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ABSTRACT

A method for direct, transition-metal-free ortho-arylation of anilines by aryl chlorides, bromides, fluorides, and triflates has been developed. This
methodology provides themost direct approach to 2-arylanilines since no protecting or directing groups on nitrogen are required. The arylation is
functional-group tolerant, with alkene, ether, trifluoromethyl, dimethylamino, carbonyl, chloro, and cyano functionalities tolerated. Phenylation of
enantiopure binaphthyldiamine affords a product with >99% ee.

Themost efficient routes tomany structures involve direct
functionalization of carbon�hydrogen bonds. The past few
years have witnessed spectacular progress in developing
C�H bond functionalization methodologies.1 However,
some issues are still unresolved.For example, direct arylation
ofanilinederivatives inmost cases requires eitheraprotecting
or directing group on nitrogen.2 Palladium-catalyzed ortho-
arylation of anilides offers a short pathway to 2-aminobi-
phenyls or terphenyls; however, installation followed by
removal of a directing group adds two steps to the synthetic
sequence.2a�cAdditionally, directing group removal requires

harsh conditions.Gevorgyanhas recently reported amethod
for intramolecular palladium-catalyzed arylation of anilines
by employing a temporary silyl tether.2d The silyl group
removal can be performed under mild conditions. However,
several extra steps are required to install and remove the
tether. A recent paper by Greaney describes o-arylation of
N-tritylanilinesbybenzynesgenerated fromsilyl aryl triflates.
The reaction proceeds by an enemechanism.2f However, the
reaction is not applicable for arylation of N- and o-substi-
tuted anilines. Additionally, only a few silyl aryl triflates are
commercially available thus limiting the practical applica-
tions of this procedure. Only a few articles describe direct
arylationof freeanilines.3Aminobiphenylshavebeensynthe-
sized by Ti-catalyzed arylation of free anilines by diazonium
salts.3a Isomer mixtures were obtained in many cases. A
selective transition-metal-freeparaarylationofN-substituted
anilines has been recently reported by employing diaryliodo-
nium salt electrophiles.3b Selective, direct o-arylation of
unprotected anilines has not yet been disclosed. We report
here a method for direct aniline o-arylation by aryl halides
that proceeds via aryne intermediates.
We have recently reported direct C-arylation of hetero-

cycles, arenes, alkynes, and phenols proceeding via benzyne
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intermediates. It was observed that the amount of C-aryla-
tion is dependent on the solvent.4 It is well-known that
N-arylation ofNH-anilines can be accomplished by benzynes5a,b

and that the N-arylation products are sometimes accom-
panied by minor amounts of C-arylation.5c,d Since, as de-
scribed above, the ratio of C- vs O- or N-arylation can be
tunedby changing the reaction solvent,wedecided to explore
aniline o-arylation. Arynes can be generated from silyl aryl
triflates under nearly neutral conditions at room tempera-
ture.6 Unfortunately, these starting materials are expensive,
and only a few of them are commercially available. To
increase the applicability of the arylation, we decided to use
readily accessible and cheap aryl chlorides as aryne sources.
Lithium 2,2,6,6-tetramethylpiperidide (LiTMP) base was
used to retard the reaction of arynes with base.7a

The optimization of reaction conditions was carried out
for the 2-naphthylamine 1 arylation by chlorobenzene
(Table 1). The ratio of C-arylation vs N-arylation was
found to be dependent on solvent, base, and 1/base ratio.
Reactions in THF afforded N-arylation with only minor
amounts of C-arylation product formed (entries 1 and 2).
Arylation in Et2O also gave predominately N-arylation
(entry 3). If LDA was used instead of LiTMP, clean forma-
tion of N-phenyl-2-naphthylamine was observed (entry 4).
Lowering the reaction temperature to �20 �C resulted
in good C-arylation selectivity in diethyl ether (entry 5).
Reactions in pentane at 40 �C gave substantial amount of
C-arylation (entries 6�7). However, competitive formation
of PhTMP was observed. Use of pentane/Et2O mixtures
increased the C/N-arylation ratio (entries 8�10). The best
results were obtained in cyclohexane/diethyl ether mixed
solvent at 25�50 �C (entries 11, 13, 14) by using 1/LiTMP
ratio of 1/1.8. Sensitive substrates can be arylated at low
temperature in diethyl ether.
The reaction scope with respect to aryl halides is pre-

sented inTable 2. Fluoro-, chloro-, and bromobenzene can
be used in the arylation of 2-naphthylamine (entries 1�3).
Interestingly, the arylations are selective for 1-position of
2-naphthylamine. 2-Chlorostyrene affords the arylation
product in a good yield (entry 4). As expected, substitution
occursmainly at 3-positionof the vinylphenyl group,with less
than 3% of 1-(2-vinylphenyl)-2-naphthylamine formed.7b�e

2-Chloroanisole, 2-chlorobenzotrifluoride, and 2-bromobiphenyl

are reactive, and the corresponding arylation products were
obtained in good yields (entries 5�7). Arylation can also be
achieved by employing polycyclic aromatic chlorides
(entries 8 and 9). 2-Chlorodimethylaniline affords aryla-
tion product in moderate yield (entry 10). If introduction
ofachloro-substitutedarylmoiety is required,3-chlorophenyl
triflate at low temperature can be employed (entry 11).
Arylation by 3-bromobenzoate ester results in substitution
at 2-position of aryne, presumably by initial formation of
2-naphthylamideof 3-bromobenzoic acid (entry12). 4-Chloro-
toluene gave nearly equal mixture of isomeric products
(entry 13).
The 2-naphthylamine arylation occurs selectively at the

1-position. In that context, observations by Pierini and
Rossi may be informative.8 They have reported the photo-
stimulated reaction of unactivated aryl bromides and
iodides with 2-naphthylamide. Substitution occurred at
N- and 1-positions of 2-naphthylamine. The authors ex-
plain the arylation selectivity by the relative basicities of
sites in an ambident naphthylamide anion.
Groups that can coordinate a lithium cation afford

reducedC/N selectivities. Lower reaction temperatureshave
to be used to obtain better yields and arylation selectivities.
For example, presence of the dimethylamino substituent
reduces C/N arylation selectivity from >50/1 (entry 2,
Table 2) to about 11/1 (entry 10, Table 2) even if the temper-
ature is lowered to �30 �C.
The reaction scopewith respect to anilines is presented in

Table 3. N-Alkyl- and arylanilines are reactive (entries
1�5). Specifically, anilines possessing N-methyl-, phenyl,

Table 1. Optimization of Reaction Conditionsa

entry 1/PhCl/base T, �C solvent 2/3b

1 1/2/3.6 25 THF 1/8 (10)

2 2/1/3.6 25 THF 1/3 (12)

3 1/2/3.6 25 Et2O 1/5 (16)

4c 1/2/3.6 25 Et2O 1/50 (<2)

5 2/1/3.6 �20 Et2O 11/1 (27)

6 1/2/3.6 40 C5H12 1/2 (29)

7 2/1/3.6 40 C5H12 2/1 (35)

8 1/2/3.6 25 C5H12/Et2O 20:1 1.3/1 (43)

9 2/1/3.6 25 C5H12/Et2O 20:1 12/1 (27)

10 2/1/3.6 25 C5H12/Et2O 1:1 9/1 (64)

11 2/1/3.6 25 C6H12/Et2O 1:1 18/1 (74)

12 1/2/3.6 25 C5H12/Et2O 1:1 1/2.2 (25)

13 3/1/4.8 50 C5H12/Et2O 14:1 50/1 (78)

14 3/1/4.8 50 C5H12/Et2O 1:1 5/1 (50)

aTotal volume of solvent 0.9 mL, 0.25 mmol scale, 24 h; 12 h for
entry 5. See the Supporting Information for details. bRatio 2/3; GCyield
of 2 (%) in parentheses. cLDA base.
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and benzyl substituents all give products in good to
excellent yields (entries 1, 3, and 5). 1,2,3,4-Tetrahydro-
isoquinoline is arylated at the 7-position in good yield
(entry 2). Unsubstituted anilines can be selectively and
efficiently monoarylated (entries 6�14). Thus, aniline can
be ortho-phenylated in a moderate yield (entry 6). Aryla-
tion of 3-aminobenzotrifluoride affords about 3/1 mixture
of isomers. 2-Phenyl-5-trifluoromethylaniline was isolated
in 50%yield (entry 9). 3,5-Dimethylaniline is arylated in the
ortho-position in a good yield (entry 8). Palladium-catalyzed
arylation of anilides that possess meta-substituents is not
efficient and thus structures such as the one generated in
entry 8 typically cannot be accessed by using transition-
metal catalysis.2a,b p-Substituted anilines are arylated in
good yields (entries 7, 10, and 11). 1-Naphthylamine is
arylated at the 2-position (entry 12). 2-Aminobiphenyl can

be arylated at 6-position affording 2,6-diphenylaniline
(entry 13). 2,6-Diarylanilines are used in the synthesis of
ligands for Brookhart-type transition-metal catalyzed olefin
polymerization.9 The reaction tolerates chloro- and cyano
substituents (entries 7 and 14). Arylation of enantiopure
binaphthyldiamine afforded the monoarylation product in
47% yield and >99% ee (eq 1).

The reaction is selective (>50/1) for ortho-arylation as
opposed topara-arylation.For entries 1, 6, and13,Table 3,
the crude reaction mixtures were analyzed by GC for the

Table 2. Arylation of 2-Naphthylaminea

a 2-Naphthylamine (1�2 mmol), ArX (0.5 mmol), LiTMP (1.8�3.4 mmol), solvent (1.4�3 mL),�85 toþ50 �C, 12�48 h. Yields are isolated yields.
bCyclohexane/Et2O (14/1), 25 �C,<5%N-arylation product observed in crude reaction mixture. cEt2O,�25 �C, ca. 10%N-arylation. dCyclohexane/
Et2O (14/1), 50 �C, <10% N-arylation. eCyclohexane/Et2O (1/1), 25 �C, <5% N-arylation. fEt2O, �30 �C, 8% N-arylation. gTHF, �85 �C, 7% N-
arylation. hCyclohexane/Et2O (1/1), �35 �C, LDA base.
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presence of p-phenyl derivatives (comparison with authentic
commercial samples). No products arising from p-arylation
were observed.
The amount ofN- vsC-arylation is dependent on solvent

coordination ability, aniline/LiTMP base ratio, and reac-
tion temperature. These features point to different reactiv-
ity of intermediate lithium anilide/LiTMP aggregates as
the reason for switch in arylation regioselectivity. Because
of the complexity of lithium anilide solution-state structures
and insolubility of LiCl additive in reactionmixture, further
mechanistic speculations are premature at this point.10

In conclusion, we have developed a method for direct,
transition-metal-free ortho-arylation of anilines by aryl

chlorides, bromides, fluorides, and triflates. This metho-
dology provides themost direct approach to 2-arylanilines
since no protecting or directing groups on nitrogen are
required. Easily available aryl chlorides can be used as the
coupling partner. The arylation is functional-group toler-
ant, with alkene, ether, trifluoromethyl, dimethylamino,
carbonyl, chloro, and cyano functionalities tolerated.
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Table 3. Arylamine Phenylationa

aAmine (1�2 mmol), PhCl (0.5 mmol), LiTMP (1.8�3.4 mmol), solvent (1.4�3 mL), �60 to þ50 �C, 24�48 h. Yields are isolated yields. See the
Supporting Information for C/N ratios. bCyclohexane/Et2O (1/1), 25 �C. cPentane/THF (36/1), 25 �C. dCyclohexane/Et2O (14/1), 50 �C. ePentane/
Et2O (1/1), �50 �C, PhOTf. f Isomeric 2-phenyl-3-trifluoromethylaniline also isolated (17%). gTHF/Et2O (1:1), �60 �C.
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