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1. Introduction 

Phenols widely occur in natural products, biologically and 
pharmaceutically active molecules.1 They also serve as important 
synthetic intermediates in constructing aryl ethers and O-
heterocycles. In industry-scale production, phenols are prepared 
by the cumene-phenol process (Hock process).2 Unfortunately, 
the method shows low efficiency (only 5% overall yield). The 
traditional non-oxidative methods for the synthesis of phenols 
involve transformation of arene diazonium salts in the presence 
of copper salts and nucleophilic aromatic substitution of activated 
aryl halides. These methods, however, have some shortcomings 
For example, the former method requires the conversion of 
amino groups to diazonium salts, which is often suffered from 
the low tolerance of other functional groups. The latter one is 
often performed under harsh reaction conditions. Transition-
metal-catalyzed transformations are useful tools in synthetic 
organic chemistry.3 The direct hydroxylation of readily available 
aryl halides to substituted phenols is an appealing approach.4 Up 
to now, considerable progress in the transition-metal-catalyzed 
synthesis of phenols from aryl halides has been achieved by 
many groups.5 

Arylboronic acids are important and common building blocks, 
and they are easily prepared from readily available aryl halides,6 
tosylates7 and arylamines,8 or by iridium-catalyzed direct 
borylations of arenes via C-H bond activation.9  The arylboronic 
acids have been used as the starting materials to convert into 
phenols by oxidative hydroxylation,10 in which several 
equivalents of oxidants are needed. Despite these approaches to 
phenols are efficient, the amount of oxidants needs to be 
controlled carefully because the products are sensitive to the 
oxidants. Recently, Hu and Inamoto respectively reported an 
efficient copper-catalyzed oxidative hydroxylation of arylboronic 
acids at room temperature under air and O2 conditions.11, 12 In 
2012, Jørgensen and co-workers successfully developed a Ru-
catalyzed visible-light-initiated aerobic oxidative hydroxylation 
of arylboronic acids.13 Despite their excellent works, removal of 
the trace amounts of metal-catalyst from the end products could 
be difficult due to the homogeneous reaction system. Hence, 
there remains an urgent need for economical and green method 
for the synthesis of phenols. 

In modern organic synthesis, efforts to develop of practical 
methods, reaction conditions, highly efficient and recyclable 
catalyst systems, media, and the use of chemicals based on the 
principles of green chemistry are the central contents of the 
sustainable chemistry.14 As one of the vital participants in the 

ARTICLE  INFO ABSTRACT 

Article history: 
Received 
Received in revised form 
Accepted 
Available online 

A novel sustainable strategy for the synthesis of phenols has been developed using inexpensive,
readily available, air-stable and recyclable CuFe2O4 nanoparticles as the catalyst, and the
corresponding substituted phenols were obtained in moderate to good yields by oxidative 
hydroxylation of arylboronic acids in water. Importantly, a ligand or an additive was not 
necessary. The catalyst was completely recoverable with an external magnet and could be reused 
six times without significant loss of catalytic activity. 
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green organic synthesis chemistry, magnetic nanoparticles have 
been extensively used in organic transformations because of their 
easy preparation, low toxicity, efficient separation by using an 
external magnet and without the need for filtration step.[15] 
Among all the magnetic nanoparticles, CuFe2O4 nanoparticles 
have emerged as a powerful and excellent catalyst for many 
organic transformations,[16] and water is the most economical and 
environmentally friendly solvent in the world.[17] Herein, we 
report a simple, practical and efficient CuFe2O4-catalyzed 
synthesis of substituted phenols from arylboronic acids by using 
environmentally benign water as the solvent under mild 
conditions. Notably, when we were performing these studies, 
Sawant and his coworkers reported the elegant example of the 
direct oxidation of arylboronic acids to phenols using iron(III) 
oxide as the catalyst under ligand- and base free condition in 
solar VIS-light irradiation. [18]  

2. Results and discussion 

The CuFe2O4 nanoparticles were prepared according to the 
literature procedure[19] and characterized by X-ray diffraction (Fig 
1), the diffraction patterns of all the peaks matched well with the 
standard XRD pattern (JCPDS34-0425). As can be seen from the 
SEM and TEM images, the CuFe2O4 nanoparticles could remain 
well in the same state, even after six cycles. (Fig 1, Fig 2, ESI†). 
Moreover, the EDX spectrum shows that the spheres are 
composed of  Cu, Fe and O, as expected. (Fig 3, ESI†). 

 
Figure 1. XRD spectrum of native CuFe2O4 catalyst. (b) XRD 
spectrum of reused CuFe2O4 catalyst after 6th cycle 

 
At first, phenylboronic acid (1a) was chosen as the model 

substrate to optimize reaction conditions including the bases, 
ligands and reaction temperatures under air atmosphere in water. 
Firstly, a range of bases such as NaOH, KOH, Na2CO3, K2CO3, 
Cs2CO3 and K3PO4 were investigated by using 0.1 equiv of 
CuFe2O4 nanoparticles as the catalyst (relative to amount of 1a) 
in water, NaOH and KOH provided almost the same yields, but 
the others were bad bases, and we chose NaOH as the base 
(entries 1–7). Interestingly, the reaction gave low yield when 
proline or 1,10-Phenanthroline was added as the ligand (entry 10 
and 11). The effect of reaction temperature was also investigated, 
and it was found that performing the reaction at 40 oC in the 
presence of the promoter was optimal for the reaction and the 
reaction provided phenol (2a) in 25% yield with the corresponding 
symmetric Biphenyl appearing in 15% yield. (Table 1, entries 1, 7 
and 13). Control experiments indicated that the desired phenol 
was formed in the absence of the catalyst, but the yield was low 
and only 10% phenol was obtained (entries 12). Therefore, the 
CuFe2O4-catalyzed optimum conditions are as follows: 10 mol % 
CuFe2O4 nanoparticles as the catalyst, 3.0 equiv of NaOH as the 
base (relative to phenylboronic acid) and H2O as the solvent at 40 
oC under air atmosphere. 

Table 1. Magnetic CuFe2O4-catalyzed oxidative 
hydroxylation of phenylboronic acid (1a) leading to phenol 
(2a): optimization of conditions.a 

 
Entry Base Temp.[ oC] Yield [%][b] 

1 NaOH 25 70 

2 KOH 25 71 

3 K2CO3 25 trace 

4 Cs2CO3 25 trace 

5 K3PO4 25 trace 

6 Na2CO3 25 trace 

7 NaOH 40 97 

8 KOH 40 98 

9 NaOH 60 75 

10 NaOH 40 65[c] 

11 NaOH 40 70[d] 

12 NaOH 40 10[e] 

13 NaOH 60 25 

[a] Reaction conditions: phenylboronic acid (1a) (1.0 mmol) catalyst (0.1 
mmol),  

base (2.0 mmol), solvent (1 mL) under air atmosphere. 

[b] Isolated yield. 

[c] L-Proline (0.2 mmol) as the ligand was added 

[d] 1,10 -Phenanthroline (0.2 mmol) as the ligand was added 

[e] In the absence of catalyst 

We then investigated the scope of the CuFe2O4-catalyzed 
reaction with respect to the aromatic boronic acid.20 As shown in 
Table 2, most of the substrates examined provided moderate to 
excellent yields under similar conditions. The electronic effect of 
the substituted groups in the arylboronic acids including electron-
rich, -neutral, and -deficient substituents did not display evident 
difference in reactivity (comparing entry 11, 13 and 14 with 
entries 1-3 in Table 2). Phenylboronic acids bearing bulky 
substituents, such as 2, 6-dimethylphenylboronic acid and 2, 4-
dichlorophenylboronic acid were also examined, and moderate 
yields of the reactions were obtained (entries 5 and 16). The 
reactions showed good tolerance of functional groups on the aryl 
ring including ester groups (entries 12), C-Cl bonds (entries 16, 
17), aldehyde groups (entries 13), carboxyl groups (entry 9) and 
heterocycle (entry 15). The target products containing ester or 
cyanyl groups, are favorable for their further modifications. 

Table 2. Magnetic CuFe2O4-catalyzed oxidative 
hydroxylation of phenylboronic acid (1a) leading to phenol 
(2a). a 

 
entry 1 2 

yield 

(%)b 

1 
1a

B

OH

OH

  
98 
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2 
  

87 

3 

  

90 

4 

  

87 

5 

  

32 

6 

1b  

68 

7 

  

93 

8 

  

92 

9 

  

91 

10 

  

96 

11 

  
57 

12 
1l

H3COOC B

OH

OH

  

75 

13 

  

99 

14 

  

73 

15 

  

93 

16 

 2p

OH

Cl

Cl

 

62 

17 

  

95 

18 

  

96 

19 

  
54 

[a] Reaction conditions: arylboronic acid (1) (1.0 mmol) catalyst (0.1 mmol),  

NaOH (2.0 mmol), solvent (1 mL) under air atmosphere. 

[b] Isolated yield. 

The reusability of the catalyst were also studied. For this, we 
investigated the CuFe2O4-catalyzed oxidative hydroxylation of 
phenylboronic acid under the optimized conditions (Fig. 2). After 
completion of the reaction, the catalyst was magnetically 
separated from the reaction mixture, washed with deionized 
water and acetone, air dried and then used directly for further 
catalytic reactions. No significant loss of catalyst activity was 
found (95%), even up to six cycles. 
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Figure 2. Recycling of the CuFe2O4 catalyst. 

 
As shown in Scheme 1, when one equivalent of TEMPO (2, 2, 

6, 6-tetramethyl-1-piperidinyloxy, a well known radical-
capturing species) was added to the reaction system, no 
significant difference was observed in the yield, ruling out the 
presence of radicals during the reaction. 

 
Scheme 1. Reactions of phenylboronic acid in the presence of 
TEMPO under the optimized reaction condition. 
 

When the reaction of boronic acid 1a with NaOH was 
performed employing H2

18O as a solvent under the optimal 
reaction conditions,  63% 18O-2a and 31% 16O-2a products were 
detected (Scheme 2, HRMS, see ESI†), indicating that the 
oxygen source for the phenol formation is water as previously 
hypothesized by Evans et al21 and Lam et al.22 

 

 
Scheme 2. Reactions of phenylboronic acid using H2

18O as the 
solvent under the optimized reaction condition. 

3. Conclusion 

In summary, a simple, green and efficient strategy for the 
synthesis of phenols in water has been successfully developed 
using strongly magnetic CuFe2O4 as the catalyst and arylboronic 
acids as the starting materials. CuFe2O4 nanoparticles, which are 
cost-effective, readily available, air-stable and recyclable 
materials, have been initially demonstrated as an excellent 
catalyst for the oxidative hydroxylation of arylboronic acids in 
water, importantly, a ligand, or an additive was not necessary. 
Such a novel sustainable strategy for the synthesis of phenols will 
attract much attention in industrial and academic researches. 
Further applications of CuFe2O4 magnetic nanoparticles in 
organic transformations are in progress in our laboratory. 
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4. Experimental section 

4.1. General remarks 

All reagents and solvents were obtained from commercial 
suppliers and used without further purification. Flash 
chromatography was performed on silica gel (200 ~ 300 mesh). 
1H, and 13C NMR data were recorded at 400 and 100 MHz on a 
BRUKER 400 spectrometer. Chemical shifts (d) are expressed in 
parts per million (ppm) and coupling constants (J) are in Hz. 
Proton and carbon magnetic resonance spectra (1H NMR and 13C 
NMR) were recorded using tetramethylsilane (TMS) in the 
solvent of CDCl3 as the internal standard (1H NMR: TMS at 0.00 
ppm, CDCl3 at 7.28 ppm; 13C NMR: CDCl3 at 77.0 ppm). 

4.2. General procedure for synthesis of substituted phenols 

A 25 mL Schlenk tube equipped with a magnetic stirring bar 
was charged with CuFe2O4 nanoparticles (0.1 mmol, 24 mg), 
substituted arylboronic acids (1) (1.0 mmol),  NaOH (3.0 mmol, 
120 mg), and H2O (2.0 mL) was added to the tube under air 
atmosphere. The flask was not sealed in order that air could enter 
the flask, and the mixture was allowed to stir for 24 h under air at 
40 oC. After completion of the reaction, the resulting solution 
was cooled to room temperature, HCl (2N, 1 mL) was added to 
acidify the solution (pH 5-7), and the target product was 
extracted with ethyl acetate (4-6 mL). The combined organic 
phase was dried over anhydrous MgSO4 and filtered, and the 
solvent of the filtrate was removed with the aid of a rotary 
evaporator. The residue was purified by column chromatography 
on silica gel using petroleum ether/ethyl acetate as an eluent to 
provide the desired product (2). 

4.2.1. Phenol (2a).[23] Eluent petroleum ether/ethyl acetate (5:1). 
Yield 95% (89 mg).Yellow oil. 1H NMR (CDCl3, 400 MHz, 
ppm) d 7.21 (t, 2H, J = 5.5Hz), 6.93 (t, 1H, J = 4.9Hz), 6.83(d, 
2H, J = 5.1Hz), 6.03(s, br, 1H). 13C NMR (CDCl3, 75 MHz, ppm) 
δ155.3, 129.9, 121.1, 115.6. ESI-MS [M-H] m/z 93.1. 

4.2.2 p-Cresol (2b).[24] Eluent petroleum ether/ethyl acetate (5:1). 
Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 7.06 (d, 2H, J = 
7.9Hz), 6.78 (d, 2H, J = 7.9Hz), 5.3 (s, br, 1H), 2.31 (s, 3H). 13C 
NMR (CDCl3, 200 MHz, ppm) δ153.3, 130.1, 130.0, 115.2, 20.5. 
ESI-MS [M-H]-m/z 107.6. 

4.2.3. 4-methoxyphenol (2c).[25] Eluent petroleum ether/ethyl 
acetate (5:1). White solid. 1H NMR (CDCl3, 400 MHz, ppm) 
6.83-6.78(m, 4H), 4.5(s, br, 1H), 3.8(s, 3H). 13C NMR (CDCl3, 
200 MHz, ppm) δ 153.8, 149.5, 55.6. ESI-MS [M-H]-m/z 123.4. 

4.2.4. 3-methoxyphenol (2d).[25] Eluent petroleum ether/ethyl 
acetate (5:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 
7.16(d, 1H, J = 8.0Hz), 6.52(d, 1H, J = 7.6Hz), 6.45(d, 1H, J = 
8.0Hz), 3.8(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ161.0, 
156.8, 130.2, 107.8, 106.4, 101.6, 55.3. ESI-MS [M-H] -m/z 
123.7. 

4.2.5. 2,6-dimethylphenol (2e).[26] Eluent petroleum ether/ethyl 
acetate (5:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 
7.07(d, 2H, J = 8.0 Hz), 6.86(t, 1H, J = 7.6 Hz), 4.48(s, br, 1H), 
2.33(s, 6H). 13C NMR (CDCl3, 200MHz, ppm) δ 152.1, 128.5, 
123.0, 120.2,15.8. ESI-MS [M-H]-m/z 121.7. 

4.2.6. m-cresol (2f). [26] Eluent petroleum ether/ethyl acetate 
(15:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 7.15(t, 1H, 
J = 7.9Hz), 6.77(s, 1H, J = 7.9Hz), 6.67(d, 1H, J = 8.0Hz), 
2.33(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 155.5, 139.8.8, 
129.4, 121.6, 116.0, 112.2, 21.3. ESI-MS [M-H]-m/z 107.5. 

4.2.7. 4-hydroxybenzoic acid (2g).[27] Eluent petroleum 
ether/ethyl acetate (15:1). Yellow oil. 1H NMR (CDCl3, 400 

MHz, ppm) 7.15(t, 1H, J = 7.9Hz), 6.77(s, 1H, J = 7.9Hz), 
6.67(d, 1H, J = 8.0Hz), 2.33(s, 3H). 13C NMR (CDCl3, 200 MHz, 
ppm) δ 155.5, 139.8.8, 129.4, 121.6, 116.0, 112.2, 21.3. ESI-MS 
[M-H] -m/z 107.5. 

4.2.8. 3-hydroxybenzoic acid (2h).[28] Eluent petroleum 
ether/ethyl acetate (3:1). White solid. 1H NMR (DMSO-d6, 400 
MHz, ppm) 12.72(s, br, 1H), 9.68 (s, br, 1H), 7.38-7.33(m, 2H), 
6.70(s, 1H). 13C NMR (DMSO-d6, 200 MHz, ppm) δ 167.8, 
157.8, 132.5, 129.9, 120.3, 116.3,. ESI-MS [M-H]-m/z 137.2. 

4.2.9. 1-(4-hydroxyphenyl)ethanone (2i).[26] Eluent petroleum 
ether/ethyl acetate (15:1). White solid. 1H NMR (CDCl3, 400 
MHz, ppm) 8.57(s, br, 1H), 7.93(d, 2H, J = 8.0Hz), 6.98(d, 1H, J 
= 8.0Hz), 2.61(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 
199.2, 161.8, 131.3, 129.3, 115.7, 26.3. ESI-MS [M-H] -m/z 
135.4. 

4.2.10. 3-chlorophenol (2j).[29] Eluent petroleum ether/ethyl 
acetate (15:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 
7.17(m, 1H), 6.90(m, 2H), 6.76(d, 1H, J = 8.0Hz), 6.03(s, br, 
1H). 13C NMR (CDCl3, 200 MHz, ppm) δ 172.7, 156.5, 134.9, 
130.5, 120.9, 116.0, 113.8. ESI-MS [M-H]-m/z 127.4. 

4.2.11. 4-(trifluoromethyl)phenol (2k).[30] Eluent petroleum 
ether/ethyl acetate (5:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, 
ppm) 7.54(d, 1H, J = 8.0Hz), 6.94(d, 1H, J = 8.0Hz), 5.63(s, br, 
1H). 13C NMR (CDCl3, 200MHz, ppm) δ 157.8, 127.3, 123.9(q, 
1J = 360.0Hz), 123.0(q, 1J = 48.0Hz), 115.4. [M-H]-m/z 161.4. 

4.2.12. methyl 4-hydroxybenzoate (2l):[31] Eluent petroleum 
ether/ethyl acetate (5:1). White solid. 1H NMR (CDCl3, 400 
MHz, ppm) 7.99(d, 1H, J = 8.0Hz), 6.90(d, 1H, J = 8.0Hz), 
6.05(s, br, 1H), 3.92(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 
167.3, 160.1, 132.0, 122.5, 115.3, 52.1. ESI-MS [M-H] -m/z 
151.4. 

4.2.13. 4-hydroxybenzaldehyde (2m).[32] Eluent petroleum 
ether/ethyl acetate (15:1). White solid. 1H NMR (CDCl3, 400 
MHz, ppm) 9.88(s, 1H), 7.83(d, 2H, J = 8.0Hz), 7.00 (d, 1H, J = 
8.0Hz). 13C NMR (CDCl3, 200 MHz, ppm) δ 191.1, 161.9, 132.5, 
129.7, 116.0. ESI-MS [M-H]-m/z 121.3. 

4.2.14. 4-hydroxybenzonitrile (2n):[33] Eluent petroleum 
ether/ethyl acetate (15:1). Yellow solid. 1H NMR (CDCl3, 400 
MHz, ppm) 7.57(d, 2H, J = 8.0Hz), 6.93(d, 2H, J = 8.0Hz), 7.00 
(d, 1H, J = 8.0Hz). 13C NMR (CDCl3, 200 MHz, ppm) δ 160.0, 
134.3, 119.5, 116.4. ESI-MS [M-H]-m/z 118.3. 

4.2.15. dibenzo[b,d]furan-4-ol (2o).[34] Eluent petroleum 
ether/ethyl acetate (15:1). White solid. 1H NMR (CDCl3, 400 
MHz, ppm) 7.95(d, 2H, J = 7.2 Hz), 7.60(d, 2H, J = 8.0Hz), 
7.56-7.47(m, 2H), 7.40(t, 1H, J = 8.0Hz), 7.28(t, 1H, J = 8.0Hz), 
7.05(d, 1H, J = 8.0Hz), 5.53(s, br, 1H). 13C NMR (CDCl3, 200 
MHz, ppm) δ 156.1, 144.1, 141.2, 127.3, 125.8, 124.6, 123.7, 
123.0, 121.0, 113.6, 112.8, 111.8. ESI-MS [M-H]-m/z 183.3. 

4.2.16. 2,4-dichlorophenol (2p).[35] Eluent petroleum ether/ethyl 
acetate (15:1). White solid. 1H NMR (CDCl3, 400 MHz, ppm) 
7.33(d, 2H, J = 2.4Hz), 7.18(d, 2H, J = 8.0Hz), 6.97(d, 1H, J = 
8.0Hz), 5.57(s, br, 1H). 13C NMR (CDCl3, 200MHz, ppm) δ 
150.2, 128.6, 128.5, 125.6, 120.4, 117.1,. ESI-MS [M-H] -m/z 
160.8. 

4.2.17. 4-chlorophenol (2q).[36] Eluent petroleum ether/ethyl 
acetate (15:1). Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 
7.21(d, 2H, J = 8.0Hz), 6.80 (d, 2H, J = 8.0Hz), 5.60(s, br, 1H). 

13C NMR (CDCl3, 200MHz, ppm) δ 154.2, 129.5, 125.6, 116.7. 
ESI-MS [M-H]-m/z 127.3. 
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4.2.18. 3-(trifluoromethyl)phenol (2r).[37] Eluent petroleum 
ether/ethyl acetate (15:1). Yellow oil. 1H NMR (CDCl3, 400 
MHz, ppm) 7.36(d, 2H, J = 8.0Hz), 7.20 (d, 2H, J = 8.0Hz), 
7.12(s, 1H), 7.04(d, 2H, J = 8.0Hz), 6.0(s, br, 1H). 13C NMR 
(CDCl3, 200MHz, ppm) δ 156.0, 131.2(q, 2J = 64.0Hz), 130.2, 
123.6(q, 1J = 542.0Hz), 118.0, 117.0, 112.3. ESI-MS [M-H]-m/z 
161.3. 

4.2.19. naphthalen-2-ol (2s). [34] Eluent petroleum ether/ethyl 
acetate (15:1). White solid. 1H NMR (CDCl3, 400 MHz, ppm) 
7.82-7.78(m, 2H), 7.11 (d, 2H, J = 8.0Hz), 7.49-7.45(m, 1H), 
7.39-7.35(m, 1H), 7.18-7.13(m, 2H), 5.11(s, br, 1H). 13C NMR 
(CDCl3, 200MHz, ppm) δ 153.2, 134.6, 129.9, 129.0, 127.8, 
126.6, 126.4, 123.7, 117.4, 109.6. ESI-MS [M-H]-m/z 143.3. 
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Characterisation of the CuFe2O4 nano Catalyst: 
 
From SEM, XRD spectral studies, it is revealed that the CuFe2O4 nanoparticles 
remained in the same state, even after six cycles. 

 

 
Fig. 1 SEM-analysis of (a) native CuFe2O4 catalyst and (b) reused catalyst after six 
cycle. 
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Fig. 2 TEM-analysis of (a) native CuFe2O4 catalyst and (b) reused catalyst after six 
cycle. 
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Elt. Line Intensity 

(c/s) 
Atomic 

% 
Conc Units Error 

2-sig 
 

C Ka 14.24 3.265 1.113 wt.% 0.263  
O Ka 700.56 52.453 23.811 wt.% 0.349  
Fe Ka 472.48 21.807 34.553 wt.% 0.607  
Cu Ka 230.44 22.476 40.524 wt.% 1.030  

   100.000 100.000 wt.%  Total 

kV  15.0 

Takeoff Angle  35.0° 

Elapsed Livetime 30.0 

 

Analysis Report: Image2-2 

 
Elt. Line Intensity 

(c/s) 
Atomic 
% 

Conc Units Error 
2-sig 

  

O Ka 463.08 39.626 15.226 wt.% 0.274   
Fe Ka 732.18 39.800 53.377 wt.% 0.745   
Cu Ka 183.12 20.574 31.398 wt.% 0.917   
   100.000 100.000 wt.%  Total 

kV  15.0 

Takeoff Angle  35.0° 
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Elapsed Livetime 30.0 

 

Analysis Report: Image2-3 

 
Elt. Line Intensity 

(c/s) 
Atomic 

% 
Conc Units Error 

2-sig 
 

C Ka 47.10 8.175 2.933 wt.% 0.276  
O Ka 843.01 49.745 23.770 wt.% 0.316  
Si Ka 47.66 1.106 0.928 wt.% 0.089  
Fe Ka 643.08 23.439 39.093 wt.% 0.585  
Cu Ka 230.81 17.534 33.277 wt.% 0.855  

   100.000 100.000 wt.%  Total 

kV  15.0 

Takeoff Angle  35.0° 

Elapsed Livetime 30.0 

 

Analysis Report: Image2-4 

 
Elt. Line Intensity 

(c/s) 
Atomic 
% 

Conc Units Error 
2-sig 

  

O Ka 762.54 51.557 22.553 wt.% 0.315   
Fe Ka 713.15 31.907 48.718 wt.% 0.689   
Cu Ka 179.06 16.536 28.729 wt.% 0.846   
   100.000 100.000 wt.%  Total 

kV  15.0 

Takeoff Angle  35.0° 
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Elapsed Livetime 30.0 

Fig. 3. EDX-analysis of  CuFe2O4 catalyst 
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Fig. 4 Reactions of phenylboronic acid using H2
18O as the solvent under the 

optimized reaction condition. 
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General experimental procedures 

All reagents and solvents were obtained from commercial suppliers and used without 

further purification. Flash chromatography was performed on silica gel (200 ~ 300 

mesh). 1H, and 13C NMR data were recorded at 400 and 100 MHz on a BRUKER 400 

spectrometer. Chemical shifts (d) are expressed in parts per million (ppm) coupling 

constants (J) are in Hz. Proton and carbon magnetic resonance spectra (1H NMR and 

13C NMR) were recorded using tetramethylsilane (TMS) in the solvent of CDCl3 as 

the internal standard (1H NMR: TMS at 0.00 ppm, CDCl3 at 7.28 ppm; 13C NMR: 

CDCl3 at 77.0 ppm). 

General procedure for synthesis of substituted phenols: 

A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with 

CuFe2O4 nanoparticles (0.1 mmol, 24 mg), substituted substituted arylboronic acids (1) 

(1.0 mmol),  NaOH (3.0 mmol, 120 mg), and H2O (2.0 mL) was added to the tube 

under air atmosphere. The flask was not sealed in order that air could enter the flask, 

and the mixture was allowed to stir for 24 h under air at 40 oC. After completion of 

the reaction, the resulting solution was cooled to room temperature, HCl (2N, 1 mL) 

was added to acidify the solution (pH 5-7), and the target product was extracted with 

ethyl acetate (4-6 mL). The combined organic phase was dried over anhydrous 

MgSO4 and filtered, and the solvent of the filtrate was removed with the aid of a 

rotary evaporator. The residue was purified by column chromatography on silica gel 

using petroleum ether/ethyl acetate as eluent to provide the desired product (2).  

 

Phenol (2a):[1] Eluent petroleum ether/ethyl acetate (5:1). Yield 95% (89 mg).Yellow 

oil. 1H NMR (CDCl3, 400 MHz, ppm) d 7.21 (t, 2H, J = 5.5Hz), 6.93 (t, 1H, J = 

4.9Hz), 6.83(d, 2H, J = 5.1Hz), 6.03(s, br, 1H). 13C NMR (CDCl3, 75 MHz, ppm) 

δ155.3, 129.9, 121.1, 115.6. ESI-MS [M-H] m/z 93.1. 

2b

OHH3C

 

p-Cresol (2b):[2] Eluent petroleum ether/ethyl acetate (5:1). Yellow oil. 1H NMR 
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(CDCl3, 400 MHz, ppm) 7.06 (d, 2H, J = 7.9Hz), 6.78 (d, 2H, J = 7.9Hz), 5.3 (s, br, 

1H), 2.31 (s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ153.3, 130.1, 130.0, 115.2, 

20.5. ESI-MS [M-H]-m/z 107.6 

 

4-methoxyphenol (2c):[3] Eluent petroleum ether/ethyl acetate (5:1). White solid. 1H 

NMR (CDCl3, 400 MHz, ppm) 6.83-6.78(m, 4H), 4.5(s, br, 1H), 3.8(s, 3H). 13C NMR 

(CDCl3, 200 MHz, ppm) δ 153.8, 149.5, 55.6. ESI-MS [M-H]-m/z 123.4. 

 

3-methoxyphenol (2d): [3] Eluent petroleum ether/ethyl acetate (5:1). Yellow oil. 1H 

NMR (CDCl3, 400 MHz, ppm) 7.16(d, 1H, J = 8.0Hz), 6.52(d, 1H, J = 7.6Hz), 6.45(d, 

1H, J = 8.0Hz), 3.8(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ161.0, 156.8, 130.2, 

107.8, 106.4, 101.6, 55.3. ESI-MS [M-H]-m/z 123.7. 

 

2,6-dimethylphenol (2e): [4] Eluent petroleum ether/ethyl acetate (5:1). Yellow oil. 1H 

NMR (CDCl3, 400 MHz, ppm) 7.07(d, 2H, J = 8.0 Hz), 6.86(t, 1H, J = 7.6 Hz), 4.48(s, 

br, 1H), 2.33(s, 6H). 13C NMR (CDCl3, 200MHz, ppm) δ 152.1, 128.5, 123.0, 

120.2,15.8. ESI-MS [M-H]-m/z 121.7. 

 

m-cresol (2f): [4] Eluent petroleum ether/ethyl acetate (15:1). Yellow oil. 1H NMR 

(CDCl3, 400 MHz, ppm) 7.15(t, 1H, J = 7.9Hz), 6.77(s, 1H, J = 7.9Hz), 6.67(d, 1H, J 

= 8.0Hz), 2.33(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 155.5, 139.8.8, 129.4, 

121.6, 116.0, 112.2, 21.3. ESI-MS [M-H]-m/z 107.5. 

 

4-hydroxybenzoic acid (2g): [5] Eluent petroleum ether/ethyl acetate (3:1). White 
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solid.. 1H NMR (DMSO-d6, 400 MHz, ppm) 12.37(s, br, 1H), 10.17 (s, br, 1H), 

7.78(d, 1H, J = 8.8 Hz), 6.81(d, 1H, J = 8.8 Hz). 13C NMR (DMSO-d6, 200 MHz, 

ppm) δ 167.6, 162.0, 121.8, 115.5, . ESI-MS [M-H]-m/z 137.2. 

 

3-hydroxybenzoic acid (2h): [6] Eluent petroleum ether/ethyl acetate (3:1). White 

solid. 1H NMR (DMSO-d6, 400 MHz, ppm) 12.72(s, br, 1H), 9.68 (s, br, 1H), 

7.38-7.33(m, 2H), 6.70(s, 1H). 13C NMR (DMSO-d6, 200 MHz, ppm) δ 167.8, 157.8, 

132.5, 129.9, 120.3, 116.3,. ESI-MS [M-H]-m/z 137.2. 

 

1-(4-hydroxyphenyl)ethanone (2i): [4] Eluent petroleum ether/ethyl acetate (15:1). 

White solid. 1H NMR (CDCl3, 400 MHz, ppm) 8.57(s, br, 1H), 7.93(d, 2H, J = 8.0Hz), 

6.98(d, 1H, J = 8.0Hz), 2.61(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 199.2, 161.8, 

131.3, 129.3, 115.7, 26.3. ESI-MS [M-H]-m/z 135.4. 

 

3-chlorophenol (2j): [7] Eluent petroleum ether/ethyl acetate (15:1). Yellow oil. 1H 

NMR (CDCl3, 400 MHz, ppm) 7.17(m, 1H), 6.90(m, 2H), 6.76(d, 1H, J = 8.0Hz), 

6.03(s, br, 1H). 13C NMR (CDCl3, 200 MHz, ppm) δ 172.7, 156.5, 134.9, 130.5, 120.9, 

116.0, 113.8. ESI-MS [M-H]-m/z 127.4. 

 

4-(trifluoromethyl)phenol (2k): [8] Eluent petroleum ether/ethyl acetate (5:1). Yellow 

oil. 1H NMR (CDCl3, 400 MHz, ppm) 7.54(d, 1H, J = 8.0Hz), 6.94(d, 1H, J = 8.0Hz), 

5.63(s, br, 1H). 13C NMR (CDCl3, 200MHz, ppm) δ 157.8, 127.3, 123.9(q, 1J = 

360.0Hz), 123.0(q, 1J = 48.0Hz), 115.4. [M-H]-m/z 161.4. 

 

methyl 4-hydroxybenzoate (2l): [9] Eluent petroleum ether/ethyl acetate (5:1). White 
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solid. 1H NMR (CDCl3, 400 MHz, ppm) 7.99(d, 1H, J = 8.0Hz), 6.90(d, 1H, J = 

8.0Hz), 6.05(s, br, 1H), 3.92(s, 3H). 13C NMR (CDCl3, 200 MHz, ppm) δ 167.3, 160.1, 

132.0, 122.5, 115.3, 52.1. ESI-MS [M-H]-m/z 151.4. 

 

4-hydroxybenzaldehyde (2m): [10] Eluent petroleum ether/ethyl acetate (15:1). White 

solid. 1H NMR (CDCl3, 400 MHz, ppm) 9.88(s, 1H), 7.83(d, 2H, J = 8.0Hz), 7.00 (d, 

1H, J = 8.0Hz). 13C NMR (CDCl3, 200 MHz, ppm) δ 191.1, 161.9, 132.5, 129.7, 

116.0. ESI-MS [M-H]-m/z 121.3. 

 

4-hydroxybenzonitrile (2n): [11] Eluent petroleum ether/ethyl acetate (15:1). Yellow 

solid. 1H NMR (CDCl3, 400 MHz, ppm) 7.57(d, 2H, J = 8.0Hz), 6.93(d, 2H, J = 

8.0Hz), 7.00 (d, 1H, J = 8.0Hz). 13C NMR (CDCl3, 200 MHz, ppm) δ 160.0, 134.3, 

119.5, 116.4. ESI-MS [M-H]-m/z 118.3. 

 

dibenzo[b,d]furan-4-ol (2o): [12] Eluent petroleum ether/ethyl acetate (15:1). White 

solid. 1H NMR (CDCl3, 400 MHz, ppm) 7.95(d, 2H, J = 7.2 Hz), 7.60(d, 2H, J = 

8.0Hz), 7.56-7.47(m, 2H), 7.40(t, 1H, J = 8.0Hz), 7.28(t, 1H, J = 8.0Hz), 7.05(d, 1H, 

J = 8.0Hz), 5.53(s, br, 1H). 13C NMR (CDCl3, 200 MHz, ppm) δ 156.1, 144.1, 141.2, 

127.3, 125.8, 124.6, 123.7, 123.0, 121.0, 113.6, 112.8, 111.8. ESI-MS [M-H]-m/z 

183.3. 

 

2,4-dichlorophenol (2p): [13] Eluent petroleum ether/ethyl acetate (15:1). White solid. 

1H NMR (CDCl3, 400 MHz, ppm) 7.33(d, 2H, J = 2.4Hz), 7.18(d, 2H, J = 8.0Hz), 

6.97(d, 1H, J = 8.0Hz), 5.57(s, br, 1H). 13C NMR (CDCl3, 200MHz, ppm) δ 150.2, 

128.6, 128.5, 125.6, 120.4, 117.1,. ESI-MS [M-H]-m/z 160.8. 
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4-chlorophenol (2q): [14] Eluent petroleum ether/ethyl acetate (15:1). Yellow oil. 1H 

NMR (CDCl3, 400 MHz, ppm) 7.21(d, 2H, J = 8.0Hz), 6.80 (d, 2H, J = 8.0Hz), 5.60(s, 

br, 1H). 13C NMR (CDCl3, 200MHz, ppm) δ 154.2, 129.5, 125.6, 116.7. ESI-MS 

[M-H] -m/z 127.3. 

 
3-(trifluoromethyl)phenol (2r): [15] Eluent petroleum ether/ethyl acetate (15:1). 

Yellow oil. 1H NMR (CDCl3, 400 MHz, ppm) 7.36(d, 2H, J = 8.0Hz), 7.20 (d, 2H, J 

= 8.0Hz), 7.12(s, 1H), 7.04(d, 2H, J = 8.0Hz), 6.0(s, br, 1H). 13C NMR (CDCl3, 

200MHz, ppm) δ 156.0, 131.2(q, 2J = 64.0Hz), 130.2, 123.6(q, 1J = 542.0Hz), 118.0, 

117.0, 112.3. ESI-MS [M-H]-m/z 161.3. 

 

naphthalen-2-ol (2s): [12] Eluent petroleum ether/ethyl acetate (15:1). White solid. 1H 

NMR (CDCl3, 400 MHz, ppm) 7.82-7.78(m, 2H), 7.11 (d, 2H, J = 8.0Hz), 

7.49-7.45(m, 1H), 7.39-7.35(m, 1H), 7.18-7.13(m, 2H), 5.11(s, br, 1H). 13C NMR 

(CDCl3, 200MHz, ppm) δ 153.2, 134.6, 129.9, 129.0, 127.8, 126.6, 126.4, 123.7, 

117.4, 109.6. ESI-MS [M-H]-m/z 143.3. 
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