APPLICATION OF THE VICINAL OXYAMINATION REACTION WITH ASYMMETRIC INDUCTION TO THE HEMISYNTHESIS OF TAXOL AND ANALOGUES †

L. MANGATAL, M.-T. ADELINE, D. GUÉNARD, F. GUÉRITTE-VOEGELEIN* and P. POTIER

Institut de Chimie des Substances Naturelles, C.N.R.S.

91198 Gif-sur-Yvette Cedex France

(Received in Belgium 24 March 1989)

Abstract - Taxol, 10-deacetyl taxol and their related side chain analogues can be obtained via a "Sharpless" oxyamination reaction on 13-cinnamoyl baccatin III. Asymmetric induction has been studied using different bridgehead amines as chiral ligands. This procedure constitutes an alternative route to taxol derivatives for biological studies.

Taxol 1¹, a complex diterpene isolated from the trunk bark of several species of yew (genus Taxus, family Taxaceae)², is the only natural product known to promote the assembly of tubulin into microtubules (the major component of the mitotic spindle) and to inhibit the microtubules disassembly process ³. Therefore it appears to be the prototype of a new class of anti-cancer agents and has effectively been shown to possess a wide spectrum of anti-leukemic and tumor-inhibiting activity ^{3a,3c,4}. Taxol is currently in phase II clinical trials in the United States⁵. The limited availability of taxol from natural sources, has initiated investigations directed towards its total synthesis ⁶: recently Holton and coll. succeeded in the first synthesis of (-)taxusin (enantiomer of the natural taxane diterpene) ⁶.

Our interest in this area has been mainly focused on a partial synthesis of taxol and structural analogues from a simpler and more easily accessible taxol congener. In a preceding paper ⁷ we proposed an hypothesis for the biogenesis of taxol and we reported two procedures for its hemisynthesis as well as that of 10-deacetyl taxol 2 which has similar anticancer properties ⁸. The starting material was natural 10-deacetyl baccatin III 3 readily extracted with high yields from the leaves of *Taxus baccata L.*^{9,10}. One of the hemisynthetic methods used the direct coupling of 7-triethylsilyl baccatin III 4 with the suitably protected (2R, 3S)-N-benzoyl-3-phenylisoserine 5¹¹. Removal of the protecting groups led to taxol 1 (Scheme 1).

Before finding the best conditions for this direct hemisynthesis, we proposed another pathway which consists in applying the Sharpless vicinal oxyamination reaction to a cinnamate taxane derivative such as 6^{10} (scheme 2). Among the oxyaminated products so obtained, 7a produced 10-deacetyl taxol 2 after deprotection of the tbutoxycarbonyl group, benzoylation and removal of the trichloroethyloxycarbonyl group¹² (Scheme 3). Each procedure can be applied to the preparation of both taxol 1 and 10-deacetyl taxol 2.

In this communication we would like to report the results we have obtained from this oxyamination procedure leading to taxol and new isomers under different experimental conditions (effects of solvents, temperatures, metallic salts and different terriary bridgehead amines).

To obtain the 2'R,3'S configuration of taxol, a cis addition is required on the 2'-3' double bond of the trans cinnamate ester 6 ^{13,14}. In preliminary work, we found that cis vicinal oxyamination using Chloramine T and a catalytic amount of osmium tetroxide afforded a mixture of hydroxy p-toluenesulfonamide isomers ¹³. Because of the sensitivity of taxol derivatives to both acid ^{15a} and base ^{1,2a,15} and the difficulty of removing the sulfonamide protecting groups without damage to the taxane skeleton, we applied the same reaction using t-butyl-N-chloro-Nargentocarbamate. Despite the bulky asymmetric taxane skeleton, a negligible induction took place using the classical catalytic procedure (tBuOCONNaCl (1.5eq), AgNO₃ (3eq), OsO₄ (1%), H₂O (4.5eq), CH₃CN)¹⁶. Two pairs of threo regioisomers **7a**, **8a** and **9a**, **10a** were obtained in ,respectively, 13%, 11%, 11% and 8% yield (Table I: entry 1B) and the cinnamate ester **6** was recovered in 50% yield; each of these diastereoisomers has a different R_F in thin layer chromatography and was easily isolated. The presence of **9a** and **10a** in the oxyamination reaction mixture (scheme 2) shows that no regioselectivity occured during the cis addition of the osmium complex to the cinnamate ester. Deprotection of the C-7 and C-10 protecting groups of the four oxyaminated products led, respectively, to compounds **12a**, **13a** and **14a**, **15a** (Scheme 2).

The assignment of the structure of the four isomers was based largely on ¹H NMR. Decoupling experiments were performed to assign the position of the hydroxyl and t-butoxycarbonylamino substituents. The ¹H NMR spectra of **12a** and **13a** (2'-OH, 3'-NHCO₂tBu) exhibited a broad doublet (J = 9 Hz) for the C-3' proton at 5.26 and 5.27 ppm respectively while the C-2' proton absorbed at higher field (4.60 and 4.49 ppm) and appeared as a broad singlet. Irradiation at the resonance frequency of the NH proton resulted in the disappearance of the coupling (J=9HZ) for the C-3' proton. The same decoupling experiments were performed for **14a** and **15a** (2'-NHCO₂tBu, 3'OH). The C-2' proton appeared as a doublet (J=9Hz) of doublets (J=2Hz) at 4.58 ppm for **14a** and **15a**. The proton at C-3' appeared as a doublet (J=2Hz) at 5.35 (compound **14a**) and 5.14 ppm (compound **15a**).

Compound 12a was correlated to 10-deacetyl taxol 2 (Scheme 3). The t-butoxycarbonyl group of 7a was easily removed with iodotrimethylsilane affording the desired cis- β -aminoalcohol 16. Treatment of 16 with benzoyl chloride yielded 18. Finally, the 2,2,2-trichloroethyloxycarbonyl groups at C-7 and C-10 were removed with zinc dust in methanolic acetic acid to give 10-deacetyl taxol 2. The derivative isolated was identical in all respects to an authentic sample of natural 10-deacetyl taxol 2 (tlc, α_D , nmr, mass spectra, melting point). Moreover, X-ray analysis of compound 12a gave the configuration of the 2' and 3' carbons and represented the first X-ray analysis of an intact taxol congener ¹⁷.

The configurations of 2' and 3' carbons of the regioisomers 14a and 15a were attributed after hydrolysis of the ester bond at C-13 and removal of the t-butoxycarbonyl group. The optical rotatory power of the amino acids so obtained was compared to those of (L) and (D) 3-phenylserine¹⁸. Thus 9a and 14a (2'R, 3'S) were correlated to (D)3-phenylserine and compounds 10a and 15a (2'S, 3'R) to (L)3-phenylserine.

Treatment of the oxyaminated product 8a with iodotrimethylsilane yielded the aminoalcohol 17, and the latter was then treated with benzoyl chloride. Removal of the troc group from 19 yielded 2',3'-epi,10-deacetyl taxol 20 (Scheme 3).

Scheme 3

Compounds 9a and 10a were similarly modified leading to the regioisomers of 10-deacetyl taxol 21 and 22.

In order to improve the yield of the oxyamination reaction, we used both the stoichiometric¹⁹ (method A) and catalytic¹⁶ (method B) procedures. The reaction mixtures were analysed using high-performance liquid chromatography after reduction of the reaction medium with sodium bisulfite followed by extraction.

As shown in Table I, the highest yields of vicinal hydroxycarbamates were obtained when the reaction was carried out in acetonitrile or toluene under stoichiometric and catalytic conditions (entries 1 and 2). Reaction carried out in pyridine gave poor yields of amino alcohols and diol **11a** ^{15b,14} was the major component isolated from the reaction mixture (entry 3). In our hands, a decrease of the reaction temperature or the use of mercury (II) salts did not enhance the yield of cis hydroxycarbamates as it does with simpler alkenes²⁰ (entries 4, 5, 6).

In all cases where catalytic conditions were used the oxyamination reaction did not proceed to completion and cinnamate ester 6 was recovered in about 50% yield.

entry	cond. ⁸	solvent	temp.	6	7 a	8a	9a	10a	11a	yiekl ^b
1	Α	Acetonitrile	n	2	25	22	21,5	16,5	2	85
	В	~	~	50	13	11	11	8	0	43
2	Α	Toluene	nt	5	24	20	21	15	7	80
	В	~	~	50	15	13	12,5	9,5	0	50
3	Α	Pyridine	n	0					99	1
	В	~	~	50					50	1
4	Α	Acetonitrile	4°	10	20	18	16	12	9	66
	В	~	~	57	12	11	11	8	0	42
5	A	Toluene	4°	5	20	17	18	14	12	70
	В	~	~	50	12	10	11	7	3	40
6	B	Toluene ^C	rt	50	12	11	11	8	6	40
		or acetonitrile								

a) A : stoichiometric procedure, B : catalytic procedure

b) Overall yield in oxyaminated products

c) reaction was conducted with Hg(NO3)2 as metallic salt instead of AgNO3

Table I

We then checked the influence of different tertiary bridgehead amines known to form stable adducts with OsO_4 ²¹ and consequently improve the oxyamination procedure ²². Moreover, the addition of chiral tertiary amines could also induce chirality in the amino-alcohol products as it does in the asymmetric dihydroxylation of olefins with osmium tetroxide under both stoechiometric ²³ and catalytic ²⁴ conditions. It must be noted that chiral N-chloro N-argento carbamates have been used recently for the asymmetric synthesis of α -amino alcohols ²⁵.

In our case quinuclidine had no effect on the amino alcohol yields (Table II, compare entries 1 and 2), but some chiral tertiary amines had a beneficial effect on the formation of the desired compounds. The results are collected in Table II and can be summarized as follows : a) addition of dihydroquinine acetate 23 26 or chlorobenzoate 25 24 to the reaction mixture strongly enhanced the yields of hydroxycarbamates under catalytic conditions (Entry 3B, 85% and 5B, 92%). Moreover, amine 25 promoted the formation of hydroxycarbamates with the 2'R,3'S configurations (entry 5B);

b) On the contrary, addition of dihydroquinidine acetate 24^{26} using stoichiometric and catalytic conditions, decreased the yield in oxyaminated products (Entry 4). This effect can be related to the steric interactions occurring between the tertiary-amine-imidoosmium complex and the carbon-carbon double bond of the bulky cinnamate ester; however, the contradictory results obtained in entry 6A could be explained by the existence of two different conformations of the imidoosmium complex obtained with 24 and 26²⁴. c) Under stoichiometric conditions we found that chiral amines 23 and 24 were the most effective ligands for asymmetric induction (Entries 3A and 4A).

Other amines like 27 and 28^{23b}, derived from L-tartaric acid, were also used for the asymmetric induction but these attempts were unsuccessfull.

Entry	Condition	Inducers	% chemic.yield oxyamination	% relativ 2'R,3'S 7a+9a	ve yields 2'S,3'R 8a+10a
1	Α	0	80	56	44
	В	0	49	55	45
2	Α	Quinuclicline	75	55	45
	В		40	55	45
3	Α	23	85	80	20
	В		85	54	46
4	Α	24	30	20	80
	В		30	48	52
5	Α	25	88	ଘ	38
	В		92	73	27
6	Α	26	87	34	66
	В		54	54	46

Table II

The same reactions (Schemes 2 and 3) were applied to the cinnamate ester 6a: the oxyamination reaction provided oxycarbamates 7b, 8b, 9b, 10b and diol 11b in about the same yields and ratios as those obtained with ester 6. Deprotection at C-7 of the oxyaminated products led to compounds 12b, 13b, 14b and 15b. Finally 7b was correlated with taxol 1 after deprotection of the t-butoxycarbonyl group, benzoylation and deprotection of the C-7 position.

In summary, application of the Sharpless oxyamination reaction to cinnamate esters 6 and 6a easily led to 10-deacetyl taxol 2 and taxol 1 and the use of some chiral ligands highly improved the oxyamination process. This overall procedure allowed us to prepare new diastereoisomers and regioisomers of taxol in order to try to improve bio-availability and diminish toxicity of taxol and derivatives. The biological activities of most of the taxol analogues described in this paper were evaluated first *in vitro* (tubulin test), then *in vivo*. One of them possesses antimitotic activity superior to that of taxol; it is currently under pharmacological evaluation 27 .

EXPERIMENTAL SECTION

<u>General methods</u>. The purity of the samples was checked by chromatographic methods (hplc and tlc) and careful analysis of NMR spectra. Tlc was performed on precoated silica gel plates (Merck 60F, 0.25 mm thick). Silica gel 7736 supplied by Merck was used for column chromatography under medium pressure (0.5 bars). Hplc was performed on a Waters liquid chromatography system equipped with a photodiode array detector model 990 and carried out on a Resolve 5μ spherical silica Waters column. The elution system was a gradient of isopropanol in heptane (3 to 5%) at a flow rate of 3ml/mn. Melting points were determined with a Kofler hot bench and are uncorrected. Optical rotations (c, g/100ml) were determined on a Perkin-Elmer 141MC polarimeter using a 10 cm path length cell. Infra red spectra (cm-1, CHCl₃) were recorded on a Perkin-Elmer 257 apparatus. Ultraviolet spectra (EtOH, max nm) were recorded on a Jobin-Yvon "Duospac 203" apparatus. ¹H and ¹³C spectra were recorded at 200 MHz or at 400 MHz on a Brucker AM 200 or AM400, using Me4Si as internal standard. NMR spectra were recorded in CDCl₃ or CDCl₃/CD₃OD solution and chemical shifts are expressed in parts per million (ppm). Coupling constants (J) are given in Hertz; s, d, t, dd and m indicate singlet, doublet, triplet, doublet of doublet and multiplet. Mass spectra were measured on an AEI MS9 (CI) or on a Kratos MS80 (FAB).

Solvents were distilled before use. tert-Butyl-N-Chloro-N-sodiocarbamate¹⁶, dihydroquinine acetate²⁶ and chlorobenzoate²⁴, dihydroquinidine acetate²⁶ and chlorobenzoate²⁴, were prepared following literature procedures. Commercially available compounds were used without purification.

-7,10-di(2,2,2-Trichloroethyloxycarbonyl)-13-cinnamoyl-10-deacetyl baccatin III 6:

Cinnamic acid (330 mg, 2.24 mmol), dicyclohexylcarbodiimide (460 mg, 2.24 mmol), 7,10-di(2,2,2-trichloroethyloxycarbonyl)-10-deacetyl baccatin III **3a** (500 mg, 0.56 mmol) and 4-dimethylaminopyridine (68 mg, 0.56 mmol) were stirred under argon at 70°C. After 15h, the mixture was cooled and filtered. The solid was washed with toluene and the filtrate was concentrated under vacuum. To the residue methylene chloride was added and the solution washed with 2% aqueous hydrochloric acid. The organic layer was separated, dried (MgSO4) and the solvent removed under vacuum. The residue (1g) was purified by column chromatography using a mixture of hexane/ethyl acetate 7:3 as eluent to give cinnamate ester **6** (540mg, 94%). Spectral data are given in ref.14.

Cinnamate ester 6a was obtained in the same way from 7(2,2,2-trichloroethyloxycarbonyl) baccatin III ^{14,28} and cinnamic acid in 95% yield:

-7(2,2,2-trichloroethyloxycarbonyl)-13-cinnamoyl baccatin III **6a**: U.V. : 210 (26040), 218 (33330), 223 (34460), 232 (22910), 281 (33120); I.R. (CHCl3): 3500, 2900, 1740, 1710 cm-1; 1H NMR (CDCl3): 1.15 (3H,s,C-17H3), 1.21 (3H,s,C-16H3), 1.83 (3H,s,C-19H3), 2.09 (3H,s,C-18H3), 2.15 (3H,s,OAc at C-10), 2.28 (3H,s,OAc at C-4), 2.22 (2H,m,C-14H2), 2.42 (1H,m,C-6H), 2.65(1H,m,C-6H), 4.0 (1H,d,J=7,C-3H), 4.18 and 4.31 (2H,2d,J=9,C-20H2), 4.68 and 5.09 (2H,2d,J=12,CH2 of the 7-protect. group), 5.03 (1H, d,J=9,C-5H), 5.65 (1H,dd,J=12 and 7,C-7H), 5.72 (1H,d,J=7,C-2H), 6.22 (1H,t,J=8,C-13H), 6.46 (1H,s,C-10H), 6.58 (1H,d,J=16,C-2'H), 7.49 (5H,Ph), 7.52, 7.65, 8.12 (5H,OBz), 7.92 (1H,d,J=16,C-3'H); MS (CI) m/z: 891(MH+), 699, 551, 533, 491, 429, 369, 351, 309, 149, 131.

-Procedure for the stoichiometric hydroxyamination of cinnamate ester (Procedure A):

In a flask, a mixture of N-chloro-N-sodio-tertbutylcarbamate (47mg, 0.27mmol) and silver nitrate (91.4mg, 0.54mmol) or other metallic salts in acetonitrile, toluene or pyridine (2ml) was stirred for 10mn. To this suspension cinnamate ester 6 (50mg, 0.049mmol), and 0.537ml of a solution of osmium tetroxide in tertbutyl alcohol (0.1mmol/1ml) was added. The mixture was stirred at room temperature or 4°C in the dark. After 24hrs, the reaction mixture was filtered. To the filtrate, 0.22mmol.of sodium bisulfite (2.5% aq.) was added and stirred for 3hrs. The reaction mixture was extracted with methylene chloride. The organic phase was dried and concentrated. Separation by preparative tlc using ether/hexane 7/3 as an eluant yielded hydroxycarbamates 7a, 8a, 9a, 10a, diol 11a, and cinnamate 6 (Yields shown in Table I).

Improved procedures were studied by adding 5 equivalents of various amines to the reaction mixture, using the literature procedure (Results shown in Table II).

-Procedure for the catalytic hydroxyamination of cinnamate ester 6 (Procedure B):

In a flask, a mixture of N-chloro-N-sodio-tert-butylcarbamate (50mg, 0.29 mmol) and silver nitrate (100mg, 0.59 mmol) or other metallic salts in acetonitrile, toluene or pyridine (2ml) was stirred for 10 min. To this suspension, cinnamate ester 6 (200mg, 0.2 mmol), water (0.016 ml) and 0.02 ml of a solution of osmium tetroxide in tert-butyl alcohol (0.1 mmol/ml) was added. The mixture was stirred at room temperature in the dark. After 48 h, a saturated sodium chloride solution was added, and the mixture was filtered and then extracted with methylene chloride. The organic phase was dried and concentrated to yield the crude hydroxycarbamates 7a, 8a, 9a and 10a and cinnamate ester 6a. Isomers were separated by silica gel column chromatography using ether/hexane 1:1 as an eluant or thick layer chromatography using ether/hexane 7/3 (Yields shown in Table I).

Improved procedures were studied by adding 0.1 equivalent of various amines to the reaction mixture using literature procedures (Yields shown in Table II).

-Compound 7a (2'R,3'S): IR (CHCl₃): 3580, 3440, 2960, 1770, 1730 cm-1; ¹H NMR (CDCl₃): 1.21 (3H, s, C-17H₃), 1.27 (3H, s, C-16H₃), 1.36 (9H, s, t-Bu), 1.86 (3H, s, C-19H₃), 1.96 (3H, s, C-18H₃), 2.39 (3H, s, OAc), 2.62 (1H, m, C-6H), 3.90 (1H, d, J=7, C-3H), 4.17 and 4.32 (2H, 2d, J=9, C-20H₂), 4.63 (1H, d, J=3, C-2'H), 4.59 and 4.90 (2H, 2d, J=12, CH₂ of the 7-protect. group), 4.77 (2H, s, CH₂ of the 10-protect. group), 4.96 (1H, d, J=9, C-5H), 5.27 (1H, dd, J=9 and 3, C-3H), 5.42 (1H, d, J=9, NH), 5.55 (1H, m, C-7H), 5.69 (1H, d, J=7, C-2H), 6.21 (1H, t, J=9, C-13H), 6.23 (1H, s, C-10H), 7.39 (5H, m, Ph), 7.51, 7.62, 8.09 (5H, OBz).

-Compound 8a (2'S,3'R): IR (CHCl₃): 3400, 3000, 1770, 1730 cm-1; 1H NMR (CDCl₃): 1.18 (3H, s, C-17H₃), 1.23 (3H, s, C-16H₃), 1.40 (9H, s, t-Bu), 1.86 (3H, s, C-19H₃), 2.08 (3H, s, C-18H₃), 2.24 (3H, s, OAc), 2.64 (1H, m, C-6H), 3.98 (1H, d, J=7, C-3H), 4.17 and 4.32 (2H, 2d, J=9, C-20H₂), 4.48 (1H, d, J=3, C-2H), 4.60 and 4.92 (2H, 2d, J=12, CH₂ of the 7-protect. group), 4.78 (2H, s, CH2 of the 10-protect. group), 4.97 (1H, d, J=9, C-5H), 5.22 (1H, dd, J=9 and 3, C-3'H), 5.32 (1H, d, J=9, NH), 5.58 (1H, m, C-7H), 5.70 (1H, d, J=7, C-2H), 6.07 (1H, t, J=9, C-13H), 6.27 (1H, s, C-10H), 7.33, 7.45 (5H, Ph), 7.48, 7.61, 8.04 (5H, OBz).

-Compound 9a (2'R,3'S): IR (CHCl3): 3590, 3440, 3000, 1770, 1730 cm-1; 1H NMR (CDCl3) : 1.20 (3H, s, C17H3), 1.27 (3H, s, C16H3), 1.37 (9H, s, t-Bu), 1.87 (3H, s, C19H3), 2.02 (3H, s, C18H3), 2.42 (3H, s, OAc), 2.64 (1H, m, C6H), 3.96 (1H, d, J=7, C3H), 4.19 and 4.32 (2H, 2d, J=9, C20H2), 4.59 (2H, br d, CH of the 7-troc group (J=12) + C2'H (J=9)), 4.78 (2H, s, CH2 of the 10-troc group), 4.91 (1H, d, J=12, CH of the 7-troc group), 5.00 (1H, d, J=9, C5H), 5.40 (1H, br s, C3'H), 5.51 (1H, d, J=9, NH), 5.58 (1H, m, C7H), 5.69 (1H, d, J=7, C2H), 6.25 (1H, s, C10H), 6.31 (1H, t, J=9, C13H), 7.36, 7.40, 7.46 (5H, Ph), 7.48, 7.68, 8.06 (5H, OBz).

-Compound **10a** (2'S,3'R): IR (CHCl₃): 3600, 3440, 3000, 1770, 1730 cm-1; 1H NMR (CDCl₃): 1.18 (3H, s, C-17H₃), 1.27 (3H, s, C-16H₃), 1.38 (9H, s, t-Bu), 1.89 (3H, s, C-19H₃), 2.02 (3H, s, C-18H₃), 2.32 (3H, s, OAc), 2.62 (1H, m, C-6H), 3.87 (1H, d, J=7, C-3H), 4.15 and 4.32 (2H, 2d, J=9, C-20H₂), 4.60 (2H, br d, CH of the 7-protect. group (J=12) + C2'H (J=9)), 4.77 (2H, s, CH₂ of the 10-protect. group), 4.91 (1H, d, J=12, CH of the 7-protect. group), 4.96 (1H, d, J=9, C-5H), 5.16 (1H, br s, C-3'H), 5.34 (1H, d, J=9, NH), 5.57 (1H, m, C-7H), 5.67 (1H, d, J=7, C-2H), 6.16 (1H, t, J=9, C-13H), 6.23 (1H, s, C-10H), 7.39 (5H, Ph), 7.53, 7.66, 8.07 (5H, OBz).

-Compound 11a : Spectral data are given in ref.¹⁴.

The same oxyamination procedures were applied to the cinnamate ester 6a to give:

-Compound 7b (2'R,3'S): UV: 204 (15790), 232 (6270), 278 (2170), 283 (2170); IR (CHCl₃): 3660, 3440, 3400, 1760, 1740, 1710 cm⁻¹; ¹H NMR (CDCl₃): 1.18 (3H, s, C-17H₃), 1.25 (3H, s, C-16H₃), 1.35 (9H, s, tBu), 1.83 (3H, s, C-19H₃), 1.9 (3H, s, C-18H₃), 2.05 (2H, m, C-14H₂), 2.18 (3H, s, OAc at C-10), 2.38 (3H, s, OAc at C-4), 2.61 (2H, m, C-6H₂), 3.93 (1H, d, J=7, C-3H), 4.18 and 4.32 (2H, 2d, J=9, C20H₂), 4.61 (1H, br s, C-2'H), 4.61 and 5.02 (2H, 2d, J=12, CH₂ of the troc group), 4.95 (1H, d, J=9, C-5H), 5.26 (1H,br d, J=9, C-3'H), 5.4 (1H, br d, J=9, NH), 5.53 (1H, dd, J=12 and 7, C-7H), 5.67(1H, d, J=7, C-2H), 6.19 (1H, t, J=8, C-13H), 6.35 (1H, s, C-10H), 7.4 (5H, Ph), 7.5, 7.6 and 8.1 (5H, OBz).

-Compound **8b** (2'S,3'R): UV: 207 (17210), 229 (13370), 278 (1280), 282 (1160); IR (CHCl₃): 3700, 3600, 3450, 1760, 1745, 1730, 1710 cm⁻¹; ¹H NMR CDCl₃): 1.15 (3H, s, C-17H₃), 1.2 (3H, s, C-16H₃), 1.38 (9H, s, tBu), 1.82 (3H, s C-19H₃), 2.00 (3H, s, C-18H₃), 2.1 (2H, m, C-14H₂), 2.18 (3H, s, OAc at C-10), 2.3 (3H, s, OAc at C-4), 2.4 (1H, m, C-6H), 2.62 (1H, m, C-6H), 392 (1H, d, J=7, C-3H), 4.12 and 4.28 (2H, 2d, J=9, C-20H₂), 4.45 (1H, br s, C2'H), 4.6 and 5.00 (2H, 2d, J=12, CH₂ of the troc group), 4.95 (1H, d, J=9, C-5H), 5.2 (1H, br d, C-3'H), 5.3 (1H, d, NH), 5.58 (1H, dd, J=12 and 7, C-7H), 5.64 (1H, d, J=7, C-2H), 6.00 (1H, t, J=8, C-13H), 6.35 (1H, s, C-10H), 7.38 (5H, Ph), 7.45, 7.58 and 8.00 (5H, OBz).

-Compound **9b** (2'R,3'S): UV: 204 (14050), 230 (11940), 278 (4440), 282 (4550); IR (CHCl₃): 3680, 3600, 3440, 1750, 1730, 1710 cm⁻¹; ¹H NMR (CDCl₃): 1.16 (3H, s, C-17H₃), 1.23 (3H, s, C-16H₃), 1.36 (3H, s, tBu), 1.85 (3H, s, C-19H₃), 2.00 (3H, s, C-18H₃), 2.06 (2H, m, C-17H₂); 2.15 (3H, s, OAc at C-10), 2.3 (1H, m, C-6H), 2.4 (3H, s, OAc at C-4), 2.64 (1H, m, C-6H), 3.98 (1H, d, J=7, C-3H), 4.18 and 4.22 (2H, 2d, J=9, C-20H₂), 4.6 (1H, dd, J=9 and J=2, C-2'H), 4.63 and 5.04 (2H, 2d, J=12, CH₂ of the troc group), 5.00 (1H, d, J=9, C-5H), 5.4 (1H, d, J=2, C-3'H), 5.50 (1H, d, J=9, NH), 5.59 (1H, dd, J=12 and 7, C-7H), 5.68 (1H, d, J=7, C-2H), 6.3 (1H,t,J=8, C-13H), 6.37, (1H, s, C-10H), 7.35 and 7.4 (5H, Ph), 7.48, 7.6 and 8.05 (5H, OBz).

-Compound **10b** (2'S,3'R): U.V.: 207 (18158), 232 (14578), 278 (1598), 282 (1534); IR (CHCl₃) : 3700, 3600, 3450, 1760, 1750, 1730, 1710; ¹H NMR (CDCl₃): 1.15 (3H, s, C-17H₃), 1.25 (3H, s, C-16H₃), 1.4 (9H, s, tBu), 1.82 (3H, s, C-19H₃), 2.00 (3H, s, C-18H₃), 2.08 (2H, m, C-14H₂), 2.18 (3H, s, OAc at C-10), 2.32 (3H, s, OAc at C-4), 2.65 (1H, m, C-6H), 2.9 (1H, br s, OH), 3.92 (1H, d, J=7, C-3H), 4.25 and 4.32 (2H, 2d, J=9, C-20H₂), 4.6 (1H, br d, J=9, C-2'H), 4.67 and 5.3 (2H, 2d, J=12, CH₂ of the troc group), 4.97 (1H, d, J=9, C-5H), 5.19 (1H, br s, C-3'H), 5.38 (1H, br d, J=9, NH), 5.6 (1H, dd, J=12 and 7, C-7H), 5.68 (1H, d, J=7, C-2H), 6.16 (1H, t, J=8, C-13H), 6.38 (1H, s, C-10H), 7.4 (5H, Ph), 7.55, 7.68 and 8.1 (5H, 0Bz).

-Compound **11b** $(2^{\circ}R,3^{\circ}S) + (2^{\circ}S,3^{\circ}R)$: U.V.: 203 (23330), 220 (19330), 230 (20670), 276 (1000), 284 (833); IR (CHCl₃): 3580, 2990, 1760, 1750, 1730; ¹H NMR (CDCl₃): 1.00 (3H, s, C-17H₃), 1.07 (3H, s, C-16H₃), 1.65 (3H, s, C-19H₃), 1.8 (3H, s, C-18H₃), 1.9 (3H, s, OAc at C-10), 2.1 (3H, OAc at C-4), 2.3 (1H, m, C-6H), 2.45 (1H, m, C-6H), 3.6 (1H, d, J=7, C-3H), 3.8 and 3.9 (2H, 2d, J=9, C-20H₂), 4.45 and 4.52 (1H, br d, C-2'H), 4.2 and 4.6 (2H, 2d, J=12, CH2of the troc group), 4.52 (1H, d, J=9, C-5H), 5.09 and 5.21 (1H, br d, C-3'H), 5.1 (1H, dd, J=12 and 7, C-7H), 5.2 (1H, d, J=7, C-2H), 5.5 (1H, t, J=8, C-13H), 5.8 (1H, s, C-10H), 6.7 (5H, Ph), 6.8, 6.9 and 7.3 (5H, OBz).

-General procedure for the deprotection of C-7 and/or C-10 troc group: Compounds 7a, 8a, 9a, 10a and 7b, 8b, 9b, 10b (0.13mmol) were independently treated with Zn dust (150mg) in 5ml methanolacetic acid (1:1) at 60°C for 2 h. Filtration, concentration and extraction with ethyl acetate gave after purification by thick layer chromatography (methylene chloride/methanol 7:3):

-N-debenzoyl-N-tert-butoxycarbonyl-10-deacetyl taxol (2'R,3'S) **12a** (90% from **7a**): mp=232°C (MeOH); $[\alpha]_{D}$ =-36° (c=0.74, EtOH); UV: 230 (14800), 275 (1730), 283 (1670); IR (CHCl₃): 3400, 2900, 1710 cm-1, ¹H NMR (CDCl₃) : 1.12 (3H, s, C-17H₃), 1.24 (3H, s, C-16H₃), 1.35 (9H, s, t-Bu), 1.77 (3H, s, C-19H₃), 1.87 (3H, s, C-18H₃), 2.28 (2H, m, C-14H₂), 2.37 (3H, s, OAc), 2.58 (1H, m, C-6H), 3.91 (1H, d, J=7, C-3H), 4.19 and 4.32 (2H, 2d, J=9, C-20H₂), 4.26 (1H, m, C-7H), 4.62 (1H, br s, C-2'H), 4.94 (1H, d, J=9, C-5H), 5.22 (1H, s, C-10H), 5.26 (1H, br d, J=9, C-3'H), 5.46 (1H, d, J=9, NH), 5.68 (1H, d, J=7, C-2'H), 6.22 (1H, t, J=9, C-13H), 7.38 (5H, Ph), 7.50, 7.60, 8.12 (5H, OBz); ¹³C NMR (CDCl₃) : 9.90 (C19), 14.29 (C18), 20.74 (C17), 22.54 (CH₃-acetate), 26.52 (C16), 28.23 (CH₃-tBu), 35.76 (C14), 36.71 (C6), 43.11 (C15), 46.57 (C3), 56.57 (C3'), 57.73 (C8), 71.85 (C7), 72.20 (C13), 73.87 (C2'), 74.54 (C10), 75.11 (C1), 81.16 (C4), 84.36 (C5), 126.81, 127.38, 127.93, 128.71, 130.16, 133.03 (o-Bz, m-Bz, o-Ph, m-Ph, p-Ph), 129.33 (C1-Bz), 136.03 and 138.48 and 138.50 (C11, C12 and C1-Ph), 155.55 (C=O of carbamate), 166.98 (C=O of Bz), 170.35 (C=O of Ac), 172.68 (C1'), 211.13 (C9); MS (FAB) m/z: 808 (MH+), 790, 752, 734, 708, 690, 527, 509, 449, 405, 387, 345, 327, 282, 226.

-2'-epi 3'-epi N-debenzoyl N-tert-butoxycarbonyl-10-deacetyltaxol (2'S,3'R) **13a** (88% from **8a**); [α]_D=-29° (c=O.69, EtOH); UV: 229 (14680), 275 (2350), 282 (2280); IR (CHCl₃): 3400, 2900, 1710 cm-1; 1H NMR (CDCl₃): 1.11 (3H, s, C-17H₃), 1.20 (3H, s, C-16H₃), 1.38 (9H, s, t-Bu), 1.76 (3H, s, C-19H₃), 1.98 (3H,

s, C-18H₃), 2.23 (3H, s, OAc), 2.60 (1H, m, C-6H), 3.96 (1H, d, J=7, C-3H), 4.18 and 4.31 (2H,2d, J=9, C-20 H₂), 4.26 (1H, m, C-7H), 4.49 (1H, d, J=1, C-2H), 4.49 (1H, d, J=9, C-5H)), 5.27 (2H, s, C-10H bd, J=9, C3H), 5.49 (1H, d, J=9, NH), 5.67 (1H, d, J=7, C-2H), 6.19 (1H, t, J=9, C-13H), 7.30, 7.45 (5H, Ph), 7.48, 7.62, 8.07 (5H, OBz); MS (FAB) m/z: 808 (MH⁺), 790, 752, 734, 708, 690, 527, 509, 449, 405, 387, 345, 327, 226.

-Compound **14a** (2'R, 3'S) (86.5% from **9a**) : mp=195-198°C; $[\alpha]_D=-29^\circ$ (c=0.47, EtOH); UV: 229 (16300), 274 (2570), 282 (2380); IR (CHCl₃): 3590, 3440, 2920, 1725 cm-1; 1H NMR (CDCl₃) : 1.12 (3H, s, C-17H₃), 1.22 (3H, s, C-16H₃), 1.35 (9H, s, t-Bu), 1.77 (3H, s, C-19H₃), 1.91 (3H, s, C-18H₃), 2.27 (2H, m, C-14H₂), 2.38 (3H, s, OAc), 2.59 (1H, m, C-6H), 3.96 (1H, d, J=7, C-3H), 4.19 and 4.31 (2H, 2d, J=9, C-20H₂), 4.27 (1H, m, C-7H), 4.58 (1H, dd, J=9 and J=2, C-2'H), 4.97 (1H, d, J=9, C-5H), 5.22 (1H, s, C-10H), 5.35 (1H, d, J=2, C-3'H), 5.48 (1H, d, J=9, NH), 5.67 (1H, d, J=7, C2H), 6.26 (1H, t, J=9, C-13H), 7.46, 7.40, 7.35 (5H, Ph), 7.49, 7.62, 8.07 (5H, OBz); MS (FAB) m/z: 808 (MH+), 790, 752, 734, 708, 527, 509, 449, 405, 387, 345, 327, 299, 282, 277, 226.

- Compound **15a** (2'S, 3'R) (86% from **10a**) : mp= 210-212°C; $[\alpha]_{D}$ =-33° (c=0.8, EtOH); UV: 230 (14240), 275 (1380), 282 (1270); IR (CHCl₃): 3580, 3440, 2900, 1740 cm-1; 1H NMR (CDCl₃) : 1.12 (3H, s, C-17H₃), 1.22 (3H, s, C-16H₃), 1.36 (9H,s,t-Bu), 1.72 (3H, s, C-19H₃), 1.94 (3H, s, C18H₃), 2.32 (3H, s, OAc), 2.51 (m, C6H), 3.85 (1H, d, J=7, C3H), 4.20 and 4.29 (2H, 2d, J=9, C20H₂), 4.22 (1H,m, C7H), 4.58 (1H, dd, J=2 and 9, C2'H), 4.97 (1H, d, J=9, C5H), 5.14 (1H, d, J=2, C3'H), 5.22 (1H, s, C10H), 5.65 (1H, d, J=7, C2H), 5.81 (1H, d, J=9, NH), 6.17 (1H, t, J=9, C13H), 7.37 (5H, C3'-Ph), 7.50, 7.63, 8.07 (5H, 0Bz); MS (FAB) m/z: 808 (MH+), 752, 740, 708, 690, 549, 527, 509, 449, 405, 387, 345, 327, 299, 226, 185.

- N-debenzoyl N-tert-butoxycarbonyl taxol 12b (2'R, 3'S) (86% from 7b): mp=201-203°C (MeOH); [α]p=-60° (c=0.77, CHCl₃); U.V.: 216 (12916), 229 (13670), 276 (1830), 284 (1604); IR (CHCl₃): 3680, 3580, 3500, 3440, 1750, 1730, 1710; ¹H NMR (CDCl₃): 1.15 (3H, s, C-17H₃), 1.25 (3H, s, C-16H₃), 1.3 (9H, s, tBu), 1.67 (3H, s, C-19H₃), 1.85 (3H, s, C-18H₃), 2.25 (3H, s, OAc at C-10), 2.38 (3H, s, OAc at C-4), 2.55 (2H, m, C-6H₂), 3.8 (1H, d, J=7, C-3H), 4.17 and 4.3 (2H, 2d, J=9, C-20H₂), 4.4 (1H, dd, J=12 and 7, C-7H), 4.6 (1H, br s, C-2H), 4.95 (1H, d, J=9, C-5H), 5.25 (1H, d, J=9, C-3'H), 5.4 (1H, d, J=9, NH), 5.65 (1H, d, J=7, C-2H), 6.2 (1H, t, J=8, C-13H), 6.28 (1H, s, C-10H), 7.35 (5H, Ph), 7.45, 7.58 and 8.07 (5H, OBz); ¹³C NMR (CDCl₃): 9.68 (C-19), 14.9 (C-18), 20.9 (C-17), 21.9 (CH₃-acetate), 22.7 (CH₃acetate), 26.9 (C-16), 28.3 (CH₃-tBu), 35.6 (C-14), 35.7 (C-6), 43.4 (C-15), 45.7 (C-3), 58.7 (C-3'), 59.6 (C-8), 72.3 (C-7), 72.5 (C-13), 73.8 (C-2'), 75.1 (C-10), 75.7 (C-2), 77.14 (C-20), 77.7 (C-1), 79.2 (C-tBu), 81.3 (C-4), 84.36 (C-5), 126.9, 128.2, 128.8, 128.9, 130.2, 133.8 (o-Bz, m-Bz, p-Bz, o-Ph, m-Ph, p-Ph), 129.2 (C1-Bz), 133.2, 139 and 143 (C-11, C-12, C1-Ph), 155.5 (C=O of carbamate), 165 (C=O of Bz), 170.3 (2x C=O of acetate), 171 (C-1'), 201 (C-9); MS (CI) m/z: 850 (MH⁺), 750, 690, 628, 569, 509, 551, 449, 447, 387, 327, 224, 206.

- 2'epi, 3'epi N-debenzoyl-N-tert-butoxycarbonyl-taxol **13b** (2'S, 3'R) (84% from **8b**): mp=191-193°C (MeOH); [α]_D=-68° (c=0.71, CHCl₃); U.V.: 215 (10770), 230 (14285), 275 (923), 282 (846); IR (CHCl₃): 3680, 3580, 3500, 3450, 1780, 1730, 1710; ¹H NMR (CDCl₃): 1.15 (3H, s, C-17H₃), 1.24 (3H, s, C-16H₃), 1.36 (9H, s, tBu), 1.65 (3H, s, C-19H₃), 1.95 (3H, s, C-18H₃), 2.2 (3H, s, OAc at C-10), 2.25 (3H, s, OAc at C-4), 2.38 (1H m, C-6H), 2.53 (1H, m, C-6H), 3.85 (1H, d, J=7, C-3H), 4.15 and 4.28 (2H, 2d, J=9, C-20H₂), 4.45 (2H, m, C-7H and C-2'H), 4.95 (1H, d, J=9, C-5H), 5.22 (1H, d, J=9, C-3'H), 5.35 (1H, d, J=9, NH), 5.65 (1H, d, J=7, C-2H), 6.1 (1H, t, J=8, C-13H), 6.3 (1H, s, C-10H), 7.35 (5H, Ph), 7.44, 7.6 and 8.03 (5H, OBz); ¹³C NMR (CDCl₃): 9.66 (C-19), 15.17 (C-18), 20.95 (C-17), 21.66 (CH₃-acetate), 22.71 (CH₃-acetate), 26.95 (C-16), 28.35 (CH₃-tBu), 35.82 (C-14), 36.33 (C-6), 43.26 (C-15), 45.98 (C-3), 58.87 (C-3), 72.35 (C-7), 72.49 (C-13), 74.11 (C-2'), 75.15 (C-10), 75.80 (C-2), 77.13 (C-20), 77.76 (C-1), 80.47 (C-10), 81.38 (C-4), 84.59 (C-5), 126.60, 128.30, 128.80, 129.00, 130.20, 133.9 (à-Bz, m-Bz, p-Bz, o-Ph, m-Ph, p-Ph), 129.4 (C1-Bz), 133.10, 139.2 and 142.5 (C-11, C-12 and C1-Ph), 155.40 (C=O of carbamate), 167.10 (C=O of Bz), 169.70 (C=O of acetate), 171.20 (C=O of acetate), 172.50 (C-1), 203.80 (C-9); MS (CI) m/z: 850 (MH⁺), 774, 750, 690, 628, 569, 551, 509, 447, 387, 327, 206.

- Compound 14b (2'R, 3'S) (85% from 9b): mp=227-229°C (MeOH); $[\alpha]_D$ =-35° (c=0.73, CHCl₃); U.V.: 215 (12500), 232 (15930), 275 (1250), 283 (1080); IR (CHCl₃): 3660, 3560, 3500, 3430, 1735, 1720,

1715, 1710; ¹H NMR (CDCl₃): 1.12 (3H, s, C-17H₃), 1.25 (3H, s, C-16H₃), 1.35 (9H, s, tBu), 1.69 (3H, s, C-19H₃), 1.88 (3H, s, C-18H₃), 2.25 (3H, s, OAc at C-10), 2.30 (2H, m, C-14H₂), 2.38 (3H, s, OAc at C-4), 2.56 (2H, m, C-6H₂), 3.86 (1H, d, J=7, C-3H), 4.2 and 4.31 (2H, 2d, J=9, C-20H₂), 4.45 (1H,dd, J=12 and 7, C-7H), 4.61 (1H, dd, J=9 and 2, C-2H), 5.01 (1H,d, J=7, C-5H), 5.38 (1H, d, J=2, C-3'H), 5.5 (1H, d, J=9, NH), 5.69 (1H, d, J=7, C-2H), 6.31 (2H, m, C-10H and C-13H), 7.4 (5H, Ph), 7.45, 7.62 and 8.10 (5H, OB₂); ¹³C NMR (CDCl₃): 9.7 (C-19), 15.0 (C-18), 20.8 (C-17), 21.6 (CH₃-acetate), 22.9 (CH₃-acetate), 26.9 (C-16), 28.3 (CH₃-tBu), 35.9 (C-14), 36.2 (C-6), 43.2 (C-15), 46.0 (C-3), 58.8 (C-3'), 59.6 (C-8), 71.2 (C-7), 72.3 (C-13), 73.9 (C-2'), 75.2 (C-10), 75.8 (C-2), 77.1 (C-20), 77.7 (C-1), 79.3 (C-tBu), 81.3 (C-4), 84.6 (C-5), 126.4, 128.2, 128.8, 130.2, 133.8 (o-Bz, m-Bz, p-Bz, o-Ph, m-Ph, p-Ph), 129.8 (C1-Bz), 133.2, 139.8 and 143 (C-11, C-12, C1-Ph), 155.6 (C=O of carbamate), 167.1 (C=O of Bz), 170.2 (C =O of acetate), 170.5 (C=O of acetate), 171.2(C-1'), 203.8 (C-9); MS (CI) m/z: 744, 569, 551, 509, 491, 449, 447, 387, 327.

- Compound **15b** (2'S, 3'R) (82% from **10b**): mp=217-219°C (MeOH); [α]_D=-40° (c=1.27, CHCl₃); U.V.: 220 (16920), 230 (17770), 276 (1154), 283 (1135); IR (CHCl₃): 3680, 3600, 3440, 1745, 1735, 1720, 1710; ¹H NMR (CDCl₃): 1.12 (3H, s, C-17H₃), 1.24 (3H, s, C-16H₃), 1.35 (9H, s, tBu), 1.62 (3H, s, C-19H₃), 1.88 (3H, s, C-18H₃), 2.05 (2H, m, C-14H₂), 2.2 (3H, s, OAc at C-10), 2.29 (3H, s, OAc at C-4), 2.53 b(2H, m, C-6H₂), 3.17 (1H, br s, OH), 3.72 (1H, s, C-3H), 4.12 and 4.25 (2H, 2d, J=9, C-20H₂), 4.4 (1H, m, C-7H), 4.53 (1H, br d, C-2'H), 4.9 (1H, d, J=9, C-5H), 5.12 (1H, br s, C-3'H), 5.4 (1H, d, J=9, NH), 5.6 (1H, d, J=7, C-2H), 6.12 (1H, t, J=8, C-13H), 6.22 (1H, s, C-10H), 7.33 (5H, Ph), 7.48, 7.59 and 8.05 (5H, OBz); ¹³C NMR (CDCl₃): 9.7 (C-9), 14.8 (C-18), 20.9 (C-17), 22.2 (CH₃-acetate), 22.4 (CH₃acetate), 26.9 (C-16), 28.3 (CH₃-tBu), 35.5 (C-14 and C-6), 43.3 (C-15), 45.6 (C-3), 58.6 (C-3' and C-8), 71.6 (C-7), 72.1 (C-13), 74.5 (C-2'), 75.3 C-10), 75.7 (C-2), 77.1 (C-20), 77.7 (C-1), 79.5 (C-tBu), 81.0 (C-4), 84.6 (C-5), 126.3, 128.7, 130.2, 133.9 (o-Bz, m-Bz, p-Bz, o-Ph, m-Ph, p-Ph), 129.4 (C1-Bz), 132.8, 139.4 and 142.9 (C-11, C-12, C1-Ph), 159 (C=O of carbamate), 167.1 (C=O of Bz), 170.0 (C-1'), 171.4 and 171.5 (C=O of acetate), 203.9 (C-9); MS (CI) m/z: 744, 732, 569, 551, 509, 447, 387, 327, 206.

-General procedure for the cleavage of C-2' or C-3' BOC group:

Hydroxycarbamates **7a**, **8a** (0.13 mmol.) in 5ml dry acetonitrile were independently treated with iodotrimethylsilane (0.025ml) at 0°C under argon for 30mn. Methanol was then added and the reaction was worked up by standard methods. β aminoalcohols **16** and **17** were obtained in 75% yield after purification by preparative tlc (CH₂Cl₂/MeOH: 95/5).

-Compound 16 (2'R,3'S): IR (CHCl₃): 3670, 3500, 3400, 2950, 1765, 1735 cm⁻¹; ¹H NMR (CDCl₃): 1.18 (3H, s, C-17H₃), 1.25 (3H,s, C-16H₃), 1.85 (3H, s, C-19H₃), 2.01 (3H, s, C-18H₃), 2.31 (3H, s, OAc), 2.56 (m, C-6H), 3.89 (1H, d, J=7, C-3H), 4.16 and 4.34 (2H, 2d, J=9, C-20H₂), 4.41 (2H, br s, C-2H and C-3'H, 4.63 and 4.94 (2H, 2d, J=12, CH₂ of the 7-protect.group), 4.81 (2H, s, CH₂ of the 10-protect.group), 4.96 (1H, d, J=9, C-5H), 5.58 (1H, m, C-7H), 5.69 (1H, d, J=7, C-2H), 6.19 (1H, t, J=9, C-13H), 6.28 (1H, s, C-10H), 7.47 (5H, C-3'Ph), 7.57, 7.69 and 8.12 (5H, OBz).

-Compound 17 (2'S,3'R): IR (CHCl₃): 3550, 3400, 2900, 1765, 1740 cm⁻¹, ¹H NMR (CDCl₃): 1.18 (3H, s, C-17H₃), 1.24 (3H, s, C-16H₃), 1.87 (3H, s, C-19H₃), 1.97 (3H, s, C-18H₃), 2.30 (3H, s, OAc), 2.65 (m, C-6H), 3.95 (1H, d, J=7, C-3H), 4.20 and 4.35 (2H, 2d, J=8, C-20H₂), 4.40 (2H, br s, C-2'H and C-3'H), 4.63 and 4.95 (2H, d, J=12, CH₂ of the 7-protect.group), 4.81 (2H, s, CH₂ of the 10-proct.group), 5.01 (1H, d, J=9, C-5H), 5.61 (1H, m, C-7H), 5.71 (1H, d, J=7, C-2H), 6.26 (1H, t, J=9, C-13H), 6.27 (1H, s, C-10H), 7.47 (5H, C-3'Ph), 7.52, 7.64 and 8.08 (5H, OBz).

General procedure for the benzoylation of β -aminoalcohols:

To a solution of β -amino alcohols 16 or 17 (30mg) in dry pyridine (2ml), 1.5 equivalents of benzoyl chloride were added. The reaction mixture was stirred at room temperature for about 3hrs and, then, worked up by standard methods to give quantitative yields of compounds 18 or 19.

- Compound 18 (2'R,3'S): IR (CHCl₃): 3560, 3440, 2950, 1765, 1740, 1730, 1665 cm⁻¹; ¹H NMR (CDCl₃): 1.19 (3H, s, C-17H₃), 1.26 (3H, s, C-16H₃), 1.88 (3H, s, C-19H₃), 1.90 (3H, s, C-18H₃), 2.42 (3H, s, OAc), 3.93 (1H, d, J=7, C-3H), 4.23 and 4.27 (2H, 2d, J=9, C-20H₂), 4.63 and 4.94 (2H, 2d, J=12, CH2 of the 7-protect.group), 4.80 (2H, s, CH2 of the 10-protect.group), 4.83 (1H, d, J=2, C-2'H), 4.99 (1H, d, J=9, C-5H), 5.58 (1H, m, C-7H), 5.75 (1H, d, J=7, C-2H), 5.84 (1H, dd, J=9 and J=2, C-3'H), 6.28 (2H, s+t, J=9, C-10H and C-13H), 7.09 (1H, d, J=9, NH), 7.41-8.17 (15H, C-3'Ph, OBz and NBz).

- Compound 19 (2'S,3'R): IR (CHCl₃): 3550, 3430, 2950, 1770, 1745, 1730, 1670 cm⁻¹; ¹H NMR (CDCl₃): 1.16(3H,s,C-17H₃), 1.20(3H,s,C-16H₃), 1.85(3H,s,C-19H₃), 2.16(3H,s,C-18H₃), 2.22 (3H,s, OAc), 2.66(m,C-6H), 3.96(1H,d,J=7,C-3H), 4.12 and 4.32(2H,2d,J=8,C-20H₂), 4.60 and 4.93(2H, 2d,J=12, CH₂ of the prot. group), 4.63 (1H,bs,C-2'H), 4.78 (2H,s, CH₂ of the prot. group), 4.98 (1H, d,J=9,C-3'H), 5.61 (1H,m,C-7H), 5.69 (1H,d,J=7,C-2H), 5.75 (1H,d,J=9,C-3'H), 6.12(1H,t, J=9C-13H), 6.28 (1H,s,C-10H), 6.96 (1H,d,J=9,NH), 7.39-8.06 (15H, OBz, C-3'Ph and N-Bz).

- 10-deacetyl taxol 2 (2'R,3'S) and compound 20 (2'S,3'R) were obtained in 90% yield from respectively 18 and 19 (see general procedure for the removal of the troc groups):

- 2' epi, 3'epi 10-deacetyl taxol 20 (2'S,3'R): $[\alpha]_{D}=-29^{\circ}$ (MeOH, c=0.76); UV: 229 (24300), 274 (1950), 282 (1450); IR (CHCl₃): 3600, 3440, 2920, 1740, 1730, 1670, 1600 cm⁻¹; ¹H NMR (CDCl₃): 1.12 (3H,s,C-17H₃), 1.19 (3H,s,C-16H₃), 1.75 (3H,s,C-19H₃), 1.95 (3H,s,C-18H₃), 2.24 (3H,s,OAc), 3.96 (1H,d,J=7,C-3H), 4.19 and 4.32 (2H,2d, J=8,C-20H₂), 4.29 (1H,m,C-7H), 4.68 (1H,d,J=2,C-2'H), 4.98 (1H,d,J=9,C-5H), 5.26 (1H,s,C-10H), 5.68 (1H,d,J=7,C-2H), 5.74 (1H,dd,J=9 and 2,C-3'H), 6.22 (1H,t,J=9,C-13H), 7.19 (1H,d,J=9,NH), 7.34-8.10 (15H, OBz, NHBz and C-3'Ph); ¹³C NMR (CDCl₃): 10.02 (C19), 14.81 (C18), 20.51 (C17), 22.63 (CH₃-acetate, 26.66 (C16), 36.43 (C14), 37.15 (C6), 43.18 (C15), 46.89 (C3), 55.77 (C3'), 57.98 (C8), 72.01 (C7), 72.75 (C13), 73.96 (C2'), 74.75 (C10), 75.12 (C2), 76.50 (C20), 79.15 (C1), 81.42 (C4), 84.42 (C5), 127.30, 127.58, 128.56, 128.85, 129.23, 130.21, 132.06, 133.85 (o-OBz, m-OBz, p-OBz, o-NBz, m-NBz, p-NBz, o-Ph, m-Ph, p-Ph), 129.81 (C1-OBz), 134.06, 136.25, 138.46, 138.97 (C1-NBz, C11, C12 and C1-Ph), 167.10, 167.34, 169.74, 172.74 (C=O of OBz, NBz, OAc and C1'), 211.43 (C9). MS (FAB) m/z:812(MH⁺), (CI) m/z: 776, 654, 509, 268, 240, 224.

-Compound 21 (2'R,3'S) and 22 were obtained in about 70% overall yield from respectively 9a and 10a after removal of the boc group, benzoylation and removal of the troc groups:

Compound 21: $[\alpha]_D=-37^{\circ}$ (MeOH, c=0.43), UV: 230 (32000), 276 (2800), 282 (2500); IR (CHCl₃): 3580, 3470, 3000, 1730, 1670 cm⁻¹; ¹H NMR (CDCl₃): 1.10 (3H,s,C-17H₃), 1.19 (3H,s,C-16H₃), 1.75 (3H,s,C-19H₃), 1.98 (3H,s,C-18H₃), 2.44 (3H,s,OAc), 3.94 (1H,d,J=7,C-3H), 4.17 and 4.29 (2H,2d,J=8,C-20H₂), 4.26 (1H,m,C-7H), 4.96 (1H,d,J=9,C-5H), 5.12 (1H,br d,J=9,C-2'H), 5.29 (1H,s,C-10H), 5.54 (1H,s,C-3'H), 5.56 (1H,d,J=7,C-2H), 6.28 (1H,t,J=8,C-9H), 7.16 (1H,d,J=9,NH), 7.29-8.10 (15H,OBz,NHBz and C-3'Ph). ¹³C NMR (CDCl₃): 9.99 (C19), 14.75 (C18), 20.52 (C17), 23.10 (CH₃-acetate), 26.63 (C16), 36.57 (C14), 37.26 (C6), 43.21 (C15), 46.91 (C3), 58.08 (C8), 58.49 (C3'), 71.68 (C7), 72.25 (C13), 73.84 (C2'), 74.80 (C10), 75.08 (C2), 76.89 (C20), 79.05 (C1), 81.36 (C4), 84.35 (C5), 126.17, 127.26, 128.88, 129.00, 130.27, 132.06, 133.85 (o-OBz, m-OBz, p-OBz, o-NBz, m-NBz, p-NBz, o-Ph, m-Ph, p-Ph), 129.50 (C1-OBz), 136.44, 138.57, 139.67 (C11, C12 and C1-Ph), 167.15, 167.85, 170.28, 170.41 (C=O of OBz, NBz, OAc and C1'), 211.49 (C9); MS (FAB) m/z: 812(MH⁺), 527, 509, 286, 268, 240.

-Compound 22 (2'S,3'R) : $[\alpha]_D$ =-20° (MeOH, c=0.6), UV: 231 (21000), 275 (1850), 283 (1380); IR (CHCl₃): 3600, 3450, 2900, 1740, 1670 cm⁻¹; ¹H NMR (CDCl₃): 1.08 (3H,s,C17-H₃), 1.20 (3H,s,C-16H₃), 1.69 (3H,s,C-19H₃), 1.89 (3H,s,C-18H₃), 2.25 (3H,s,OAc), 3.84 (1H,d,J=7,C-3H), 4.12 and 4.28 (2H,2d,J=8,C-20H₂), 4.19 (1H, m,C-7H), 4.91 (1H,d,J=8,S,C-5H), 5.09 (1H,dd,J=8 and 5,C-2'H), 5.20 (1H,s,C-10H), 5.28 (1H,d,J=5,C-3'H), 5.63 (1H,d,J=7,C-2H), 6.12 (1H,t,J=9,C-13H),7.05 (1H,d,J=8,NH), 7.31-8.06 (15H,OBz,NBz and C-3'Ph); ¹³C NMR (CDCl₃):10.07 (C19), 14.34 (C18), 21.01 (C17), 22.44 (CH₃-acetate), 26.69 (C16), 35.88 (C14), 37.04 (C6), 43.28 (C15), 46.54 (C3), 57.80 (C8), 59.30 (C3'), 71.98 (C7), 72.24 (C13), 74.64, 74.73 and 75.29 (C2', C10 and C2), 79.30 (C1), 81.09 (C4), 84.36 (C5), 126.27, 127.30, 128.82, 130.25, 133.21, 133.89 (o-OBz, m-OBz, p-OBz, o-NBz, m-NBz, p-NBz, o-Ph, m-Ph, p-Ph), 129.60 (C1-OBz), 133.35 (C1-NBz), 136.10, 138.85, 139.43 (C11, C12 and C1-Ph), 167.17, 167.91, 169.99, 171.20 (C=O of OBz, NBz, OAc, C1'), 211.62 (C9); MS (FAB) m/z: 812 (MH⁺), 527, 509, 286, 268, 240.

- Taxol 1 was obtained from compound 7b in 60% overall yield after deprotection of the boc group, benzoylation and removal of the troc group at C-7 (See general procedures).

ACKNOWLEDGMENT

This work was supported by grants from the "Association pour la recherche sur le cancer" and from Rhône-Poulenc Santé. We thank Dr P.Varenne and M.C.Gerard for mass spectrographic measurements.

REFERENCES

- ¹- Wani, M.C., Taylor, H.L., Wall, M.E., Coggon, P., McPhail, A.T.; J.Am.Chem.Soc., 1971, 93, 2325-2327.
- ²⁻ a) Miller, R.W., Powell, R.G., Smith, C.R., Arnold, E., Clardy, J.; J.Org.Chem., 1981, 46, 1469-1474.
 b) Sénilh, V., Blechert, S., Colin, M., Guénard, D., Picot, F., Potier, P., Varenne, P.; J.Nat.Prod., 1984, 47, 131-137. c) Magri, N.F., Kingston, D.G.I.; J.Org.Chem., 1986, 51, 797-802.
- ³- a) Schiff, P.B., Fant, J., Horwitz, S.B.; *Nature*, 1979, 277, 665-667. b) Schiff, P.B., Horwitz, S.B.; *Proc.Natl.Acad.Sci.USA.*, 1980, 77, 1561-1565 c) Suffness, M., Cordell, G.A.; In *The Alkaloids*, Chemistry and Pharmacology; Brossi, A., Ed; Academic Press; Orlando, FL, 1985, Vol.XXV, Chapter 1. d) Manfredi, J.J., Fant, J., Horwitz, S.B.; *Eur. J. Cell Biol.*, 1986, 42, 126.
- ⁴-Wiernik, P.H., Schwartz, E.L., Strauman, J.J., Dutcher, J.P., Lipton, R.B., Paietta, E.; Cancer Res., 1987, 47 (9), 2486-2493.
- ⁵-Einzig, A I., Gorowski, E., Sasloff, J., Wiernik, P.H.; Proc. Am. Assoc. Cancer Res. Annu. Meet., 1988, 29, 222.
- ⁶⁻ Holton, R.A., Juo, R.A., Kim, H.B., Williams, A.D., Harusawa, S., Lowenthal, R.E., Yogai, S.; J.Amer. Chem. Soc., 1988, 110, 6558-6560, and a complete list of references regarding synthetic approaches to the taxane skeleton can be found in the following reference: Trost, B.M., Fray, M.J.; Tetrahedron Lett., 1988, 29, 2163-2166.
- ⁷-Guéritte-Voegelein, F., Guénard, D., Potier, P.; J.Nat.Prod., 1987, 50, 9-18.
- ⁸- McLaughlin, J.L., Miller, R.W., Powell, R.G., Smith, C.R., Jr.; J.Nat. Prod., 1981, 44, 312-319.
- 9- Chauvière, G., Guénard, D., Picot, F., Sénilh, V., Potier, P. ; C.R.Seances Acad.Sci, Ser 2, 1984, 299, 1039-1043.
- ¹⁰-Colin, M., Guénard, D., Guéritte-Voegelein, F., Potier, P.; (Rhône-Poulenc Santé) Eur. Pat. Appl. EP 253,738 (Cl. C07D305/14), 20 Jan 1988, FR Appl. 86/10,400, 17 Jul 1986; Chem.Abstr., 1988, 109, 22762w.
- ¹¹- Denis, J-N., Greene, A.E., Guénard, D., Guéritte-Voegelein, F., Mangatal, L., Potier, P.; J.Am.Chem.Soc., 1988, 110, 5917-5919.
- ¹²- Colin, M., Guénard, D., Guéritte-Voegelein, F., Potier, P.; (Rhône-Poulenc Santé) Eur. Pat. Appl. EP 253,739 (Cl; C07D305/14), 20 Jan 1988, Fr Appl. 86/10,401, 17 Jul 1986; Chem.Abstr., 1988, 109, 22763x.
- ¹³- Sénilh, V., Guéritte, F., Guénard, D., Colin, M., Potier, P.; C.R.Acad.Sci.Paris, série 2, 1984, 1039-1043.
- ¹⁴- Guéritte-Voegelein, F., Sénilh, V., David, B., Guénard, D., Potier, P.; *Tetrahedron*, 1986, 42, 4451-4460.
 ¹⁵- a) Parness, J., Kingston, D.G.I., Powell, R.G., Harracksingh, C., Horwitz, S.B.;
- Biochem.Biophys.Res.Commun., 1982, 105, 1082-1089. b) Sénilh, V.; Ph.D. Dissertation, Université de Paris-Sud, Orsay, 1984. c) Magri, N.F., Kingston, D.G.I.; J.Nat.Prod., 1988, 51, 298-306.
- ¹⁶- Herranz, E., Biller, S.A., Sharpless, K.B.; J.Am.Chem.Soc., 1978, 100, 3596-3598.
- ¹⁷- Guéritte-Voegelein, F., Guénard, D., Mangatal, L., Potier, P., Guilhem, J., Cesario, M., Pascard, C.; Acta Crist., submitted.
- 18- Greenstein, J.P., Winitz; in Chemistry of the amino acids, 1961, 3, 2605, Ed. Wiley, NewYork.
- ¹⁹-Patrick, D.W., Truesdale, L.K., Biller S.A., Sharpless, K.B.; J. Org. Chem., 1978, 43, 2628-2638

- ²⁰-For a general review on the scope and limitations of the oxyamination reaction see : Oxidation of Organic Compounds with Osmium tetroxide H.H. Singh in "Organic Syntheses by Oxidation with Metal Compounds" 1986 chapter 12, W.J. Mijs and C.R.H.I. de Jouge edit.
- ²¹-Cleare, M.J., Hydes, P.C., Griffith, W.P., Wright, M.J.; J.Chem.Soc., Dalton Trans, 1977, 941.
- ²²-Hentges, S.G., Sharpless, K.B.; J.Org.Chem., 1980, 45, 2257-2259
- ²³-a) Hentges, S.G., Sharpless, K.B.; J.Am.Chem.Soc., 1980, 102, 4263-4265. b) Yamada, T., Narasaka,K.; Chem.Letters, 1986, 131-134. c) Tokles, M., Snyder, J.K.; Tetrahedron Lett., 1986, 27, 3951-3954. d) Tomioka K., Nakajimu K., Koya K.; J.Am.Chem.Soc., 1987, 109, 6213-6215. e) Annunziata R., Cinquini M., Cozzi F., Raimondi L., Stefanelli S.; Tetrahedron Letters, 1987, 28, 3139-3142.
- ²⁴- Jacobsen E.N., Markõ I., Mungall W.S., Schröder G., Sharpless K.B.; J.Am.Chem.Soc., 1988, 110,1968-1970.
- ²⁵- Ben Hassine B., Gorsane M., Pecher J., Martin R.M.; Bull. Soc. Chim. Bel., 1985, 94, 759-769.
- ²⁶- a) Rabe, P., Huntenburg, W., Schultze, A., Volger, G.; Chem.Ber., 1931, 64, 2487-2500. b) Hesse, O.; Justus Liebigs Ann.Chem., 1882, 214, 1-7. c) Hesse, O.; Justus Liebigs Ann.Chem., 1887, 241, 255-287.
- 27- The biological activities of several taxol derivatives, including those described in this paper will be discussed in a forthcoming paper.
- 28- Magri, N.F., Kingston, D.G.I., Jitrangsri, C., Piccariello, T.; J.Org. Chem., 1986, 51, 3239-3242.