Catalysis Science&Technology Catalysis

Science & Technology

Accepted Manuscript

Catalysis

Science & Technology

Catalysis

Construction on the construction of the cons

Accepted Manuscript

Catalysis Science & Technology

This is an *Accepted Manuscript*, which has been through the RSC Publishing peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This *Accepted Manuscript* will be replaced by the edited and formatted *Advance Article* as soon as this is available.

To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication.

More information about *Accepted Manuscripts* can be found in the **[Information for Authors](http://www.rsc.org/Publishing/Journals/guidelines/AuthorGuidelines/JournalPolicy/accepted_manuscripts.asp)**.

Please note that technical editing may introduce minor changes to the text and/or graphics contained in the manuscript submitted by the author(s) which may alter content, and that the standard **[Terms & Conditions](http://www.rsc.org/help/termsconditions.asp)** and the **[ethical guidelines](http://www.rsc.org/publishing/journals/guidelines/)** that apply to the journal are still applicable. In no event shall the RSC be held responsible for any errors or omissions in these *Accepted Manuscript* manuscripts or any consequences arising from the use of any information contained in them.

RSCPublishing

www.rsc.org/catalysis

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/xxxxxx

ARTICLE TYPE

Catalysis Science & Technology Accepted Manuscript Catalysis Science & Technology Accepted Manuscript

Reduction of Organic Azides to Amines using Reusable Fe3O4 Nanoparticles in Aqueous Medium

Sreenivasarao Pagoti,a,b Subham Surana,^a Ajay Chauhan,^a Bibudha Parasar,^a and Jyotirmayee Dasha,b*

75

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX ⁵**DOI: 10.1039/b000000x**

Aromatic, heteroaromatic and sulfonyl azides were conveniently reduced to the corresponding amines in excellent yields using hydrazine hydrate in the presence of iron oxide nanoparticles. The Fe3O⁴ -MNPs could be easily ¹⁰**separated by an external magnet, and recycled ten times without significant loss of the catalytic efficiency.**

Magnetically separable catalysts have recently emerged as sustainable heterogeneous catalysts due to their rapid catalysis and efficient recycling.¹ Magnetic nanoparticles (MNPs) mimic ¹⁵homogeneous catalyst as they efficiently disperse catalytic active sites in the reaction medium. MNP catalysts are robust, readily available and can be effectively separated from the reaction mixture using an external magnet.

 MNPs have recently been used for reduction of aromatic nitro 20 groups, ketones, alkenes and alkynes.²⁻⁵ The reduction of organic azides provides a straight forward access to the corresponding amines,⁶ which are important class of compounds and have potential use in chemistry and biology, such as synthesis of pharmaceuticals, natural products, agrochemicals, polymers, ²⁵rubbers and dyes. Although various methods are reported in the

- literature for the preparation of amines, 2 the reduction of azides is one of the important protocols because azides are easily $accessible'$ from the corresponding halides and sulfonates. A variety of reducing reagents and metal-catalyzed hydrogenations
- ³⁰has been reported in the literature for the transformation of azides into amines.^{6,8} Most of these reactions have several disadvantages such as long reaction times, harsh reaction conditions, cost efficiency, poor selectivity, general applicability and tedious work-up procedures. Further the major drawback of these ³⁵homogeneous catalysts is the difficulties in separating the
- catalysts from the products which limit their use in industrial applications.

40

†Electronic Supplementary Information (ESI) available: [Experimental procedures, characterisation data of compounds, PXRD data, AFM images and and the copies of ¹H NMR and ¹³C NMR spectra]. See ⁵⁰*DOI: 10.1039/b000000x/*

Azido functional groups are versatile synthons⁹ and have wide applications in the synthesis of triazoles and other heterocycles.⁷⁻ 10 In continuation of our work on azido functional groups, $11a-b$ and green chemical procedures,^{11c} we herein report the reduction of ⁵⁵aromatic, heteroaromatic and sulfonyl azides to the corresponding amines using hydrazine hydrate in the presence of iron oxide nanoparticles in aqueous medium.

 Magnetite nanoparticles (MNPs) were prepared using the coprecipitation technique (see ESI†).¹² As a prototype, 4- ω azidoaniline **1a** was studied for reduction using $Fe₃O₄$ in water (Table 1). The reaction did not proceed in the absence of any added hydrazine hydrate (entries 1, 2, Table 1). We observed that the reaction of 4-azidoaniline **1a** with 5 equiv hydrazine monohydrate in the presence of 50 mol% $Fe₃O₄$ in water at RT ⁶⁵proceeded with a 50% conversion of the azide **1a** affording the desired product **2a** in 47% yield (entry 3, Table 1). The reduction of azide **1a** took 2 h for completion at 120 °C to afford 1,4 diamino benzene **2a** in near quantitative yields (entry 5, Table 1). It is important to note that a 10 mol% $Fe₃O₄$ could catalyze the ⁷⁰reaction providing the product **2a** in excellent yield (entry 7, CHE This: DOI: 10.1039/cOxo00000x

WWW.FSC.org/xxxxx
 ARITICLE TYPE

Reduccion of Organic Azides to Amines using Reusable Fe₅O₄, Nanoparticles in

Secretivascareo Pagotia⁵⁵ Subham Surana,⁴ Ajay Chauhan,¹ Bibud

Table 1). As reported previously, 8 no reaction was observed using hydrazine monohydrate in the absence of $Fe₃O₄$ (entry 9, Table 1).

Table 1. Reduction of 4-azidoaniline **1a** to the corresponding amine **2a**. a

^aAll reactions were carried out using, 4-azidoaniline 1a (1 mmol) and hydrazine monohydrate (5 mmol) in water (4 mL), ^bdetermined by ¹H NMR analysis of the crude mixture, ^cisolated yield, ^dNo added hydrazine monohydrate, ^eNo added Fe₃O₄.

^aDepartment of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741252, India, Fax: +913325873020; Tel: +913325873119; E-mail: jyotidash@iiserkol.ac.in *^bDepartment of Organic Chemistry, Indian Association for the*

⁴⁵*Cultivation of Science, Jadavpur, Kolkata-700032, India; Email:ocjd@iacs.res.in*

This journal is © The Royal Society of Chemistry [year] *[journal]*, [year], **[vol]**, 00–00 | **1**

40

Table 2. Reduction of aryl/heteroaryl azides to the corresponding amines

^aAll reactions were carried out using azide 1 (1 mmol) and hydrazine monohydrate (5 mmol) in water (4 mL) . ^bIsolated yield after column purification

 To examine the scope of the reduction reaction using the $_5$ Fe₃O₄-N₂H₄.H₂O in water, we investigated the reduction of a series of aromatic, heteroaromatic and sulfonyl azides **1**. As shown in Table 2, the corresponding amines **2** were obtained for a wide range of azides **1**. The reactions were usually fast and yields are often excellent for all the tested azides. Aromatic azido ¹⁰derivatives **1f-1h** were efficiently reduced to the corresponding amines (Table 2, entries 5-7), which indicate that the halogen atoms such as fluorine and bromine remained intact under the reaction conditions. The azido group of **1** was chemoselectively reduced to the amino moiety in the presence of carboxylic acid, ¹⁵ester and amide groups (Table 2, entries 8-10). Aromatic azides containing *o-*, *m-* or *p-* substituents underwent facile reduction to the corresponding amines (Table 2). Azides containing free amino (**1a**) and hydroxyl (**1o**) groups produced the corresponding amines in high yields (Table 1, Table 2-entry 14).

20 It was found that the nitro group was reduced to the amines under the reaction condition;^{2e} p -nitro phenyl azide 11 reduced to give the corresponding diamine **2a** (Table 2, entry 11). Sulfonyl azides **1m** and **1n** (Table 2, entries 12 and 13) also produced the corresponding amines in near quantitative yields within 2 h. ²⁵Similarly, heteroaromatic azides such as 2-azidopyridine (**1p**) and 2-azidothiazole (**1q**) reacted readily to afford the corresponding amines in excellent yields (Table 2, entries 15-16).

^aReaction conditions: 1.0 mmol of azide 1a, 5.0 equiv of hydrazine monohydrate, Fe₃O₄ catalyst (50 mol%) in 4.0 mL of water at 120 °C. b Isolated yield after column purification.

 We then investigated the recyclability of MNPs using the ³⁰reduction of 4-azidoaniline **1a** (1 mmol) under the optimized conditions (ESI†). After completion of the reaction, the $Fe₃O₄$ nanocatalysts were easily attracted using a magnet (Figure 1). The recovered MNPs were washed and dried at 60 °C for 30 min and reused in the next cycle (Table 3). This procedure was ³⁵repeated for 10 times and it was observed that in each cycle, the recovered catalyst retained its efficiency, but required slightly longer reaction time after the 4th catalytic cycle. The reactions using recovered MNPs were fast and clean providing almost quantitative yield of the product **2a** (Table 3).

Figure 1. Magnetic separation of MNPs (a) during reduction reaction, (b) magnetic separation of the MNPS at ambient temperature using a magnet.

 The powder X-ray diffraction (PXRD) patterns confirmed that 45 the size of magnetite did not change before and after the catalysis

(Figure 2 and ESI†).¹²⁻¹³ The average diameter of MNPs was estimated from the reflection at $2\theta = 35.64^{\circ}$ using Scherrer's equation to be 10.14 nm, which is close to that calculated for the recovered MNPs after 10^{th} catalytic cycle (11.04 nm). Atomic ⁵force microscopy (AFM) was used to study the morphology of the prepared and the recovered $Fe₃O₄$ MNPs. The average height of the recovered MNPs was determined to be 25 nm which is larger than the freshly prepared MNPs (11 nm, ESI†). AFM images revealed that the MNPs retained their spherical shape ¹⁰while an aggregation of the MNPs was observed after 10

consecutive catalytic cycles (Figure 3 and ESI†).

Figure 2. The powder X-ray diffraction pattern of $Fe₃O₄$ and recovered $Fe₃O₄$ after the 10th catalytic cycle.

Figure 3. AFM images of (a) Fe₃O₄ and (b) recovered Fe₃O₄ after the 10^{th} catalytic cycle (scale bar 200 nm).

 A plausible mechanism has been proposed. The first step in the ²⁰mechanism can be viewed as the reduction of the inverse spinel type magnetite $(Fe^{II}Fe^{III} {}_{2}O_{4})$ structure to a NaCl type wustite (FeO) structure, where hydrazine donates its hydrogen ions. The H⁺ ions upon interaction with the oxygen atom of magnetite forms water and hence leaves the magnetite backbone.¹⁴ This

- ²⁵redox reaction in turn generates the unstable reducing diimide species **3**. The reactive in-situ generated **3** then transfers both of its hydrogens in a concerted way¹⁵ to the azide **1** possibly through the transition state **4**, which decomposes to release nitrogen. The resulting intermediate **5** then undergoes a hydride transfer to
- ³⁰generate **6**, which then furnishes amine with the simultaneous elimination of nitrogen gas. The reduced form wustite is metastable, and hence disproportionates to Fe(0) and the original magnetite ($Fe₃O₄$). In the presence of oxygen, iron(0) transforms into $Fe₃O₄$ and thereby completes the catalytic cycle.

Scheme 1. Proposed mechanism.

In summary, we have described reduction of a broad range of ⁴⁰organic azides to the corresponding amines using hydrazine hydrate as the hydrogen source in the presence of 50 mol% of $Fe₃O₄$ -MNPs in aqueous medium. The reactions were usually fast affording the amines in excellent yields. The MNPs could be magnetically recoverable and efficiently reused for ten catalytic ⁴⁵cycles without significant loss of the catalytic efficiency. Since water is a green solvent, $16-17$ and hydrazine hydrate produce nitrogen and water from the reaction, this catalytic system represents an environmentally benign alternative to other metalbased catalysts.

This work was carried out at the Indian Institute of Science Education and Research, Kolkata. We thank DST and CSIR (01/(2371)/10/EMR-11) India for funding. SRP thanks CSIR for a research fellowship. SS thanks IASc-INSA-NASI for a summer research fellowship. We thank Rabindra Nath Das for his help with AFM images.

Catalysis Science & Technology Accepted Manuscript

Catalysis Science & Technology Accepted Manuscr

Notes and References

≠ Brief experimental procedure: All experiments were carried out under an inert atomosphere of argon in flame-dried flasks. All starting materials ⁶⁰were obtained from commercial suppliers and used as received. Products were purified by flash chromatography on silica gel (100-200 mesh). Unless otherwise stated, yields refer to analytical pure samples. ¹H and $13C$ NMR NMR spectra were recorded in CDCl₃ at 278K unless otherwise stated and are reported in ppm relative to tetramethylsilane (TMS). ⁶⁵Infrared (FTIR) spectra were recorded with the KBr disk and KBr plate techniques for solid and liquid samples, v_{max} cm⁻¹. HRMS analyses were performed with Q-TOF YA263 high resolution instruments by positive mode electrospray ionization. AFM was carried out on a NT-MDT in semi-contact mode. 10 mL of an aqueous dispersion of Fe3O4 ⁷⁰nanoparticles was deposited onto freshly cleaved mica (Agar Supplies) and allowed to dry in air for 12 h prior to imaging.

 All of these starting materials and products are known compounds except 4-azido-1-bromo-2-methylbenzene **1g**. The known compounds are identified by comparison of their spectroscopic data (¹H 75 NMR, 13C NMR) with those reported in the literature (see S.I.).^{7,18}

4-Azido-1-bromo-2-methylbenzene 1g: 1-Bromo 2-methyl aniline **2g** (500 mg, 2.69 mmol) was suspended in 17% hydrochloric acid (25 mL) at

130

room temperature. The solution was cooled to 0 °C using an ice bath. Then NaNO_2 (278 mg, 4.04 mmol) in 2 mL water was added in small portions. After stirring at 0 °C for 20-30 min, an aqueous solution of NaN₃ (263 mg, 4.04 mmol) was slowly added and the mixture was stirred

- ⁵for additional 2 h at room temperature. After completion, the reaction mixture was extracted with diethyl ether (3 x 40 mL). The combined organic fractions were washed with saturated NaHCO₃ solution (2 x 40) mL) and brine (2 x 40 mL). The organic fractions were dried over $Na₂SO₄$ and evaporated under reduced pressure to provide the azide **1g** (513 mg,
- 10 90%) as a brown oil. ¹H NMR (400 MHz, CDCl₃): 7.46 (d, $J = 10.6$ Hz, 1H), 6.88 (d, *J* = 3.0 Hz, 1H), 6.72 (dd, *J* = 10.6, 3.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): 139.5, 139.1, 133.3, 121.1, 120.2, 117.9, 22.9; IR: 3306.0, 3224.1, 2954.7, 2504.0, 2425.3, 2324.3, 2241.2, 2110.0, 2065.3, 1602.2, 1474.2, 1380.2, 1304.7, 1202.3, 1149.4; HRMS 15 (ESI) calcd for C₇H₇BrN₃ [M+H]⁺: 211.9823; Found: 211.9785.
- **General procedure for the reduction of azides using Fe3O4:** To a solution of azide 1 (1 mmol, 1 equiv) in water (4.0 mL), Fe₃O₄ (116 mg, 0.5 mmol) and hydrazine monohydrate (0.243 mL, 5 mmol) were added to the mixture. The reaction mixture was refluxed or heated in a sealed
- 20 tube at 120 °C under an argon atmosphere until completion, as monitored by TLC. The reaction was cooled and the $Fe₃O₄$ -MNPs were separated using a magnet. The aqueous layer was extracted with ethyl acetate (3 x 10 mL). The combined organic extracts were washed with water and brine, dried over Na2SO4 and evaporated under reduced pressure. The
- ²⁵crude product was purified by flash chromatography (EtOAc/hexanes eluent) to afford the desired pure amine. (Most of the amines were analytically pure before flash chromatography). The recovered catalyst was washed with methanol (2 x 5 mL), dried under vacuum, and reused for the next cycle of the reaction.
- ³⁰1 For reviews see: (a) S. Shylesh, V. Schünemann and W. R. Thiel, *Angew. Chem. Int. Ed.,* 2010, **49**, 3428. (b) V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J.-M. Basset, *Chem. Rev.,* 2011, **111**, 3036.
- 2 Reduction of nitro grous see: (a) Q. Shi, R. Lu, K. Jin, Z. Zhang and ³⁵D. Zhao, *Green Chem.,* 2006, **8**, 868. (b) A. J. Amali and R. K. Rana *Green Chem.,* 2009, **11**, 1781. (c) Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, B. M. Kim and T. Hyeon, *Chem. Commun.,* 2011, **47**, 3601. (d) F. Zhang, J. Jin, X. Zhong, S. Li, J. Niu, R. Li and J. Ma, *Green Chem.,* 2011, **13**, 1238. (e) S. Kim, E.
- Kim, and B. M. Kim, *Chem. Asian J.*, 2011, 6, 1921. (f) K. Jiang, H.-X. Zhang,Y.-Y. Yang, R. Mothes, H. Lang and W.-B. Cai, *Chem. Commun.,* 2011, **47**, 11924. (g) C. Lian, H. Liu, C. Xiao, W. Yang, K. Zhang, Y. Liu and Y. Wang, *Chem. Commun.,* 2012, **48**, 3124.
- 3 Reduction of aryl acetylnes see: (a) V. Polshettiwar, B. Baruwati and ⁴⁵R. S. Varma, *Green Chem.,* 2009, **11**, 127. (b) K. H. Lee, B. Lee, K. R. Lee, M. H. Yi and N. H. Hur, *Chem. Commun.,* 2012, **48**, 4414.
- 4 Reduction of alkenes: (a) M. Stein, J. Wieland, P. Steurer, F. Tölle, R. Mülhaupt and B. Breit *Adv. Synth. Catal.,* 2011, **353**, 523. (b) R. Hudson, A. Riviére, C. M. Cirtiu, K. L. Luska and A. Moores, *Chem.* ⁵⁰*Commun.,* 2012, **48**, 3360.
- 5 Reduction of ketones and epoxides; (a) A. Hu, G. T. Yee and W. Lin, *J. Am. Chem. Soc.,* 2005, **127**, 12486. (b) G. Liu, H. Gu, Y. Sun, J. Long, Y. Xu, and H. Li, *Adv. Synth. Catal.,* 2011, **353**, 1317. (c) Y. Sun, G. Liu, H. Gu, T. Huang, Y. Zhang and H.Li, *Chem. Commun.,*
- ⁵⁵2011, **47**, 2583. (d) H.-J. Xu, X. Wan, Y.-Y. Shen, S. Xu, and Y.-S. Feng, *Org. Lett.,* 2012, **5**, 1210. (e) J. F. Sonnenberg, N. Coombs, P. A. Dube, and R. H. Morris, *J. Am. Chem. Soc.,* 2012, **134**, 5893.
- 6 For selected examples, see: (a) B. C. Ranu, A. Sarkar, and R. Chakraborty *J. Org. Chem.* 1994, **59**, 4114. (b) A. R. Ramesha, S.
- ⁶⁰Bhat, and S. Chandrasekaran, *J. Org. Chem*., 1995, **60**, 7682. (c) L. Benati, G. Bencivenni, R. Leardini, M. Minozzi, D. Nanni, R. Scialpi, P. Spagnolo, and G. Zanardi *J. Org. Chem.* 2006, **71**, 434. (d) L. Benati, G. Bencivenni, R. Leardini, D. Nanni, M. Minozzi, P. Spagnolo, R. Scialpi, and G. Zanardi, *Org. Lett.,* 2006, **8**, 2499. (e)
- A. Kamal, N. Markandeya, N. Shankaraiah, C. R. Reddy, S. ¹³⁵.

Prabhakar, C. S. Reddy, M. N. Eberlin, and L. S. Santos *Chem. Eur. J.,* 2009, **15**, 7215.

- 7 (a) P. C. Montevecchi and P. Spagnolo, *J. Org. Chem.,* 1982, **47**,1996. (b) L. Di Nunno and A. Scilimati, *Tetrahedron*, 1986, **42**,
- ⁷⁰3913. (c) S. P. Klump and H. Shechter, *Tetrahedron Lett.,* 2002, *43*, 8421. (d) J. Chen and J. Rebek, *Org.Lett.* 2002, **4**, 327. (e) P. R. Serwinski, B. Esat, P. M. Lahti, Y. Liao, R. Walton and J. Lan, *J. Org. Chem.,* 2004, **69**, 5247. (f) P. Zanirato and S. Cerinib, *Org. Biomol. Chem.,* 2005, **3**, 1508. (g) J. Andersen, U. Madsen, F. ⁷⁵Björkling and X. Liang, *Synlett,* 2005, 2209. (h) R. M. Mendtner, M. Ostermeier, R. Goddard, C. Limberg and S. Hecht, *Chem. Eur. J.,* 2007, **13**, 9834. (i) F. Shi, J. P. Waldo, Y. Chen and R.C. Larock, O*rg. Lett.,* 2008, **10**, 2409. (j) K. D. Grimes, A. Gupte and C. C. Aldrich, *Synthesis,* 2010, 1441. (k) K. Bahrami, M. M. Khodaei and ⁸⁰M. Soheilizad, *Tetrahedron Lett.,* 2010, **51**, 4843. (l) O. Berger,A. Kaniti, C.T. Ba, H. Vial, S. A. Ward, G. A. Biagini, P. G. Bray and P. M. O'Neill, *ChemMedChem.,* 2011, **6**, 2094. (m) I. Stengel, A. Mishra, N. Pootrakulchote, S. J. Moon, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, *J. Mater. Chem.,* 2011, **21**, 3726. (n) H. Peng, The Rockey Content of Arizona on 2012 Published on 20 December 2013 Pub
	- Y. Cheng, C. Dai, A. L. King, B. L. Predmore, D. J. Lefer and B. Wang, *Angew. Chem. Int. Ed.,* 2011, **50**, 9672.
	- 8 For the reduction of azides using hydrazine in the presence of Pd catalyst, see: A. A. Malik, S. B. Preston, T. G. Archibald, M. P. Cohen and K. Baum *Synthesis*, 1989, 450.
	- ⁹⁰9 For a review see: E. F. V. Scriven and K. Turnbull *Chem. Rev.,* 1988, **88**, 97.
		- 10 For reviews, see: (a) H. C. Kolb and K. B. Sharpless, *Drug Discovery Today,* 2003, **8**, 1128. (b) J. E. Moses and A. D. Moorhouse, *Chem. Soc. Rev.,* 2007, **36**, 1249.
	- ⁹⁵11 (a) J. Dash, Z. A. E. Waller, G. D. Pantoş and S. Balasubramanian, *Chem Eur. J.,* 2011, **17**, 4571. (b) S. Paladhi, J. Das, P. K.Mishra and J. Dash, *Adv. Synth. Cat.* 2012, DOI:10.1002/adsc. 201200856. (c) S. Paladhi, A. Chauhan, K. Dhara, A. K. Tiwari and J. Dash, *Green Chem.*, 2012, **14**, 2990.
	- 100 12 O. Gleeson, R. Tekoriute, Y. K. Gun ko and S. J. Connon, *Chem. Eur. J.,* 2009, **15**, 5669, and references there in.
		- 13 S. Luo , X. Zheng and J.-P. Cheng, *Chem. Commun.,* 2008, 5719.
		- 14 X. Guo, Y. Sasaki, Y. Kashiwaya, K. Ishii, *Metal. Mat. Tran. B*, 2004, **35B**, 517.
	- ¹⁰⁵15 E. J. Corey, W. L. Mock, D. J. Pasto, *J. Am. Chem. Soc.* 1961, **83**, 2957.
		- 16 R. Breslow in *Green Chemistry: Frontiers in Benign Chemical Syntheses and Processes* (Eds.: P. T. Anastas and T. C. Williamson), Oxford Press, New York, 1998, chapter. 13.
	- ¹¹⁰17 For reviews see: a) R. A. Sheldon, *Green Chem.,* 2005, **7**, 267. b) P. J. Walsh, H. Li and C. A. de Parrodi, *Chem. Rev.,* 2007, **107**, 2503.
	- 18 (a) C. Laurence and M. Berthelot, *J. Chem. Soc.Perkin Trans. II* 1979, 98. (b) M. J. Astle and J. B. Pierce, *J. Org. Chem.* 1955, **20**, 178. (c) M. Novak, M. J. Kahley, J. Lin, S. A. Kennedy and T. G. 115 James, *J. Org. Chem.* 1995, 60, 8294. (d) M. R. Pitts, J. R. Harrison and C. J. Moody, *J. Chem. Soc., Perkin Trans. 1* 2001, 955. (e) G. Wu, M. Huang, M. Richards, M. Poirier, X. Wen and R. W. Draper, *Synthesis* 2003, 1657. (f) Naidu and B. Narasimhulu, *PCT Int. Appl.* 2007064619, 07 Jun 2007. (g) T. V. Bhat, N. R. James and A. 120 Jayakrishnan, *Polymer International* 2008, **57**, 124. (h) J. Kim and S. Chang, *Chem. Commun.* 2008, 3052. (i) L. Jiang, X. Lu, H. Zhang, Y. Jiang and D. Ma, *J. Org. Chem.* 2009, **74**, 4542. (j) S. Bartoli, A. Cipollone, A. Squarcia, A. Madami and D. Fattori, *Synthesis* 2009, 1305. (k) M. N. Elmkaddem, C. Fischmeister, C. M. Thomas and J. – ¹²⁵L. Renaud, *Chem. Commun.* 2010*,* **46**, 925. (l) J. Li, X. -Y. Shi, Y. - Y. Bi, J. -F. Wei and Z. –G. Chen, *ACS Catal.* 2011, **1**, 657. (m) H. P. Hemantha and V. V. Sureshbabu, *Org. Biomol. Chem.* 2011, **9**, 2597.

Catalysis Science & Technology Accepted Manuscript

Catalysis Science & Technology Accepted Manuscript