$. The stirring was continued for an additional 45 min and the solution extracted with EtOAc $(5 \times 2 \mathrm{~mL})$. The combined organic layers were washed with water, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The colourless semisolid $19(72 \mathrm{mg})$ was used for the next reaction.
To a stirred solution of $19(72 \mathrm{mg})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ was added sequentially DMAP (2 mg , catalytic), anhydrous $\mathrm{Et}_{3} \mathrm{~N}(75.3 \mathrm{mg}, 0.744$ mmol, 4.0 equiv) and $\mathrm{Ac}_{2} \mathrm{O}\left(57 \mathrm{mg}, 0.558 \mathrm{mmol}, 3.0\right.$ equiv) under N_{2} atmosphere at room temperature. The mixture was stirred for 12 h and then concentrated. The residue was purified by silica gel column chromatography using petroleum ether/EtOAc (4:1) to give the mixture of 20a and 20b ($79 \mathrm{mg}, \mathrm{dr}=9: 1$). The mixture was separated by flash column chromatograpgy using petroleum ether/EtOAc (5:1) to give 20a (67 $\mathrm{mg}, 70 \%$) and then 20b ($7.6 \mathrm{mg}, 8 \%$) as white solids.
Data for 20a. M.p. $=44-48^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}} 25=+1.1\left(c=1.15, \mathrm{CHCl}_{3}\right)$, lit. ${ }^{[19 f]}[\alpha]_{\mathrm{D}}{ }^{25}$ $=+0.99\left(c=1.0, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.87(\mathrm{t}, J=7.1 \mathrm{~Hz}$, 3H), 1.23-1.32 (m, 28H), 1.50-1.53 (m, 2H), 2.04, 2.07, 2.07, 2.09 (4 s , 12 H), 3.97 (dd, $J=12.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.36 (dd, $J=11.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.07$
(q, J = 6.4 Hz, 1H), 5.23-5.27 (m, 2H) ppm. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 14.1,20.56,20.6,20.7,20.9,22.7,24.9,29.2,29.3,29.4,29.5$, 29.6, 29.63, 30.6, 31.9, 62.0, 69.6, 71.3, 71.4, 169.96, 170.0, 170.3, 170.4 ppm. IR $\left(\mathrm{CHCl}_{3}\right): \mathrm{u}_{\max }=3021,2926,2855,1746,1456,1435,1373,1047$, 1030, 959, $669 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Na} 537.3398$; Found 537.3396 . For crystal structure see supporting information.
Data for 20b. M.p. $50-54^{\circ} \mathrm{C} .[\alpha]{ }^{25}=-0.87\left(c=0.35, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.87(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.24-1.39(\mathrm{~m}, 28 \mathrm{H}), 1.51-$ $1.53(\mathrm{~m}, 2 \mathrm{H}), 2.03,2.05,2.07,2.11(4 \mathrm{~s}, 12 \mathrm{H}), 3.96(\mathrm{dd}, J=11.7,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.23(\mathrm{dd}, J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J=$ $7.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32-5.36(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 14.1, 20.67, 20.7, 20.8, 20.9, 22.7, 25.0, 29.4, 29.42, 29.44, 29.5, 29.6, $29.66,29.7,30.4,31.9,62.1,68.3,70.3,71.3,170.0,170.2,170.24,170.5$ ppm. IR (CHCl3): $u_{\max }=2924,2853,1751,1465,1437,1371,1219,1049$, $958,890,855,819,756,721,665,651,629,602,570 \mathrm{~cm}^{-1}$. HRMS (ESITOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Na} 537.3398$; Found 537.3396.

Acknowledgment

We thank SERB New Delhi, Grant No. EMR/2017/000499 for financial support. A.K. and S.P.G. thank IIT-Bombay and the University Grants Commission of India (UGC) for research fellowships, respectively.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Oxidation • tandem reaction • enal • coriolide • guggultetrol
[1] a) Y. Riahi, G. Cohen, O. Shamni, S. Sasson, Am. J. Physiol. Endocrinol Metab. 2010, 299, E879; b) C. M. Spickett, Redox Biology 2013, 145; c) H. Esterbauer, R. J. Schaur, H. Zollner, Free Radic. Biol. Med. 1991, 11, 81.
[2] (a) T. J. Montine, D. Y. Huang, W. M. Valentine, V. Amarnath, A. Saunders, K. H. Weisgraber, D. G. Graham, W. J. Strittmatter, J. Neuropathol. Exp. Neurol. 1996, 55, 202; b) R. J. Castellani, G. Perry, S. L. Siedlak, A. Nunomura, S. Shimohama, J. Zhang, T. Montine, L. M. Sayre, M. A. Smith, Neurosci. Lett. 2002, 319, 25.
[3] a) L. M. Sayre, D. A. Zelasko, P. L. Harris, G. Perry, R. G. Salomon, M A. Smith, J. Neurochem. 1997, 68, 2092; b) K. S. Montine, P. J. Kim, S. J. Olson, W. R. Markesbery, T. J. Montine, J. Neuropathol. Exp. Neurol. 1997, 56, 866; c) Y. Ando, T. Brannstrom, K. Uchida, N. Nyhlin, B. Nasman, O. Suhr, T. Yamashita, T. Olsson, M. El Salhy, M. Uchino, M. Ando, J. Neurol. Sci. 1998, 156,172.
$[4] \quad$ a) M. Miyakado, J. Meinwald, L. E. Gilbert, Experientia 1989, 45, 1006; b) J. Sekiguchi, H. Kuroda, Y. Yamada, H. Okada, Tetrahedron Lett. 1985, 26, 2341; c) D. Rodphaya, J. Sekiguchi, Y. Yamada, J. Antibiotics 1986, XXXIX, 629; d) S. Huneck, K. Schreiber, Tetrahedron 1973, 29, 3687; e) H. Matsuo, Y. Kondo, T. Kawasaki, N. Imamura, Life Science 2015, 135, 35; f) K. Harada, F. Nishida, H. Takagi, M. Suzuki, J. Antibiotics 1984, XXXVII, 1187; g) M. Hayashi, Y.-P. Kim, H. Hiraoka, M. Natori, S. Takamatsu, T. Kawakubo, R. Masuma, K. Komiyama, S. Omura, J. Antibiot. 1995, 48, 1435; h) S. Takamatsu, Y.-P. Kim, M. Hayashi, H. Hiraoka, M. Natori, K. Komiyama, S. Omura, J. Antibiot. 1996, 49, 95.
[5] a) H. Esterbauer, W. Weger, Monatsh. Chem. 1967, 98, 1884; b) H. Esterbauer, W. Weger, Monatsh. Chem. 1967, 98, 1994; c) H. Esterbauer, Monatsh. Chem. 1971, 102, 824.
[6] B. W. Erickson, Org. Synth.1974, 54, 19.
$[7] \quad$ a) R. Gree, H. Tourbah, R. Carrie, Tetrahedron Lett. 1986, 27, 4983; b) R. Iriye, A. Konishi, T. Uno, I. Ohwa, Agric. Biol. Chem. 1990, 54, 1303. [8] a) P. Allevi, P. Ciuffreda, G. Tarocco, M. Anastasia, J. Org. Chem. 1996, 61, 4144; b) R. F. Kurangi, S. G. Tilve, I. A. Blair, Lipids 2006, 41, 877.
[9] a) P. Chabert, J. B. Ousset, C. Mioskowski, Tetrahedron Lett. 1989, 30, 179; b) H. W. Gardner, R. J. Bartelt, D. Weisleder, Lipids 1992, 27, 686; c) L. Yu, Z. Wang, J. Chem. Soc., Chem. Commun. 1993, 232; d) T. K. Chakraborty, S. Purkait, S. Das, Tetrahedron 2003, 59, 9127.
[10] M. Sasaki, K. Takeda, Org. Lett. 2004, 6, 4849.
$[11]$ K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L. Zhong, J. Am. Chem. Soc. 2002, 124, 2245.
[12] S. Schulz, S. Yildizhan, K. Stritzke, C. Estrada, L. E. Gilbert, Org. Biomol. Chem. 2007, 5, 3434.
[13] B. E. Phillips, C. R. Smith Jr., L. W. Tjarks, J. Org. Chem. 1970, 35, 1916
$[14] \quad$ a) N. M. Maguire, G. Read, P. E. Richardson, S. M. Roberts, J. Chem Research (S), 1994, 376; b) Y. Matsushita, K. Sugamoto, T. Nakama, T. Matsui, Y. Hayashi, K. Uenakai, Tetrahedron Lett. 1997, 38, 6055.
[15] J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem Soc. Jpn. 1979, 52, 1989.
[16] T. Kurihara, Y. Nakajima, O. Mitsunobu, Tetrahedron Lett. 1976, 28, 2455.
[17] V. D. Patil, U. R. Nayak, S. Dev, Tetrahedron 1972, 28, 2341.
$[18] \quad$ a) G. V. Satyavati, Bull. Indian Inst. Hist. Med. 1976, 6, 102; b) V. V. S. Sastry, Bull. Indian Inst. Hist. Med. 1976, 6, 102.
[19] a) A. Kjer, D. Kjer, T. Skrydstrup, Tetrahedron 1986, 42, 1439; b) V. Kumar, S. Dev, Tetrahedron 1987, 43, 5933; c) S. Dev, Pure Appl. Chem. 1989, 61, 353; d) K. R. Prasad, A. Chandrakumar, Tetrahedron 2007, 63, 1798; e) S. George, G. Suryavanshi, A. Sudalai, Tetrahedron: Asymmetry 2010, 21, 558; f) S. R. Borkar, B. N. Manjunath, S. Balasubramaniam, I. S. Aidhen, Carbohydr. Res. 2012, 358, 23; g) P. R Sridhar, M. Suresh, P. V. Kumar, K. Seshadri, C. V. Rao, Carbohydr. Res. 2012, 360, 40; h) V. Venkataramasubramanian, B. S. Kumar, A. Sudalai, Tetrahedron: Asymmetry 2015, 26, 571; i) N. Chandra, R. A. Fernandes, Asian J. Org. Chem. 2019, 8, 532.
[20] CCDC 1882370 (20a) contains the supplementary crystallographic data.
[21] G. Xu, X. Yang, B. Jiang, P. Lei, X. Liu, Q. Wang, X. Zhnag, Y. Ling, Bioorg. Med. Chem. Lett. 2016, 26, 1849.
[22] N. J. Taylor, E. Emer, S. Preshlock, M. Schedler, M. Tredwell, S. Verhoog, J. Mercier, C. Genicot, V. Gouverneur, J. Am. Chem. Soc 2017, 139, 8267.
[23] A. Minami, R. Uchida, T. Eguchi, K. Kakinuma, J. Am. Chem. Soc. 2005, 127, 6148.
[24] C. G. Kruse, A. C. V. Janse, V. Dert, A. Van der Gen, J. Org. Chem. 1979, 44, 2916.
[25] B. Raya, S. Biswas, T. V. RajanBabu, ACS Catal. 2016, 6, 6318.
[26] K. Lorber, A. Buettner, J. Agric. Food Chem. 2015, 63, 6681.
27] B. E. Maryanoff, A. B. Reitz, B. A. Duhl-Emswiler, J. Am. Chem. Soc. 1985, 107, 217.
[28] L. D. de Montarby, P. Mosset, R. Gree, Tetrahedron Lett. 1988, 29, 3937
[29] G. W. Buchanan, R. Smits, E. Munteanu, J. Flour. Chem. 2003, 123, 255.

For internal use, please do not delete. Submitted_Manuscript

FULL PAPER

A tandem IBX-promoted oxidation of primary alcohol to aldehyde, opening of intermediate β, γ-diolcarbonate aldehyde to (E)- γ-hydroxy- α, β-enal has been developed with application to the stereoselective total synthesis of both (S)- and (R)-coriolides and D-xylo- and D-arabino-C-20-guggultetrols

Anupama Kumari, Sachin P. Gholap and Rodney A. Fernandes*

Page No. - Page No.
Tandem IBX-Promoted Primary Alcohol Oxidation/Opening of Intermediate $\beta, \gamma-$ Diolcarbonate Aldehydes to (E) $-\gamma-$ Hydroxy- α, β-enals

For internal use, please do not delete. Submitted_Manuscript

