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A facile, green, one-pot oxidation of primary alcohols to

carboxylic acids with broad substrate applicability has been

developed by employing an expedient catalytic system consisting

of 1-Me-AZADO+X�/NaClO2.

The oxidation of primary alcohols to the corresponding

carboxylic acids is a fundamental transformation in organic

chemistry.1,2 The straightforward appearance of this transfor-

mation, consisting of simple, two-step oxidations: primary

alcohol to aldehyde, then aldehyde to carboxylic acid, has

encouraged many organic chemists to develop an efficient one-

pot oxidation. A number of methods have been established to

date, i.e., CrO3/H2SO4,
3 PDC/DMF,4 CrO3/H5IO6,

5 RuCl3/

H5IO6,
6 RuCl3/K2S2O8,

7 Na2WO4/H2O2,
8 PhIO/KBr,9

TEMPO/NaOCl,10 TEMPO/PhI(OAc)2,
11 TEMPO/NaOCl/

NaClO2,
12 however, the task suffers from several drawbacks:

i.e., limited substrate applicability, toxic and hazardous nature

of reagents, harsh conditions required, and so on. We now

describe a novel catalytic system composed of cat. oxoammonium

salt/NaClO2, which allows a facile, one-pot, efficient oxidation

of primary alcohols to carboxylic acids with broad substrate

applicability.

Among the various methods developed, Merck’s method

using cat. TEMPO/cat. NaOCl/NaClO2 would be placed

as one of the most popular, which achieves increasing

success in the one-pot oxidation of primary alcohols to

carboxylic acids, despite its inherent limitation due to the

use of NaOCl,13 which is notorious for damaging

electron-rich moieties such as alkenes and aromatic rings.

We recently disclosed that 2-azaadamantane N-oxyls

(AZADOs: 2 and 3),14 a less-hindered class of nitroxyl

radicals,15 exhibit significantly enhanced reactivity in the

catalytic oxidation of alcohols compared with TEMPO (1)

(Fig. 1). The fact that AZADOs possess markedly smaller E10

values than TEMPO (E10 vs. Ag/Ag+: 1-Me-AZADO,

186 mV; AZADO, 236 mV; TEMPO, 294 mV) coupled with

an idea inspired by Merck’s method, that the use of the

oxoammonium salt16 as an initial catalyst, instead of nitroxyl

radical, will liberate substrates from the harmful NaOCl, led

us to envision a ‘‘virtually NaOCl-free’’ catalytic system

featuring the following steps: (i) oxoammonium ion reacts

with alcohols to give hydroxylamine and aldehyde; (ii) the

aldehyde generated reacts with NaClO2 to give a

carboxylic acid and NaOCl; (iii) NaOCl generated in situ is

immediately consumed by hydroxylamine to regenerate an

oxoammonium ion, thereby establishing a catalytic cycle

(Scheme 1). The key point is the kinetic efficiency of

quenching the destructive NaOCl by a hydroxylamine to

regenerate a milder and more selective oxidant, the

oxoammonium ion.

To verify the above-mentioned concept, two types of

1-Me-AZADO-derived oxoammonium salts, namely,

1-Me-AZADO+Cl� and 1-Me-AZADO+BF4
�,17 were pre-

pared, along with TEMPO+Cl� and TEMPO+BF4
�, and

challenged by the projected one-pot oxidation.

We confirmed that the oxoammonium salt/NaClO2 system

exhibits an optimized performance in MeCN-aq. sodium

phosphate (1.0 M, pH 6.8) to convert primary alcohols 4, 5

and 6 to the corresponding carboxylic acids up to 10 g-scale

experiment, with which cat. TEMPO/cat. NaOCl/NaClO2

(Merck’s method) failed to afford a carboxylic acid

product in good yield due to the damage of electron-rich

functionalities.12a,b,18,19 Beside the superiority of 1-Me-AZADO

over TEMPO, it should be noted that direct investment of the

substantial catalyst, the oxoammonium salt, brought about a

marked productivity (Table 1).19,20

The scope of the utility of oxoammonium salt/NaClO2 for

the one-pot oxidation of primary alcohols 7–17 to carboxylic

Fig. 1 TEMPO (1) and AZADOs (2 and 3).

Scheme 1 Our plan for one-pot oxidation.
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acids is shown in Table 2, where 1-Me-AZADO+ exhibited

better catalytic performance than TEMPO+. Note that

1-Me-AZADO+Cl� successfully oxidized alkenyl alcohols to

afford the corresponding carboxylic acids, where TEMPO+

suffered from side reactions, such as oxidative cleavage and

chlorination (Table 1, oxidation of 6; Table 2 entry 7). The

admirably clean transformations attained by 1-Me-AZADO+

may be attributed to the highly reactive nature of

1-Me-AZADOH in consuming NaOCl, quenching the

destructive pathway of reacting p-electrons of the

substrates. No epimerizations were observed in the oxidation

of N-protected a-amino alcohols (entries 9, 10). In some cases,

a more acidic buffer produced a faster reaction rate (Table 2,

entry 8; Method C). It would be useful to point out

that 1-Me-AZADO+BF4
� is advantageous over

1-Me-AZADO+Cl� in terms of its less hygroscopic nature

as well as its selectivity in suppressing the undesired

chlorination under 5% (entry 7).

In summary, we disclose a facile, one-pot, efficient oxidation

of primary alcohols to carboxylic acids with broad substrate

applicability employing 1-Me-AZADO+X�/NaClO2, which

should lead to progress in a wide range of chemical

research areas.
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Table 2 Scope of one-pot oxidation employing oxoammonium
salt/NaClO2

Method A: reactions were catalyzed by TEMPO+Cl� or

1-Me-AZADO+Cl� (5 mol%) with NaClO2 (5 eq.) in sodium

phosphate buffer (1.0 M, pH 6.8; 0.3 M) and MeCN (0.3 M) at

25 1C. Method B: reactions were catalyzed by TEMPO+BF4
� or

1-Me-AZADO+BF4
� (5 mol%) with NaClO2 (3 eq.) in sodium

phosphate buffer (1.0 M, pH 6.7; 0.3 M) and MeCN (0.3 M) at

25 1C. Method C: reactions were catalyzed by TEMPO+Cl� or

1-Me-AZADO+Cl� (5 mol%) with NaClO2 (3 eq.) in

CH3CO2H–CH3CO2Na buffer (1.0 M, pH 4.0; 0.3 M) and CH2Cl2
(0.3 M). aIsolated yield as a methyl ester after treatment with CH2N2.
bca. 10% of starting material was still remained. cca. 18% chlorinated

product was obtained as an inseparable mixture. dca. 3% of

chlorinated product was obtained as inseparable mixture.
eEnantiomeric excess was determined by HPLC (CHIRALPAK

AD-H, DAICEL). fEnantiomeric excess was determined by HPLC

(CHIRALCEL OD-H, DAICEL).

Table 1 Catalytic one-pot oxidation of primary alcohols having
electron-rich groups employing NaClO2 as the terminal oxidant

aReactions were catalyzed by TEMPO or 1-Me-AZADO (7 mol%)

with NaOCl (2 mol%) and NaClO2 (2 eq.) in sodium phosphate buffer

(1.0 M, pH 6.8; 0.3 M) and MeCN (0.3 M) at 35 1C. bReactions were

catalyzed by TEMPO+X� or 1-Me-AZADO+X� (5 mol%) with

NaClO2 (3 eq.) in sodium phosphate buffer (1.0 M, pH 6.8; 0.3 M)

and MeCN (0.3 M) at 25 1C. cIsolated yield as a methyl ester after

treatment with CH2N2.
dReaction was performed at 50 1C. eReaction

was performed at 40 1C. f5 g of 4 was employed. gReaction was run

using 5 eq. of NaClO2.
h10 g of 6 was employed.
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