Enantioselective Synthesis of Endocyclic $\boldsymbol{\beta}$-Amino Acids with Two Contiguous Stereocenters via Hydrogenation of 3-Alkoxycarbonyl-2-Substituted Quinolines

Zhang-Pei Chen, Zhi-Shi Ye, Mu-Wang Chen, Yong-Gui Zhou*
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. of China
Fax +86(411)84379220; E-mail: ygzhou@dicp.ac.cn

Received: 18.07.2013; Accepted after revision: 25.08.2013

Abstract

An enantioselective iridium-catalyzed hydrogenation of 3-alkoxycarbonyl-2-substituted quinoline derivatives is described. This methodology provides a convenient route to enantiopure endocyclic β-amino acids with two contiguous stereocenters with up to 90\% ee.

Key words: β-amino acids, iridium, asymmetric hydrogenation, functionalized quinolines

The tremendous importance of enantiomerically pure β amino acids has been well elucidated over the past few decades. ${ }^{1}$ Among them, conformationally constrained cyclic β-amino acids have received considerable attention due to their potential in pharmaceutical and agrochemical drugs. ${ }^{2}$ In addition, when incorporation into peptides or peptido-mimetics, cyclic β-amino acids have a striking ability to induce conformational restriction and create specific structural effects; this has been used in structural and biomechanistic investigations. ${ }^{3}$ However, only limited methods have been reported for the synthesis of enantioenriched cyclic β-amino acids, especially endocyclic β amino acids. ${ }^{4}$ Although there are a number of reported methods for their synthesis available, for example, ring opening of chiral epoxides, ${ }^{4 \mathrm{a}}$ intramolecular nitrone cycloaddition, ${ }^{4 \mathrm{~b}, \mathrm{c}}$ and stereoselective Michael addition, ${ }^{4 \mathrm{~d}}$ most of these routes failed to achieve high stereoselectivity and good atom or step economy. Consequently, the development of efficient routes for their synthesis is of great significance.
Considering that N -heteroarenes containing an alkoxycarbonyl group are abundant, asymmetric reduction of these compounds is an efficient and economical way to obtain enantiopure structurally diverse endocyclic β-amino acids (Scheme 1). ${ }^{5}$ In 2000, Studer reported the homogenous rhodium-catalyzed asymmetric hydrogenation of 3-(alkoxycarbonyl)pyridines in moderate yield with 17% ee. ${ }^{6}$ Subsequently, Zhang and co-workers developed a multistep strategy of combining the Pd / C catalyzed partial hydrogenation with a homogeneous rhodium-catalyzed hydrogenation to afford N -protecting 3-(alkoxycarbonyl)piperidines. ${ }^{7}$ Recently, a relay catalytic Friedländer condensation and transfer hydrogenation in the presence of an achiral Lewis acid and chiral Brønsted acid to fur-

SYNTHESIS 2013, 45, 3239-3244
Advanced online publication: 25.09.2013
DOI: 10.1055/s-0033-1339849; Art ID: SS-2013-H0500-OP
© Georg Thieme Verlag Stuttgart • New York
nish 3-alkoxycarbonyl-substituted tetrahydroquinolines was successfully described by Gong's group. ${ }^{8}$ Very recently, our research group reported an efficient iridiumcatalyzed asymmetric hydrogenation of 4-(alkoxycarbonyl)isoquinolines with excellent enantioselectivity and diastereoselectivity. ${ }^{9}$ Despite these advances, in virtue of highly stabilizing aromatic structure and the two contiguous prochiral centers, asymmetric hydrogenation of functionalized 2,3-disubstituted quinolines remains a challenge. ${ }^{10}$ As 3-alkoxycarbonyl-2-substituted tetrahydroquinolines are novel, conformationally constrained endocyclic β-amino acids, and together with our ongoing efforts to promote the development of asymmetric hydrogenation of heteroaromatic compounds, ${ }^{11}$ herein, we report an efficient asymmetric hydrogenation of 3-alkoxycarbonyl-2-substituted quinolines with excellent enantio- and diastereoselectivity.

Scheme 1 Enantioselective synthesis of endocyclic β-amino acids

Our initial study began with readily available ethyl 2-methylquinoline-3-carboxylate (1a) as a model substrate ${ }^{12}$ and the catalytic system $\left[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}_{2} /\right.$ bisphosphine/halogen, which has been used advantageously as a catalyst in the hydrogenation of aromatic compounds. ${ }^{5}$ However, the reaction proceeded with both low diastereoselectivity and enantioselectivity at $60^{\circ} \mathrm{C}$ under 7 bar (100 psi) of hydrogen gas (Table 1, entry 1). Subsequently, the effects of various solvents on the diastereoselectivity and enantioselectivity were investigated (entries 2-4). Gratifyingly, benzene was the most suitable solvent with 69% ee and $>20: 1 \mathrm{dr}$ (entry 4). Considering that recent research on the halogen effect could be utilized to enhance significantly the performance in the iridium-catalyzed asymmetric hydrogenation of heteroarenes, ${ }^{13}$ various commercial available halogen sources were further surveyed (entries 4-7). As expected, all additives delivered full conversion and moderate enantioselectivity; the reaction failed to proceed in the absence of halogen (entry 8). After a systematic screening, we found that 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) gave the best results.

Table 1 The Effect of Solvents and Additives ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Conditions: 1a $(0.2 \mathrm{mmol}),[\operatorname{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(1.25 \mathrm{~mol} \%), \mathbf{L 1}(2.75$ $\mathrm{mol} \%$), additive ($12.5 \mathrm{~mol} \%$), H_{2} [7 bar (100 psi)], solvent (3 mL), $60^{\circ} \mathrm{C}, 20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis of the crude product.
${ }^{\text {c }}$ Determined by HPLC on a chiral stationary phase.

Finally, the effects of the ligand were evaluated with BCDMH as an additive (Table 2, Figure 1). The axial chiral bisphosphine ligands performed very well, good enan-tio- and diastereoselectivity were obtained. However, the central chirality ligand $\mathbf{L 8}$ displayed poor stereoselectivity. Remarkably, the ligand $\mathbf{L 7}$, which was developed by our group and the group of Tang in 2007, ${ }^{14}$ showed obvious superiority with up to 80% ee. Full conversion was achieved without loss of enantioselectivity when the reaction time was prolonged to 26 hours (entry 8). Hence, the optimized conditions were established to be $[\mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2} / \mathbf{L} 7 / \mathrm{BCDMH}$ in benzene.
Having established the optimal conditions, the exploration of substrate scope was carried out (Table 3). The substrates were hydrogenated smoothly with full conversion and in excellent enantio- and diastereoselectivity, as summarized in Table 3. Notably, altering the alkoxycarbonyl group on the C 3 position of quinolines resulted in slightly fluctuant enantioselectivity and reactivity (entries 1-7). The various 2 -alkyl-substituted quinolines were reduced successfully with high yields and excellent enantioselectivity regardless of the side chain length (entries 8-11). It was noted that the best result of up to 90% ee was provided when C2 isopropyl was introduced (entry 11), while replacement of the alkyl substituent at C2 by phenyl

Table 2 The Effect of Ligands ${ }^{\text {a }}$

Entry	Ligand	Conv. $^{\mathrm{b}}(\%)$	dr^{b} (cis/trans)	$\mathrm{ee}^{\mathrm{c}(\%)}$
1	L1	>95	$>20: 1$	69
2	L2	93	$>20: 1$	72
3	L3	93	$>20: 1$	71
4	L4	>95	$>20: 1$	75
5	L5	93	$>20: 1$	76
6	L6	93	$>20: 1$	73
7	L7	92	$>20: 1$	80
8^{d}	L7	>95	$>20: 1$	80
9	L8	>95	$1: 1$	1

${ }^{\mathrm{a}}$ Conditions: 1a $(0.2 \mathrm{mmol}),[\mathrm{Ir}(\mathrm{cod}) \mathrm{Cl}]_{2}(1.25 \mathrm{~mol} \%)$, ligand (2.75 $\mathrm{mol} \%$), BCDMH ($12.5 \mathrm{~mol} \%$), H_{2} [7 bar (100 psi)], benzene (3 mL), $60^{\circ} \mathrm{C}, 20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy analysis of the crude product.
${ }^{c}$ Determined by HPLC on a chiral stationary phase.
${ }^{\mathrm{d}} 26 \mathrm{~h}$.
resulted in moderate enantioselectivity (entry 12). For the substrates possessing a substituent group at C5, excellent yields and enantioselectivities were achieved and the electronic properties of the substituent had little effect on the catalytic activity and enantioselectivity (entries 13-15).

L3

Ar $=3-\mathrm{MeOC}_{6} \mathrm{H}_{4}$

L8

Figure 1

Table 3 The Substrate Scope ${ }^{\text {a }}$

Entry	R^{1}	R^{2}	R^{3}	Yield ${ }^{\text {b }}$ (\%)	$\mathrm{ee}^{\mathrm{c}, \mathrm{d}}(\%)$
1	Et	Me	H	92 (2a)	$80(+)$
2	Me	Me	H	95 (2b)	$83(2 R, 3 R)$
3	Pr	Me	H	94 (2c)	$85(+)$
4	Bu	Me	H	91 (2d)	$84(+)$
5	$i-\mathrm{Pr}$	Me	H	90 (2e)	81 (+)
6	$t-\mathrm{Bu}$	Me	H	91 (2f)	$83(+)$
7	Bn	Me	H	87 (2g)	$81(+)$
8	Me	Et	H	89 (2h)	$89(+)$
9	Et	Pr	H	85 (2i)	$88(+)$
10	Me	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{Me}$	H	94 (2j)	$84(+)$
11	Me	$i-\mathrm{Pr}$	H	86 (2k)	$90(+)$
12	Et	Ph	H	89 (21)	$69(+)$
13	Me	$i-\mathrm{Pr}$	OMe	94 (2m)	$85(+)$
14	Me	$i-\operatorname{Pr}$	Cl	94 (2n)	$89(+)$
15	Me	$i-\operatorname{Pr}$	F	94 (20)	$89(+)$

${ }^{\text {a }}$ Conditions: $1(0.2 \mathrm{mmol}),[\mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(1.25 \mathrm{~mol} \%), \mathbf{L} 7(2.75$ $\mathrm{mol} \%$), BCDMH ($12.5 \mathrm{~mol} \%$), H_{2} [7 bar (100 psi)], benzene (3 mL), $60^{\circ} \mathrm{C}, 26 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields.
c Determined by HPLC on a chiral stationary phase.
${ }^{d} \mathrm{dr}>20: 1$, determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude product.

The absolute configuration of hydrogenation product (+)methyl 2-methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2b) was unambiguously assigned to be cis-($2 R, 3 R$) by X-ray crystallographic analysis (Figure 2); the relative and absolute configurations of 2a,c-o were tentatively assigned by comparison. Notably, this was complementary to Gong's work that provided trans-3-alkoxycarbonyl-2substituted tetrahydroquinolines via a relay catalytic Friedländer condensation and transfer hydrogenation in the presence of achiral Lewis acid and chiral Brønsted acid. ${ }^{8}$

Figure 2 X-ray crystal structure of 2b

In conclusion, an efficient enantioselective iridium-catalyzed hydrogenation of 3-alkoxycarbonyl-2-substituted quinolines has been developed with up to 90% ee. The new methodology provides a direct and facile route for the construction of novel enantiopure endocyclic β-amino acids with two contiguous stereocenters.

Commercially available reagents were used without further purification. Solvents were treated prior to use according to standard methods. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at r.t. in CDCl_{3} on a 400 MHz instrument with TMS as internal standard. Enantiomeric excess was determined by HPLC analysis using a chiral column. Optical rotations were measured by polarimeter. Flash column chromatography was performed on silica gel (200-300 mesh).

(+)-Ethyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate

 (2a); Typical ProcedureA mixture of $[\mathrm{Ir}(\operatorname{cod}) \mathrm{Cl}]_{2}(1.7 \mathrm{mg}, 0.0025 \mathrm{mmol})$ and ligand $\mathbf{L} 7(3.9$ $\mathrm{mg}, 0.0055 \mathrm{mmol})$ in benzene $(1.0 \mathrm{~mL})$ was stirred at r.t. for 10 min in a glovebox, then BCDMH $(6.0 \mathrm{mg}, 0.025 \mathrm{mmol})$ and substrate $1 \mathbf{1 a}$ $(43.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ together with benzene $(2.0 \mathrm{~mL})$ were added and the mixture was stirred for a further 10 min . The hydrogenation was performed at 60 C under H_{2} [7 bar (100 psi)] for 26 h . After carefully releasing the H_{2}, the mixture was purified by column chromatography (silica gel, EtOAc-petroleum ether) to give pure product.
(+)-Ethyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2a)
Colorless oil; yield: $40.3 \mathrm{mg}(92 \%) ; 80 \%$ ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=8.0,8.9 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+28.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.00(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.80(\mathrm{~m}, 2 \mathrm{H})$, $3.12-2.87(\mathrm{~m}, 3 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3$ H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.2,143.0,129.7,127.2,119.2$, 117.6, 114.8, 60.7, 47.5, 42.3, 25.6, 18.0, 14.5.

HRMS: $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{Na}$: 242.1157; found: 242.1152.
(+)-Methyl (2R,3R)-2-Methyl-1,2,3,4-tetrahydroquinoline-3carboxylate (2b) ${ }^{15}$
White solid; yield: 40.0 mg (95%); 83% ee; ; mp 73-75 C; HPLC (Chiracel OD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=9.4,10.5 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+41.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3$ H), 3.12-2.89 (m, 3 H$), 1.13(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.7,143.0,129.7,127.3,119.1$, 117.6, 114.8, 52.0, 47.5, 42.3, 25.7, 18.1.
(+)-Propyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2c)
Colorless oil; yield: 43.9 mg (94\%); 85\% ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane $-i$ - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=7.8,8.4 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+23.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.91-3.85$ $(\mathrm{m}, 2 \mathrm{H}), 3.07-2.85(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,143.1,129.7,127.2,119.3$, $117.6,114.8,66.4,47.6,42.4,25.7,22.2,18.1,10.7$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}:$ 234.1494; found: 234.1481.

(+)-Butyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate

 (2d)Colorless oil; yield: 45.0 mg (91%); 84\% ee; HPLC (Chiracel ADH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.7,9.4 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+25.8\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.03-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.86$ (m, 2 H), 3.06-2.90 (m, 3 H), 1.67-1.58 (m, 2 H$), 1.40-1.34$ (m, 2 $\mathrm{H}), 1.14(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=173.3,143.0,129.7,127.2,119.2$, $117.6,114.8,64.6,47.5,42.4,30.9,25.7,19.4,18.1,13.9$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}: 248.1651$; found: 248.1642 .
(+)-Isopropyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2e)
Colorless oil; yield: $42.0 \mathrm{mg}(90 \%) ; 81 \%$ ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}, n$-hexane $-i$ - $\mathrm{PrOH}, 75 / 25$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=7.3,7.8 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+80.4\left(c 0.5, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.82$ $(\mathrm{m}, 1 \mathrm{H}), 3.08-2.86(\mathrm{~m}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.14(\mathrm{~d}, J=$ 6.5 Hz, 3 H).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.7,142.9,129.7,127.2,119.4$, 117.6, 114.8, 68.1, 47.5, 42.4, 25.5, 22.0, 22.0, 17.9.

HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}$: 234.1494; found: 234.1480 .

(+)-tert-Butyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carbox-

 ylate (2f)Colorless oil; yield: 45.0 mg (91%); 83\% ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane $-i-\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.5,6.8 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+12.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1$ H), 3.04-2.95 (m, 1 H), 2.89-2.82 (m, 2 H$), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.13(\mathrm{~d}$, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.5,143.1,129.8,127.1,119.4$, $117.5,114.7,80.9,47.6,43.0,28.3,25.5,17.9$.
HRMS: $m / z[M+H]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}: 248.1651$; found: 248.1649.
(+)-Benzyl 2-Methyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2g)
Colorless oil; yield: 50.0 mg (87%); 81\% ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=11.7,13.5 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+21.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.99(\mathrm{~m}$, $2 \mathrm{H}), 6.65(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.12$ $(\mathrm{m}, 2 \mathrm{H}), 3.89-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.12-2.90(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.0,143.1,136.1,129.8,128.8$, $128.4,128.3,127.3,119.2,117.7,114.8,66.6,47.6,42.5,25.9$, 18.2.

HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}: 282.1494$; found: 282.1481.

(+)-Methyl 2-Ethyl-1,2,3,4-tetrahydroquinoline-3-carboxylate

 (2h)White solid; yield: 39.0 mg (89\%); 89\% ee; mp 56-58 C; HPLC (Chiracel AD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}, n$-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.7,8.5 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+67.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.01-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.52-$ $3.49(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.89(\mathrm{~m}, 3 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7,143.0,129.8,127.2,119.5$, $117.5,114.7,53.9,51.9,41.9,26.2,24.1,11.0$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}: 220.1338$; found: 220.1324.
(+)-Ethyl 2-Propyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2i)
Colorless oil; yield: 42.0 mg (85%); 88% ee; HPLC (Chiracel ADH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 95: 5$, flow $=0.6$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=13.1,16.4 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+46.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{~s}, 1$ H), 3.65-3.62 (m, 1 H), 3.05-2.91 (m, 3 H$), 1.50-1.46(\mathrm{~m}, 2 \mathrm{H})$, $1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,143.0,129.8,127.2,119.5$, $117.5,114.7,60.7,51.9,42.0,33.3,26.0,19.7,14.5,14.1$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{2}: 248.1651$; found: 248.1648.
(+)-Methyl 2-Pentyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2j) ${ }^{15}$
Yellow oil; yield: 49.1 mg (94\%); 84\% ee; HPLC (Chiracel AD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane $-i$ - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.8,8.2 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+44.6\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.02-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.65(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=9.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09-2.90(\mathrm{~m}, 3 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.25(\mathrm{~m}, 6 \mathrm{H})$, $0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.7,143.1,129.8,127.2,119.4$, $117.5,114.8,52.3,51.9,42.1,31.8,31.3,26.3,26.2,22.8,14.2$.
(+)-Methyl 2-Isopropyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2k) ${ }^{15}$
Colorless oil; yield: 40.1 mg (86\%); 90\% ee; HPLC (Chiracel OJ-H column, $254 \mathrm{~nm}, 30 \mathrm{C}, n$-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=12.9$ (major), 18.9 min .
$[\alpha]_{\mathrm{D}}{ }^{20}+36.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.99(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.16-2.99$ (m, 4 H$), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5,144.0,129.5,127.0,119.9$, $117.9,114.8,59.6,51.7,40.2,30.4,28.6,20.5,19.8$.
(+)-Ethyl 2-Phenyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (21)

Yellow oil; yield: 50.1 mg (89%); 69\% ee; HPLC (Chiracel AD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=7.7,9.9 \mathrm{~min}$ (major).
$[\alpha]_{\mathrm{D}}{ }^{20}+109.2\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~m}, 2 \mathrm{H}), 7.04$ $(\mathrm{m}, 2 \mathrm{H}), 6.68(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}$, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{br}, 1 \mathrm{H}), 4.10-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.20(\mathrm{~m}$, $1 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.3,143.7,142.3,129.8,128.5$, $127.9,127.6,127.1,119.1,117.4,113.6,60.8,56.1,43.5,25.1$, 14.3.

HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}: 282.1494$; found: 282.1497.

The relative and absolute configurations were tentatively assigned by comparison with $\mathbf{2 b}$ and NOE experiment.
(+)-Methyl 2-Isopropyl-6-methoxy-1,2,3,4-tetrahydroquino-line-3-carboxylate (2m)
Colorless oil; yield: $49.5 \mathrm{mg}(94 \%), 85 \%$ ee; HPLC (Chiracel ODH column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane $-i$ - $\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=8.2$ (major), 9.9 min .
$[\alpha]_{\mathrm{D}}{ }^{20}+58.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.61(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.98(\mathrm{~m}, 4 \mathrm{H})$, $1.89-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{dd}, J=14.8,6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.5,152.5,138.1,121.4,116.3$, $114.5,113.3,60.3,55.9,51.7,40.0,30.2,29.3,20.5,19.7$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3}: 264.1600$; found: 264.1584.
(+)-Methyl 6-Chloro-2-isopropyl-1,2,3,4-tetrahydroquinoline-3-carboxylate (2n)
White solid; yield: $50.3 \mathrm{mg}(94 \%)$; 89% ee; $\mathrm{mp} 82-84 \mathrm{C}$; HPLC (Chiracel OD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane- i - $\mathrm{PrOH}, 70: 30$, flow $=0.7 \mathrm{~mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.6$ (major), 8.6 min .
$[\alpha]_{\mathrm{D}}{ }^{20}+58.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.92(\mathrm{~m}, 4 \mathrm{H}), 1.88-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{dd}, J=11.5,6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.1,142.7,129.1,126.9,122.2$, 121.4, 115.8, 59.7, 51.8, 39.6, 30.4, 28.9, 20.4, 19.8.

HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}_{2}: 268.1104$; found: 268.1094.

(+)-Methyl 6-Fluoro-2-isopropyl-1,2,3,4-tetrahydroquinoline-

 3-carboxylate (20)Yellow oil; yield: 47.2 mg (94\%); 89\% ee; HPLC (Chiracel OD-H column, $254 \mathrm{~nm}, 30 \mathrm{C}$, n-hexane $-i-\mathrm{PrOH}, 70: 30$, flow $=0.7$ $\mathrm{mL} / \mathrm{min}$): $t_{\mathrm{R}}=6.4$ (major), 7.6 min .
$[\alpha]_{\mathrm{D}}{ }^{20}+23.5\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.74-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.48-6.45(\mathrm{~m}$, $1 \mathrm{H}), 3.85(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.10-2.98(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.81(\mathrm{~m}$, $1 \mathrm{H}), 1.02(\mathrm{dd}, J=12.2,6.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.3,156.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{F}-\mathrm{C}}=234.8 \mathrm{~Hz}\right)$, $140.3,121.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{F}-\mathrm{C}}=6.3 \mathrm{~Hz}\right), 115.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{F}-\mathrm{C}}=7.7 \mathrm{~Hz}\right), 115.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{F}-\mathrm{C}}=22.1 \mathrm{~Hz}\right), 113.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{F}-\mathrm{C}}=22.6 \mathrm{~Hz}\right), 60.1,51.7,39.7,30.3$, 29.2, 20.4, 19.8.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-127.4$.
HRMS: $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{FNO}_{2}: 252.1400$; found: 268.1094.

Acknowledgment

We are grateful to the financial support from National Science Foundation of China (21125208 \& 21032003), National Basic Research Program (2010CB833300) and Chinese Academy of Sciences.

Supporting Information for this article is available online at http://www.thieme-connect.com/ejournals/toc/synthesis.

References

(1) For selected reviews on β-amino acids, see: (a) Gellman, S. H. Acc. Chem. Res. 1998, 31, 173. (b) Sorochinsky, A.; Mikami, K.; Fustero, S.; Sánchez-Roselló, M.; Aceña, J.; Soloshonok, V. Synthesis 2011, 3045. (c) Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219. (d) Gnad, F.; Reiser, O. Chem. Rev. 2003, 103, 1603. (e) Miller, J. A.; Nguyen, S. B. T. Mini-Rev. Org. Chem. 2005, 2, 39.
(2) (a) Maison, W.; Kosten, M.; Charpy, A.; KintscherLangenhagen, J.; Schlemminger, I.; Lutzen, A.; Westerhoff, O.; Martens, J. Eur. J. Org. Chem. 1999, 2433.
(b) Christianson, L. A.; Lucero, M. J.; Appella, D. H.; Klein,
D. A.; Gellman, S. H. J. Comput. Chem. 2000, 21, 763.
(c) Yamanaka, T.; Ohkubo, M.; Kato, M.; Kawamura, Y.; Nishi, A.; Hosokawa, T. Synlett 2005, 631. (d) Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206.
(3) (a) Miyata, O.; Muroya, K.; Kobayashi, T.; Yamanaka, R.; Kajisa, S.; Koide, J.; Naito, T. Tetrahedron 2002, 58, 4459. (b) Forro, E.; Fulop, F. Mini-Rev. Org. Chem. 2004, 1, 93. (c) Gais, H. J.; Loo, R.; Roder, D.; Das, P.; Raabe, G. Eur. J. Org. Chem. 2003, 1500. (d) O'Brien, P.; Porter, D. W.; Smith, N. M. Synlett 2000, 1336. (e) Masesane, I. B.; Steel, P. G. Tetrahedron Lett. 2004, 45, 5007. (f) Kiss, L.; Fulop, F. Synlett 2010, 1302. (g) Kiss, L.; Forro, E.; Fulop, F. Tetrahedron Lett. 2006, 47, 2855. (h) Kiss, L.; Kazi, B.; Forro, E.; Fueloep, F. Tetrahedron Lett. 2008, 49, 339.
(i) Davis, F. A.; Theddu, N. J. Org. Chem. 2010, 75, 3814. (j) Kazi, B.; Kiss, L.; Forro, E.; Fulop, F. Tetrahedron Lett. 2010, 51, 82.
(4) (a) Songis, O.; Didierjean, C.; Martinez, J.; Calmes, M. Tetrahedron: Asymmetry 2008, 19, 2135. (b) Basak, R. K.; Dharuman, S.; Vankar, Y. D. Tetrahedron Lett. 2012, 53, 4283. (c) Davies, S. G.; Osomu, I.; Walters, I. A. S. Synlett 1993, 461. (d) Aggarwal, V. K.; Roseblade, S.; Alexander, R. Org. Biomol. Chem. 2003, 1, 684. (e) Kuhl, A.; Hahn, M. G.; Dumic, M.; Mittendorf, J. Amino Acids 2005, 29, 89.
(f) Davies, S. G.; Diez, D.; Dominguez, S. H.; Garrido, N. M.; Kruchinin, D.; Price, P. D.; Smith, A. D. Org. Biomol. Chem. 2005, 3, 1284. (g) Yu, C.-B.; Gao, K.; Chen, Q.-A.; Chen, M.-W.; Zhou, Y.-G. Tetrahedron Lett. 2012, 53, 2560.
(5) For selected reviews, see: (a) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. (b) Wang, D.-S.; Chen, Q.-A.; Lu, S.-M.; Zhou, Y.-G. Chem. Rev. 2012, 112, 2557. (c) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171. (d) Lu, S.-M.; Han, X.W.; Zhou, Y.-G. Chin. J. Org. Chem. 2005, 25, 634.
(6) Studer, M. Monatsh. Chem. 2000, 1335.
(7) Lei, A.; Chen, M.; He, M.; Zhang, X. Eur. J. Org. Chem. 2006, 4343.
(8) Ren, L.; Lei, T.; Ye, J. X.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 771.
(9) Shi, L.; Ye, Z.-S.; Cao, L.-L.; Guo, R.-N.; Hu, Y.; Zhou, Y.G. Angew. Chem. Int. Ed. 2012, 51, 8286.
(10) For recent examples on hydrogenation of functionalized quinolines, see: (a) Maj, A. M.; Suisse, I.; Méliet, C.; Hardouin, C.; Agbossou-Niedercorn, F. Tetrahedron Lett. 2012, 53, 4747. (b) Cai, X.-F.; Chen, M.-W.; Ye, Z.-S.; Guo, R.-N.; Shi, L.; Li, Y.-Q.; Zhou, Y.-G. Chem. Asian J. 2013, 8, 1381. For selected works on hydrogenation of 2,3disubstituted quinolines, see: (c) Wang, T.; Zhuo, L.-G.; Li, Z.; Chen, F.; Ding, Z.; He, Y.; Fan, Q.-H.; Xiang, J.; Yu, Z.X.; Chan, A. S. C. J. Am. Chem. Soc. 2011, 133, 9878.
(d) Guo, Q.-S.; Du, D.-M.; Xu, J. Angew. Chem. Int. Ed. 2008, 47, 759. (e) Rueping, M.; Theissmann, T.; Raja, S.; Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001. (f) Wang, D.W.; Wang, X.-B.; Lu, S.-M.; Yu, C.-B.; Zhou, Y.-G. J. Org. Chem. 2009, 74, 2780.
(11) (a) Wang, D.-S.; Zhou, Y.-G. Tetrahedron Lett. 2010, 51, 3014. (b) Wang, D.-S.; Tang, J.; Zhou, Y.-G.; Chen, M.-W.; Yu, C.-B.; Duan, Y.; Jiang, G.-F. Chem. Sci. 2011, 2, 803. (c) Chen, Q.-A.; Gao, K.; Duan, Y.; Ye, Z.-S.; Shi, L.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2012, 134, 2442.
(12) (a) Shen, Q.; Wang, L.; Yu, J.; Liu, M.; Qiu, J.; Fang, L.; Guo, F.; Tang, J. Synthesis 2012, 44, 389. (b) Huo, M.; Kuang, Y.-Y.; Chen, F.-E. Org. Prep. Proced. Int. 2004, 36, 331.
(13) (a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am. Chem. Soc. 2003, 125, 10536.
(b) Legault, C. Y.; Charette, A. B. J. Am. Chem. Soc. 2005, 127, 8966. (c) Xiao, D.; Zhang, X. Angew. Chem. Int. Ed. 2001, 40, 3425. (d) Chi, Y.; Zhou, Y.-G.; Zhang, X. J. Org. Chem. 2003, 68, 4120. (e) Moessner, C.; Bolm, C. Angew. Chem. Int. Ed. 2005, 44, 7564.
(14) Li, C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, J.-C.; Xu, Z.-H.; Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc. 2007, 129, 1494.
(15) Bunce, R. A.; Nago, T.; Sonobe, N. J. Heterocycl. Chem. 2007, 44, 1059.

