Oxoammonium salt/NaClO₂: an expedient, catalytic system for one-pot oxidation of primary alcohols to carboxylic acids with broad substrate applicability[†]

Masatoshi Shibuya, Takahisa Sato, 1 Masaki Tomizawa and Yoshiharu Iwabuchi*

Received (in Cambridge, UK) 19th December 2008, Accepted 16th January 2009 First published as an Advance Article on the web 11th February 2009 DOI: 10.1039/b822944a

A facile, green, one-pot oxidation of primary alcohols to carboxylic acids with broad substrate applicability has been developed by employing an expedient catalytic system consisting of 1-Me-AZADO $^+X^-/NaClO_2$.

The oxidation of primary alcohols to the corresponding carboxylic acids is a fundamental transformation in organic chemistry.^{1,2} The straightforward appearance of this transformation, consisting of simple, two-step oxidations: primary alcohol to aldehyde, then aldehyde to carboxylic acid, has encouraged many organic chemists to develop an efficient onepot oxidation. A number of methods have been established to date, *i.e.*, CrO₃/H₂SO₄,³ PDC/DMF,⁴ CrO₃/H₅IO₆,⁵ RuCl₃/ $H_5IO_{6,6}^{6}$ RuCl₃/K₂S₂O₈,⁷ Na₂WO₄/H₂O₂,⁸ PhIO/KBr,⁶ TEMPO/NaOCl,¹⁰ TEMPO/PhI(OAc)₂,¹¹ TEMPO/NaOCl/ NaClO₂,¹² however, the task suffers from several drawbacks: i.e., limited substrate applicability, toxic and hazardous nature of reagents, harsh conditions required, and so on. We now describe a novel catalytic system composed of cat. oxoammonium salt/NaClO2, which allows a facile, one-pot, efficient oxidation of primary alcohols to carboxylic acids with broad substrate applicability.

Among the various methods developed, Merck's method using cat. TEMPO/cat. NaOCl/NaClO2 would be placed as one of the most popular, which achieves increasing success in the one-pot oxidation of primary alcohols to carboxylic acids, despite its inherent limitation due to the use of NaOCl,¹³ which is notorious for damaging electron-rich moieties such as alkenes and aromatic rings. We recently disclosed that 2-azaadamantane N-oxyls (AZADOs: 2 and 3),¹⁴ a less-hindered class of nitroxyl radicals,¹⁵ exhibit significantly enhanced reactivity in the catalytic oxidation of alcohols compared with TEMPO (1) (Fig. 1). The fact that AZADOs possess markedly smaller $E^{\circ \prime}$ values than TEMPO ($E^{\circ\prime}$ vs. Ag/Ag⁺: 1-Me-AZADO, 186 mV; AZADO, 236 mV; TEMPO, 294 mV) coupled with an idea inspired by Merck's method, that the use of the oxoammonium salt¹⁶ as an initial catalyst, instead of nitroxyl

Pharmaceutical Sciences, Tohoku University, 6-3 Aobayama, Sendai, 980-8578, Japan. E-mail: iwabuchi@mail.pharm.tohoku.ac.jp; Fax: +81-22-795-6845; Tel: +81-22-795-6846

Fig. 1 TEMPO (1) and AZADOs (2 and 3).

Scheme 1 Our plan for one-pot oxidation.

radical, will liberate substrates from the harmful NaOCl, led us to envision a "virtually NaOCl-free" catalytic system featuring the following steps: (i) oxoammonium ion reacts with alcohols to give hydroxylamine and aldehyde; (ii) the aldehyde generated reacts with NaClO₂ to give a carboxylic acid and NaOCl; (iii) NaOCl generated *in situ* is *immediately* consumed by hydroxylamine to regenerate an oxoammonium ion, thereby establishing a catalytic cycle (Scheme 1). The key point is the *kinetic* efficiency of quenching the destructive NaOCl by a hydroxylamine to regenerate a milder and more selective oxidant, the oxoammonium ion.

To verify the above-mentioned concept, two types of 1-Me-AZADO-derived oxoammonium salts, namely, 1-Me-AZADO⁺Cl⁻ and 1-Me-AZADO⁺BF₄⁻,¹⁷ were prepared, along with TEMPO⁺Cl⁻ and TEMPO⁺BF₄⁻, and challenged by the projected one-pot oxidation.

We confirmed that the oxoammonium salt/NaClO₂ system exhibits an optimized performance in MeCN-aq. sodium phosphate (1.0 M, pH 6.8) to convert primary alcohols **4**, **5** and **6** to the corresponding carboxylic acids up to 10 g-scale experiment, with which cat. TEMPO/cat. NaOCl/NaClO₂ (Merck's method) failed to afford a carboxylic acid product in good yield due to the damage of electron-rich functionalities.^{12a,b,18,19} Beside the superiority of 1-Me-AZADO over TEMPO, it should be noted that direct investment of the substantial catalyst, the oxoammonium salt, brought about a marked productivity (Table 1).^{19,20}

The scope of the utility of oxoammonium salt/NaClO $_2$ for the one-pot oxidation of primary alcohols 7–17 to carboxylic

Department of Organic Chemistry, Graduate School of

[†] Electronic supplementary information (ESI) available: Experimental procedures and selected spectra for new compounds. See DOI: 10.1039/b822944a

[‡] *In memoriam* to our colleague and friend Takahisa, who suddenly passed away last year.

Table 1	Catalytic	one-pot	oxidation	of	primary	alcohols	having
electron-r	rich groups	employi	ng NaClO ₂	as	the termi	inal oxida	nt

R [^] OH	M	ca eCN –	talyst, l	NaClO ₂ ate buffe	er (pH 6.	8)	R	н	
catalyst	(7 mo	N. 0 1%) NaOCI ((7 m	N. 0 nol%)		(5 m	N. + O ol%)	(5 mc	- X -N O + O -1%)
substrate	time ^a (h)	yield ^c (%)	time ^a (h)	yield ^c (%)	x	time ^b (h)	yield ^c (%)	time ^b (h)	yield ^c (%)
Ph OH	45	35	45	40	CI BF ₄	5 ^d 8 ^d	79 82	8 ^e 5 ^d	87 ^f 97
MeO 5	45	14	45	36	CI BF ₄	40 40	92 ^g 96 ^g	23.5 26	92 ^g 97 ^g
MeO OH MeO 6	24	10	24	95	CI	7	64	0.17 2	92 86 ^h

^{*a*}Reactions were catalyzed by TEMPO or 1-Me-AZADO (7 mol%) with NaOCl (2 mol%) and NaClO₂ (2 eq.) in sodium phosphate buffer (1.0 M, pH 6.8; 0.3 M) and MeCN (0.3 M) at 35 °C. ^{*b*}Reactions were catalyzed by TEMPO⁺X⁻ or 1-Me-AZADO⁺X⁻ (5 mol%) with NaClO₂ (3 eq.) in sodium phosphate buffer (1.0 M, pH 6.8; 0.3 M) and MeCN (0.3 M) at 25 °C. ^{*c*}Isolated yield as a methyl ester after treatment with CH₂N₂. ^{*d*}Reaction was performed at 50 °C. ^{*e*}Reaction was run using 5 eq. of NaClO₂. ^{*h*}I0 g of **6** was employed.

acids is shown in Table 2, where 1-Me-AZADO⁺ exhibited better catalytic performance than TEMPO⁺. Note that 1-Me-AZADO⁺Cl⁻ successfully oxidized alkenyl alcohols to afford the corresponding carboxylic acids, where TEMPO⁺ suffered from side reactions, such as oxidative cleavage and chlorination (Table 1, oxidation of 6; Table 2 entry 7). The admirably clean transformations attained by 1-Me-AZADO⁺ may be attributed to the highly reactive nature of 1-Me-AZADOH in consuming NaOCl, quenching the destructive pathway of reacting π -electrons of the substrates. No epimerizations were observed in the oxidation of N-protected α -amino alcohols (entries 9, 10). In some cases, a more acidic buffer produced a faster reaction rate (Table 2, entry 8: Method C). It would be useful to point out $1-Me-AZADO^+BF_4^$ that is advantageous over 1-Me-AZADO⁺Cl⁻ in terms of its less hygroscopic nature as well as its selectivity in suppressing the undesired chlorination under 5% (entry 7).

In summary, we disclose a facile, one-pot, efficient oxidation of primary alcohols to carboxylic acids with broad substrate applicability employing 1-Me-AZADO⁺X⁻/NaClO₂, which should lead to progress in a wide range of chemical research areas.

We thank Prof. Emeritus Kunio Ogasawara of Tohoku University for his encouragement and useful discussion. This work was partly supported by a Grant-in-Aid for Scientific Research (B) (No. 17390002) from Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B)

entry	substrate	method	time yield ^a (h) (%)	$\frac{\overbrace{\overset{N_{-}}{\overset{N_{-}}{\overset{+}}O}}{\underset{(h)}{\overset{welda}{\overset{w}}{\overset{w}}{\overset{w}}}}}}}}}}}}}}}}}}}}}}$
1	Ph OH 7	A B	0.5 98 1.5 98	0.5 98 0.5 93
2	Ph OH 8	A B	10 79 10 97	10 93 10 97
3	- Но	A B	9.5 100 8 83	7 98 7 98
4	PhOH 10	А	4 86	4 100
5	HO_OH 11	А	9.5 93	0.5 92
6 🕫	OH 12	A B	24 74 ^b 24 77 ^b	1 94 3 93
7	осла Осла 13	A B	48 < 10 48 < 10	24 73 ^c 18 78 ^d
8	HO14	A C	70 32 7 73	58 64 4 90
9	N N Cbz OH 15	A B	9 100 ^e 8.5 100 ^e	3 100 ^e 1.5 100 ^e
10	CbzHN Ph OH 16	A B	42 13 ⁷ 42 8 ⁷	18 100 ^f 24 94 ^f
11	OH 17	A	24 42	1 100

Method A: reactions were catalyzed by $TEMPO^+Cl^-$ or 1-Me-AZADO⁺Cl⁻ (5 mol%) with NaClO₂ (5 eq.) in sodium phosphate buffer (1.0 M, pH 6.8; 0.3 M) and MeCN (0.3 M) at 25 °C. Method B: reactions were catalyzed by TEMPO⁺BF₄⁻ or 1-Me-AZADO⁺BF₄⁻ (5 mol%) with NaClO₂ (3 eq.) in sodium phosphate buffer (1.0 M, pH 6.7; 0.3 M) and MeCN (0.3 M) at 25 °C. Method C: reactions were catalyzed by TEMPO⁺Cl⁻ or $1-Me-AZADO^+Cl^-$ (5 mol%) with NaClO₂ (3 eq.) in CH₃CO₂H-CH₃CO₂Na buffer (1.0 M, pH 4.0; 0.3 M) and CH₂Cl₂ (0.3 M). ^aIsolated yield as a methyl ester after treatment with CH₂N₂. ^bca. 10% of starting material was still remained. ^cca. 18% chlorinated product was obtained as an inseparable mixture. dca. 3% of chlorinated product was obtained as inseparable mixture. ^eEnantiomeric excess was determined by HPLC (CHIRALPAK AD-H, DAICEL). ^fEnantiomeric excess was determined by HPLC (CHIRALCEL OD-H, DAICEL).

(No. 17790005), and Grant-in-Aid for the Grobal COE Program for "International Center of Research & Education for Molecular Complex Chemistry" from Ministry of Education, Culture, Sports, Science, and Technology, Japan.

- (a) M. F. Schlecht, in *Comprehensive Organic Synthesis*, eds. B. M. Trost, I. Fleming and S. V. Ley, Pergamon, Oxford, 1991, vol. 7, pp. 251–327; (b) *Modern Oxidation Methods*, ed. J.-E. Bäckvall, Wiley-VCH, Weinheim, Germany, 2004.
- R. W. Drugger, J. A. Ragan and D. H. Brown Ripin, Org. Process Res. Dev., 2005, 9, 253; (b) J. S. Carey, D. Laffan, C. Thomson and M. T. Williams, Org. Biomol. Chem., 2006, 4, 2337; (c) S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan and D. H. Brown Ripin, Chem. Rev., 2006, 106, 2943.
- J. Chem. Soc., 1946, 39.
- 4 E. J. Corey and G. Schmidt, Tetrahedron Lett., 1979, 5, 399.
- 5 M. Zhao, J. Li, Z. Song, R. Desmond, D. M. Tschaen, E. J.
- J. Grabowski and P. J. Reider, *Tetrahedron Lett.*, 1998, **39**, 5323.
 P. H. J. Carlsen, T. Katsuki, V. S. Martin and K. B. Sharpless, *J. Org. Chem.*, 1981, **46**, 3936.
- 7 M. Schröder and W. P. Griffith, J. Chem. Soc., Chem. Commun., 1979, 58.
- 8 R. Noyori, M. Aoki and K. Sato, Chem. Commun., 2003, 1977.
- 9 (a) H. Tohma, S. Takizawa, T. Maegawa and Y. Kita, Angew. Chem., Int. Ed., 2000, **39**, 1306; (b) H. Tohma, T. Maegawa, S. Takizawa and Y. Kita, Adv. Synth. Catal., 2002, **344**, 328.
- 10 P. L. Anelli, C. B. F. Montanari and S. Quici, J. Org. Chem., 1987, 52, 2559.
- 11 J. B. Epp and T. S. Widlanski, J. Org. Chem., 1999, 64, 293.
- 12 (a) M. Zhao, J. Li, E. Mano, Z. Song, D. M. Tschaen, E. J. J. Grabowski and P. J. Reider, J. Org. Chem., 1999, 64, 2564; (b) M. Zhao, J. Li, E. Mano, Z. J. Song and D. M. Tschaen, Org. Synth., 2004, 81, 195; (c) A. Zanka, Chem. Pharm. Bull., 2003, 51, 888.
- 13 Addition of small amount of NaOCl is essential for Merck's method since NaClO₂ does not oxidize nitroxyl radicals effectively.
- 14 M. Shibuya, M. Tomizawa, I. Suzuki and Y. Iwabuchi, J. Am. Chem. Soc., 2006, 128, 8412.
- 15 (a) A. E. de Nooy, A. C. Besemer and H. van Bekkum, *Synthesis*, 1996, 1153; (b) R. A. Sheldon and I. W. C. E. Arends, *Adv. Synth. Catal.*, 2004, 1051.
- 16 (a) V. Golubev, E. G. Roznzev and N. B. Neiman, Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1965, 1989;

View Article Online

(b) T. Miyazawa, T. Endo, S. Shiihashi and M. Ogawara, J. Org. Chem., 1985, 50, 1332; (c) J. M. Bobbitt and M. C. L. Flores, Heterocycles, 1998, 27, 509; (d) Z. Ma and J. M. Bobbitt, J. Org. Chem., 1991, 56, 6110; (e) J. M. Bobbitt, J. Org. Chem., 1998, 63, 9367; (f) C. A. Kernag, J. M. Bobbitt and D. V. McGrath, Tetrahedron Lett., 1999, 40, 1635; (g) N. Merbouh, J. M. Bobbitt and C. Brückner, J. Org. Chem., 2004, 69, 5116; (h) J. M. Bobbitt and N. Merbouh, Org. Synth., 2005, 82, 80; (i) M. Shibuya, M. Tomizawa and Y. Iwabuchi, J. Org. Chem., 2008, 73, 4750.

- 17 Neither decomposition nor decline of reactivity of 1-Me-AZADO⁺Cl⁻/1-Me-AZADO⁺BF₄⁻ has been observed after storage in a desiccator at ambient temperature for several months.
- 18 Representative procedure for oxidation of primary alcohols to carboxylic acids. To a stirring mixture of 3-phenylpropanol (7) (150 mg, 1.10 mmol), sodium phosphate buffer (1.0 M, pH 6.8, 3.7 mL) in MeCN (3.7 mL), NaClO₂ (80%) (375 mg, 3.3 mmol) and 1-Me-AZADO⁺Cl⁻ (11 mg, 55 µmol) was added. After stirring for 0.5 h at 25 °C, 2-methyl-2-butene (1.5 mL) was added. H₂O (1 mL) was added and the mixture was extracted with Et₂O. Then the aqueous layer was adjusted to pH 2.0–3.5 with 10% HCl and extracted twice with Et₂O. The combined organic layer was washed with acidic brine and then concentrated to give the crude 3-phenylpropanoic acid. The crude products were diluted by Et₂O and treated with CH₂N₂, followed by removal of excess CH₂N₂ and Et₂O. Purification by column chromatography provided methyl 3-phenylpropanoate (178 mg, 1.08 mmol, 98%).
- 19 Procedure for oxidation of 2-(3,4-dimethoxyphenyl)ethanol on large scale; To a stirring mixture of 2-(3,4-dimethoxyphenyl)ethanol (6) (10 g, 55 mmol) and 1-Me-AZADO⁺Cl[−] (550 mg, 2.7 mmol) in MeCN (90 ml) and sodium phosphate buffer (1.0 M, pH 6.8, 90 ml), NaClO₂ (80%) (18.6 g, 165 mmol) was slowly added. After stirring for 2 h at 25 °C, 2-methyl-2-butene (5 mL) was added. H₂O (10 mL) was added and the mixture was extracted with AcOEt and was further purified with extraction using 5% NaOH. The aqueous layer was washed with Et₂O and acidified with 10% HCl and then extracted with AcOEt. The organic layer was evaporated and the crude products was recrystallized from AcOEt–hexane to afford 3,4-dimethoxyphenylacetic acid (9.26 g, 47.2 mmol, 86%) as colorless prisms.
- 20 Y. Iwabuchi, J. Synth. Org. Chem. Jpn., 2008, 66, 1076.