REACTION OF ALLYLSILANE WITH α -NITRO OLEFIN AND ITS DEVELOPMENT TO SYNTHESIS OF CYCLOPENTENONE

Masahito Ochiai, Masao Arimoto, and Eiichi Fujita*

Institute for Chemical Research, Kyoto University, Uji, Kyoto-Fu 611, Japan

Summary: Michael addition of allyIsilane to α -nitro olefin in the presence of AlCl₃ proceeded smoothly at low temperature to give unsaturated nitronic acid, which was converted into the $\gamma\delta$ -enone using aqueous Ti (III). Transformation of the enone into the 1,4-diketone followed by the intramolecular aldol condensation with the latter provided a convenient new synthesis of cyclopentenone.

Recently allylsilanes have been used significantly in organic synthesis owing to their stability and regioselectivity.¹ They react with various kinds of electrophiles: carbonyl compounds,² acetals,³ acid chlorides,⁴ epoxides,⁵ *etc*. They also react with $\alpha\beta$ -enones in conjugate fashion to give $\delta\epsilon$ -enones.⁶ We now wish to report the Michael addition of allylsilane 1 to α -nitro olefin 2 and its application to the synthesis of some cyclopentenones 6.

Various kinds of $\alpha\beta$ -disubstituted- α -nitro olefins 2 were prepared readily from the corresponding primary nitroalkanes and aldehydes directly or stepwise (condensation, acetylation, and elimination of acetic acid).⁷ They are well-known to be unstable especially in strong basic media, hence their use as the Michael acceptor would be rather preferable under the neutral or acidic conditions. Recently Yoshikoshi *et al.*⁸ reported the reaction of α -nitro olefin and silyl enol ether in the presence of Lewis acid.

Michael addition ^a		Nef reaction				(«,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
allylsilane	α-nitro olefin ^b	method	reaction time	(hr) ^C product		(% yield)	
]a ~~	0 N02 2a	В	24	O ^r	4a ~~	(51)	
la ^e	0 NO2 2b	В	15		4b ~~	(62)	
lp_t	2b ~~	В	24			(62)	
la ^g		В	72		4c ~~	(55)	
]a ~~		A	24		4d ~~	(49)	
la ~~	2d	В	48	4d		(55)	
la	Me0 NO2 2e	A	48	Me0 O C	4e	(59) ^h	
la ~~	2e ~~	В	24	4e		(48) ^h	
la '	n-C ₁₀ H ₂₁ NO ₂ 2f	A	18	n-C ₁₀ H ₂₁	4f ∼∼	(74)	
1b ~~	2f ~~	A	60	$n-C_{10}H_{21}$		(74)	
la ⁱ	N02 2g	A	24		4g	(50)	

Table Michael Addition of Allylsilane 1 to α -Nitro Olefin 2 in the Presence of AlCl₃ and Successive Nef-type Reaction to $\gamma\delta$ -Enone 4

a) Reactions were performed as described in the text unless otherwise noted. b) Stereochemistry of the α -nitro olefins was deduced from their ¹H NMR spectra⁹; the signals of vinyl protons of $2a^22g$ appear at δ 8.08, 7.97, 8.0, 7.89, 8.08, 7.03, and 7.03 ppm. c) Reactions were carried out at room temperature. d) Yields after isolation by TLC. e) After stirring a mixture of 2b and AlCl₃ in dichloromethane at -20°C for lhr, a solution of la in dichloromethane was added at -20°C. f) Reaction time: lhr. g) 2 Molar equivalents of AlCl₃ were used. h) p-Methoxybenzaldehyde was obtained as a minor product. i) Reaction time: 3hr. The reaction of allylsilane 1 with α -nitro olefin 2 was found to proceed smoothly in the presence of AlCl₃ to give unstable allylated nitronic acid 3 in good yield. A complex formation between α -nitro olefin 2 and the Lewis acid may have an important role in this reaction.

A typical procedure is as follows. To a stirred mixture of AlCl₃ (600 mg, 4.5 mmol) in dichloromethane (10 ml) was added dropwise a solution of 2-nitro-1-phenyl-1-propene (2a) (245 mg, 1.5 mmol) and allyltrimethylsilane (1a) (3 mmol) in dichloromethane (5 ml) over 5 min at -20°C in nitrogen. Immediately the solution yellowed, but the color disappeared after being stirred for 2hr at -20°C. After addition of water, the mixture was extracted with ether and the extract was treated as usual to give unsaturated nitronic acid 3 (R¹=H, R²=Ph, R³=Me) (300 mg) as a highly pure substance [¹H NMR (CDCl₃) δ 1.86 (3 H, s, -CH₃), 2.63 (2 H, t, J = 8 Hz, -CH₂-), 4.60 (1 H, t, J = 8 Hz, -CH-), 4.86-5.30 (2 H, =CH₂), 5.40-6.20 (1 H, m, -CH=), 7.25 (5 H, s, -C₆H₅), and ca 10 ppm (1 H, s, -OH, D₂O exchangeable signal)].

Generally nitronic acid has been known to have a very short half-life.¹⁰ In this allylation reaction, the decomposition of the product $\frac{3}{2}$ was observed on TLC when the reaction temperature was raised to 0°C. Hence, acid $\frac{3}{2}$ obtained was immediately subjected to the following transformation into ketone 4 without further purification.

There have been known many methods for Nef-type reaction including reductive and oxidative process. Nitronic acid 3 was converted into $\gamma\delta$ -enone 4 using aqueous titanium (III) chloride; Method A, TiCl₃/glyme/at pH 1; Method B, NaOMe/MeOH/TiCl₃/NH₄OAc/at pH 5.¹¹ The results are summarized in Table.

Nitronic acid 3 was usually formed in high yield. The moderate to good yields of $\gamma\delta$ -enones 4 in Table are attributable to the Nef-type reaction.

The terminal olefin of ketone 4 was easily converted into acetyl group by palladium catalyzed oxidation reaction¹² using palladium chloride/cuprous chloride/oxygen in dimethyl-

formamide to give 1,4-diketone 5 in excellent yield. The successive intramolecular aldol condensation of unsymmetrical 1,4-diketone 5 with 2% NaOH in 95% aqueous methanolic solution afforded selectively the 2,3-dimethylcyclopentenones 6 under kinetically controlled conditions following the recent work of McCurry, Jr., *et al.*¹³ The direction of this aldol condensation was found to be that expected from their report.

Reaction of allylstannane with α -nitro olefin also proceeds well and it will be the subject of a further publication.

References

- T. H. Chan and I. Fleming, Synthesis, 1979, 761; I. Ojima, and T. Fuchikami, J. Synthetic Org. Chem., Japan, 37, 739 (1979).
- A. Hosomi and H. Sakurai, Tetrahedron Lett., 1976, 1295; M. Ochiai and E. Fujita, J. Chem. Soc., Chem. Comm., in press.
- A. Hosomi, M. Endo, and H. Sakurai, Chem. Lett., 1976, 941; I. Fleming, A. Pearce, and R. L. Snowden, J. Chem. Soc., Chem. Comm., 1976, 182; T. Tsunoda, M. Suzuki, and R. Noyori, Tetrahedron Lett., 21, 71 (1980).
- I. Ojima, M. Kumagai, and Y. Miyazawa, *Tetrahedron Lett.*, 1385 (1977); M. Ochiai and
 E. Fujita, *ibid.*, 21, 4369 (1980).
- 5. I. Fleming and I. Paterson, Synthesis, 1979, 446.
- 6. A. Hosomi and H. Sakurai, J. Amer. Chem. Soc., 99, 1673 (1977).
- 7. H. H. Baer and L. Urbas, "The chemistry of the nitro and nitroso group. Part 2" (Edited by H. Feuer), pp 75~200, Interscience Publishers (1970).
- 8. M. Miyashita, T. Yanami, and A. Yoshikoshi, J. Amer. Chem. Soc., 98, 4679 (1976);
 M. Miyashita, T. Kumazawa, and A. Yoshikoshi, Chem. Lett., 1043 (1980).
- 9. Y. Nagao, K. Kaneko, and E. Fujita, Tetrahedron Lett., 1976, 1215.
- A. T. Nielsen, "The chemistry of the nitro and nitroso group. Part 1" (Edited by H. Feuer), pp 376~382, Interscience Publishers (1969).
- 11. J. E. McMurry and J. Melton, J. Org. Chem., 38, 4367 (1973).
- 12. J. Tsuji, I. Shimizu, and K. Yamamoto, *Tetrahedron Lett.*, 1976, 2975; A. Hosomi,
 H. Kobayashi, and H. Sakurai, *ibid.*, 21, 955 (1980).
- 13. P. M. McCurry, Jr. and R. K. Singh, J. Org. Chem., 39, 2316, 2317 (1974).

(Received in Japan 6 December 1980)