
Palladium-Catalyzed Hydroxylation of Aryl Halides with Boric Acid
Zhi-Qiang Song and Dong-Hui Wang*

Cite This: https://dx.doi.org/10.1021/acs.orglett.0c03069 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Boric acid, B(OH)3, is proved to be an efficient
hydroxide reagent in converting (hetero)aryl halides to the
corresponding phenols with a Pd catalyst under mild conditions.
Various phenol products were obtained in good to excellent yields.
This transformation tolerates a broad range of functional groups
and molecules, including base-sensitive substituents and compli-
cated pharmaceutical (hetero)aryl halide molecules.

Phenol motifs are widely present in natural products,
ligands, agrochemicals, medicines, and materials, they are

also among the most critical building blocks in synthetic
chemistry.1 Historically, the preparation of phenols includes
the hydrolysis of aryl sulfates or halides, Sandmeyer
hydroxylation of anilines, oxidation of arylmetal derivatives,
condensation or cyclization of unsaturated carbonyl deriva-
tives, the cumene process, and a few other miscellaneous
methods.2

In recent decades, with the development of transition-metal-
catalyzed reactions, several new approaches to access phenols
have been developed. Aryl halides can be coupled with alkali-
metal hydroxides (MOH) under Cu,3 Fe,4 and Pd catalysis5 in
water-containing conditions (Scheme 1a). Obviously, these
conditions do not tolerate base-sensitive functional groups,
such as ester, cyano, carbonyls, and some types of heterocyclic
compounds. Recently, Fier and Maloney strategically overcame
this drawback by using benzaldehyde oximes as the hydroxide
resource (Scheme 1b). However, a stoichiometric amount of
harmful benzonitrile was generated as byproduct.3s,5k More
recently, photoredox protocols have been employed in the
synthesis of phenols. Xue reported a Ni-catalyzed organo-
photoredox hydroxylation of aryl halides with H2O,

6 and Wu
reported a Cu-catalyzed photoredox-mediated hydroxylation of
(hetero)aryl halides with O2.

7 Though these photoredox
procedures tolerate a wide range of functional groups, the
reaction yields are generally not high. Nevertheless, a
hydroxylation protocol that uses a readily available hydroxide
reagent, tolerates a broad scope of functional groups, gives
phenols in high yields, and proceeds under mild conditions is
still highly demanded, especially for the synthesis of drug
molecules and natural products and for late-stage diversifica-
tion.8

Organoboron compounds, such as boronic acids, boronic
esters, and trifluoroborates, have been widely used as
nucleophilic coupling partners in the construction of C−C
and C−N bonds under Pd, Ni, or Cu catalysis.9,10 Boric acid,
B(OH)3, is a stable, inexpensive, and nontoxic compound that

has been used as a mildly acidic catalyst in esterification and
condensation reactions.11 Herein we disclose that boric acid is
a highly efficient hydroxide reagent in the Pd-catalyzed cross-
coupling reaction between (hetero)aryl halides and B(OH)3.
This transformation provides various phenols in good to
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Scheme 1. Synthesis of Phenols from Aryl Halides
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excellent yields under mild conditions and tolerates a wide
range of functional groups as well as complicated drug
molecules.
To start the discovery, the reaction between methyl 4-

chlorobenzoate (1a) and boric acid was examined under
various conditions. With Pd(OAc)2 as the catalyst, Xphos as
the ligand, and K3PO4 as the base in THF at 80 °C for 24 h,
the reaction mixture provided the desired product, methyl
paraben (2a), in 9% yield (Table 1, entry 1). Various ligands

were screened, and Brettphos gave 2a in 17% yield (entry 2).
Bidentate XantPhos was inactive for the reaction (entry 3).
While sterically hindered monodentate phosphine ligands were
found to be effective for the transformation, t-BuXPhos
afforded 2a in 28% yield, and t-BuBrettPhos gave 2a in 50%
yield (entries 4 and 5). With t-BuBrettPhos as the ligand, the
solvent for the reaction was screened. Toluene was inert for the
transformation. CH3CN and 1,4-dioxane gave 2a in 37% and
39% yield, respectively. NMP was found to be the superior
solvent for the reaction, giving 2a in 87% yield (entries 6−9).12
The effect of the base was determined with t-BuBrettPhos and
NMP. NaOtBu afforded 2a in 25% yield, and NaOEt and
NaOAc provided 2a in very low yield (entries 10−12). Finally,
both K2CO3 and Cs2CO3 were found to be excellent bases for
the transformation, giving paraben 2a in >99% yield (entries
13 and 14).
The feasibility of using boric acid as a hydroxide reagent to

prepare phenols was surveyed with various (hetero)aryl
chlorides (Scheme 2). A variety of base-sensitive substituents
on (hetero)aryl chlorides were well-tolerated under these
conditions. For example, chlorobenzenes bearing an ester
group at the para or meta position provided the corresponding
phenols 2a and 2b in 98% and 75% yield, respectively.
Chlorobenzenes with cyano substituents at the para or meta
position afforded the desired phenols 2c and 2d in 95% and
97% yield, respectively. 4-Acetylchlorobenzene provided piceol
(2e) in 98% yield. 4-Chlorobenzaldehyde gave 4-hydroxyben-

zaldehyde (2f) in 93% yield. p-Chlorobenzamide afforded 4-
hydroxybenzamide (2g) in 93% yield. 4-Nitro- and 4-
(methylsulfonyl)chlorobenzene gave the corresponding phe-
nols 2h and 2i in 95% and 84% yield, respectively. p-
Chlorostyrene provided the desired 4-vinylphenol (2j) in 67%
yield. Besides these electron-withdrawing groups, electron-rich
chlorobenzenes were also compatible with these conditions.
For example, p-chlorotoluene gave p-cresol (2k) in 82% yield
under these conditions. 4-Chloroanisole afforded the desired
mequinol (2l) in 76% yield, and 4-(methylmercapto)-
chlorobenzene provided 4-(methylmercapto)phenol (2m) in
94% yield. Moreover, heteroaryl chlorides successfully coupled
with boric acid under these conditions, and the desired
products were achieved in good yields. For example, 6-
chloroquinoline and 3-chloroquinoline delivered the corre-
sponding 6- and 3-hydroxyquinilines 2n and 2o in 83% and
77% yield, respectively. The coupling of 2-chlorobenzothiazole
with boric acid provided the tautomerized hydroxylation
product 2p in 69% yield.
These conditions are also applicable for the coupling

reaction between aryl bromides and boric acid, and the
desired phenols were obtained in good to excellent yields
(Scheme 3). Base-sensitive substituents on the bromobenzene
were well-tolerated. For example, aryl bromides bearing an
ester substituent at the para or meta position provided the
desired phenols 2a and 2b in 94% and 86% yield, respectively.
Cyano substituents on the bromoarene afforded the desired
cyano-substituted phenols 2c and 2d in 97% and 94% yield,
respectively, and 4-cyano-α-bromonaphthene gave the desired
α-naphthol 4a in 82% yield. Bromobenzenes bearing an acetal
substituent at the para or meta position afforded the desired
products 2e and 3-acetylphenol (4b) in 98% and 72% yield,
respectively. 4-Bromobenzaldehyde gave a 99% yield of 2f.
Besides, these conditions were also compatible strong electron-
withdrawing groups. For example, 4-nitro- and 4-

Table 1. Optimization of the Reaction Conditionsa

entry ligand base solvent yield (%)b

1 XPhos K3PO4 THF 9
2 BrettPhos K3PO4 THF 17
3 XantPhos K3PO4 THF 0
4 t-BuXPhos K3PO4 THF 28
5 t-BuBrettPhos K3PO4 THF 50
6 t-BuBrettPhos K3PO4 toluene 0
7 t-BuBrettPhos K3PO4 MeCN 37
8 t-BuBrettPhos K3PO4 1,4-dioxane 39
9 t-BuBrettPhos K3PO4 NMP 87
10 t-BuBrettPhos NaOt-Bu NMP 25
11 t-BuBrettPhos NaOEt NMP 10
12 t-BuBrettPhos NaOAc NMP 4
13 t-BuBrettPhos K2CO3 NMP >99
14 t-BuBrettPhos Cs2CO3 NMP >99

aReaction conditions: 1a (0.2 mmol), B(OH)3 (0.3 mmol),
Pd(OAc)2 (5 mol %), ligand (12.5 mol %), base (2 equiv), solvent
(1 mL), Ar atmosphere, 80 °C, 24 h. bYields were determined by 1H
NMR analysis of the crude reaction mixtures using 1,3,5-
trimethoxybenzene as the internal standard.

Scheme 2. Pd-Catalyzed Hydroxylation of Aryl Chloridesa

aReaction conditions: 1 (1 mmol), B(OH)3 (1.5 mmol), Pd(OAc)2
(5 mol %), t-BuBrettPhos (12.5 mol %), Cs2CO3 (2 equiv), NMP (2
mL), 80 °C, Ar, 24 h. b100 °C, 14 h.
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(methylsulfonyl)bromobenzene afforded the desired phenols
2h and 2i in almost quantitative yields, and 3-bromonitro-
benzene provided the desired phenol 4c in 78% yield. In
addition, 4-bromostyrene gave 2j in 89% yield. These
functional groups provide additional handles for further
synthetic elaboration. Furthermore, electron-donating sub-
stituents were also compatible with the transformation,
providing the desired electron-rich phenols in moderate to
excellent yields. For example, o- and p-bromoanisole afforded
the desired phenols 2l and 4d in 57% and 88% yield,
respectively. 4-Phenoxybromobenzene provided the desired
phenol 4e in 67% yield. 4-(Methylmercapto)bromobenzene
gave the desired phenol 2m in 96% yield. Bromobenzenes
bearing phenyl, tert-butyl, and cyclohexyl substituents at the
para position provided the desired phenols 4f, 4g, and 4h in
93%, 95%, and 69% yield, respectively. Moreover, polycyclic
aromatic bromides coupled with boric acid smoothly under
these mild conditions, providing the polycyclic phenols in
good to excellent yields. For example, α- and β-bromonaph-
thalene offered the corresponding 1-naphthol derivative 4a and
2-naphthol derivative 4i in 82% and 92% yield, respectively.
Similarly, 9-phenanthrol (4j) was obtained in 62% yield and 2-
fluorenol (4k) in 86% yield from the corresponding
bromoarenes. Additionally, heteroaryl bromides were also
compatible with these mild reaction conditions, providing the
medicinal-chemistry-attractive heteroaryl phenols in good to
excellent yields. For example, electron-rich thiophenyl and

benzofuranyl bromides gave the corresponding heterophenols
4l and 4m in 91% and 66% yield, respectively. Electron-
deficient 6-bromoquinoline provided quinolin-6-ol (2n) in
92% yield, and 2-bromoquinoline gave quinolin-2(1H)-one
(4n), the tautomer of quinolin-2-ol, in 88% yield.
On the basis of these excellent results, the hydroxylation of

complicated aryl halides, such as bioactive and drug molecules,
were examined under these optimal conditions (Scheme 4).

This hydroxylation procedure abides aryl chloride-containing
drug molecules well, regardless of the electronic properties or
functional groups varieties. For example, the loratadine
molecule (5a) gave the corresponding phenol 6a in 87%
yield without decomposing the carbamate component or the
double bond. Bupropion (5b) was converted to the
corresponding phenol 6b in 68% yield. In this reaction, both
free secondary amine and ketone carbonyl groups remain
untouched. The chlorpromazine molecule (5c), an electron-
rich and amine side chain-containing molecule, also provided
the corresponding phenol 6c in 87% yield. Loxapine (5d) and
amoxapine (5e) share the same core structure. When treated
with boric acid under these conditions, loxapine gave a 93%
yield of the desired phenol 6d, while amoxapine, which
contains free NH, still provided the corresponding phenol 6e
in 79% yield. The couplings of aryl bromo-containing drug
molecules with boric acid proceed smoothly under these

Scheme 3. Pd-Catalyzed Hydroxylation of Aryl Bromidesa

aReaction conditions: aryl bromide 3 (1 mmol), B(OH)3 (1.5 mmol),
Pd(OAc)2 (5 mol %), t-BuBrettPhos (12.5 mol %), Cs2CO3 (2
equiv), NMP (2 mL), 80 °C, Ar, 24 h.

Scheme 4. Hydroxylation of Biorelevant Moleculesa

aReaction conditions: 5 (0.5 mmol), B(OH)3 (0.75 mmol),
Pd(OAc)2 (5 mol %), t-BuBrettPhos (12.5 mol %), Cs2CO3 (2
equiv), NMP (1 mL), 100 °C, Ar, 14 h. b80 °C, 24 h.
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optimal conditions, too. For example, bromazine (5f) was
converted to the corresponding phenol 6f in 62% yield, and
brompheniramine (5g) gave the corresponding phenol 6g in
46% yield, presumably because of coordination of the free
pyridine ring with the Pd catalyst. Finally, aryl bromides
derived from natural products or drug molecules were also
feasible for the coupling with boric acid. For example, bromo-
substituted pregnenolone (5h) provided the desired phenol 6h
in 89% yield, and 5-bromonaproxen (5i) gave the hydroxylated
product 6i in only 38% yield, presumably because of steric
hindrance from both the −OMe group and the peri hydrogen.
In summary, we have demonstrated that boric acid is an

efficient hydroxide reagent for the preparation of various
phenols from the corresponding (hetero)aryl chlorides or
bromides. The mild reaction conditions enable a wide
functional group tolerance, including even base-sensitive
functional groups. The transformation provides the desired
phenols in good to excellent yields. This methodology is also
feasible for the hydroxylation of complicated drug molecules
and natural product derivatives.
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