Total synthesis of $\mathrm{PGF}_{2 \alpha}$ and 6,15-diketo-PGF 1α and formal synthesis of 6 -keto- $\mathrm{PGF}_{1 \alpha}$ via three-component coupling

Taehyeong Kim ${ }^{\text {a }}$, Sung Il Lee ${ }^{\text {b }}$, Sejin Kim ${ }^{\text {a }}$, Su Yong Shim ${ }^{\text {c }}$, Do Hyun Ryu ${ }^{\text {a, * }}$
${ }^{\text {a }}$ Department of Chemistry, Sungkyunkwan University, Suwon, 16421, Republic of Korea
${ }^{\mathrm{b}}$ Korea Basic Science Institute (Western Seoul Center), Seoul, 03759, Republic of Korea
${ }^{\text {c }}$ Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea

A R T I C L E I N F O

Article history:

Received 11 July 2019
Received in revised form 30 August 2019
Accepted 4 September 2019
Available online xxx

Keywords:

Asymmetric synthesis

$\mathrm{PGF}_{2 \alpha}$

6-Keto- $\mathrm{PGF}_{1 \alpha}$
Three-component coupling Metathesis

Abstract

The asymmetric total synthesis of $\mathrm{PGF}_{2 \alpha}$ and 6,15 -diketo- $\mathrm{PGF}_{1 \alpha}$ and formal synthesis of 6-keto-PGF 1α from a common key intermediate are described. The key intermediate, which has a chiral cyclopentane backbone possessing suitable functional groups with required stereochemistry for both side chains, was prepared from (R)-4-silyloxy-2-cyclopentenone through a three-component coupling reaction. The Wittig reaction, Nozaki-Hiyama-Kishi (NHK) coupling and cross metathesis completed the synthesis of $\mathrm{PGF}_{2 \alpha}, 6,15$-diketo- $\mathrm{PGF}_{1 \alpha}$ and 6-keto- $\mathrm{PGF}_{1 \alpha}$.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Prostaglandins (PGs) are a group of naturally occurring lipid compounds. They exist in animals and human-beings and mediate various physiological functions [1]. PGs contain 20 carbon atoms including a five-membered carbon ring and have several types of analogues which vary in carbon ring and upper and lower side chain structures. Due to their wide array of bioactivities [2], PGs have attracted considerable attention from synthetic chemists and numerous synthetic explorations have been implemented over several decades [3]. Since the pioneering work by Corey and coworkers [4], utilization of the key intermediate Corey lactone has been one of the most successful strategies to synthesize the entire family of PGs for nearly 50 years [3(b)]. Meanwhile, threecomponent coupling reactions which involve Michael addition of the lower side chain to cyclopentenone using an organometallic reagent, followed by an electrophilic trapping to install the upper side chain have become another mainstream synthetic method for PGs [5]. Recently, a concise asymmetric total synthesis for PGF $_{2 \alpha}$ (1) (Scheme 1) and therapeutic prostaglandin analogues [(6a)] by Aggarwal and co-workers was developed through the aldol cascade

[^0]reaction with proline as the organocatalyst [((6b-d))]. In 2017, based on the promising potential of cross metathesis, Hoveyda's group reported the synthesis of $\mathrm{PGF}_{2 \alpha}$ (1) via three-component coupling following cross metathesis [7].

Another bicyclic prostaglandin which has excellent ability to inhibit platelet aggregation and vasodilation is prostacyclin $\left(\mathrm{PGI}_{2}\right)$ [2]. Because PGI_{2} is unstable in aqueous conditions and rapidly decomposed to its metabolites [8]; for instance, 6,15 -diketo- PGF $_{1 \alpha}$ (2) [9] and 6-keto-- $\mathrm{PGF}_{1 \alpha}$ (3) [10] are known metabolites of prostacyclin. Compared with $\mathrm{PGF}_{2 \alpha}(\mathbf{1})$, synthetic studies on PGI_{2} and its stable metabolites, 6,15-diketo- $\mathrm{PGF}_{1 \alpha}(\mathbf{2})$ and 6 -keto- $\mathrm{PGF}_{1 \alpha}$ (3) have rarely been reported [(3b)]. To the best of our knowledge, there is no synthetic example for $6,15-$ diketo- $\mathrm{PGF}_{1 \alpha}$ (2) and only one example of total synthesis of 6 -keto- $\mathrm{PGF}_{1 \alpha}(\mathbf{3})$ from simple starting material was reported [(10e)] in spite of their many biochemical and analytical studies [9,10].

Considering the same core structures of 1,2 and 3, we envisioned that three target compounds would be synthesized from common intermediate 4, because appropriate functional groups can be easily introduced for the installation of both side chains. Herein, we reported an efficient synthetic route to $\mathrm{PGF}_{2 \alpha}, 6,15-$ diketo- $\mathrm{PGF}_{1 \alpha}$ and 6 -keto- $\mathrm{PGF}_{1 \alpha}$ with high levels of stereoselectivity from a common synthetic intermediate 4.

Scheme 1. Retrosynthetic analysis of $\mathrm{PGF}_{2 \alpha}$ (1), 6,15-diketo- $\mathrm{PGF}_{1 \alpha}$ (2) and 6-keto$\mathrm{PGF}_{1 \alpha}$ (3).

2. Results and discussion

The retrosynthetic analysis of $\operatorname{PGF}_{2 \alpha}(\mathbf{1}), 6,15$-diketo- $\mathrm{PGF}_{1 \alpha}(\mathbf{2})$ and 6 -keto- $\mathrm{PGF}_{1 \alpha}(\mathbf{3})$ is illustrated in Scheme 1 . The key intermediate $\mathbf{4}$ possessing a chiral cyclopentane skeleton with the required stereochemistry could serve as a common precursor for the facile synthesis of $\mathrm{PGF}_{2 \alpha}$ (1), 6,15-diketo- $\mathrm{PGF}_{1 \alpha}$ (2) and 6 -keto- $\mathrm{PGF}_{1 \alpha}$ (3) via cross metathesis and the Wittig reaction or Nozaki-HiyamaKishi (NHK) coupling. Access to 4 could be achieved through a stereoselective three-component coupling reaction of (R)-4-t-butyldimethylsilyloxy-2-cyclopentenone (5).

Based on this plan, the synthesis of key intermediate $\mathbf{4}$ was initiated with the preparation of chiral cyclopentenone 5 (Scheme 2). Although there are several studies on the synthesis of compound 5 and its derivatives due to their synthetic utilities [11,12], we designed a facile and scalable synthetic route to produce chiral 4 -silyloxy-2-cyclopentenone 5 by employing easily accessible chemicals. The ethyl ester moiety of $\mathbf{6}$ which was prepared from ethyl acetate and acrolein in three steps with 97% ee [13] was directly converted to Weinreb amide 7 in 98% yield [14]. Dropwise addition of vinylmagnesium bromide solution to 7 at $-15^{\circ} \mathrm{C}$ furnished hepta-1,6-diene 8 . Overalkylation was not observed in this reaction. Ring closing metathesis of diene $\mathbf{8}$ with a secondgeneration Grubbs catalyst ($\mathbf{9}, 3 \mathrm{~mol} \%$) in dichloromethane resulted in (R)-4-t-butyldimethylsilyloxy-2-cyclopentenone (5) in 88% yield [(11c)]. It is notable that preparation of 4.9 g of 5 was achieved through this scalable procedure.

After successful establishment of a multigram scale synthetic procedure of 5 , we commenced our work by constructing the chiral cyclopentane framework through a three-component coupling

Scheme 2. Synthesis of (R)-4-t-butyldimethylsilyloxy-2-cyclopentenone (5).
reaction (Scheme 3). The vinyl group was introduced at the β-position via the Michael addition reaction of vinylmagnesium bromide in the presence of copper bromide. The resulting enolate was then exposed to various electrophiles in the same pot to introduce the upper side chain. Unfortunately, our attempts to introduce the α-side chain with alkyl halides or epoxy alkane gave unsatisfactory results [15]. However, after extensive screening of electrophiles, we found that α-silyloxy aldehyde $\mathbf{1 0}$ [16] was a good aldol acceptor and β-hydroxy cyclopentanone $\mathbf{1 1}$ was obtained in 99% yield as a mixture of diastereomers at the newly generated β-stereogenic center (3.7:1). By modification of Noyori's three-component coupling method [(10e)], the yield was greatly improved with commercially available cheap reagents. Additionally, introduced versatile vinyl group which makes it easy to install diverse (E)lower side chain double bond would allow a flexible and direct synthesis of many prostaglandin type derivatives through a powerful cross metathesis tool [17].

Continuing the synthesis, cyclopentylmethanols 12 were synthesized from cyclopentanone $\mathbf{1 1}$ via highly efficient five-sequential chemical transformations. In detail, stereoselective carbonyl reduction of cyclopentanone 11 with NaBH_{4} afforded a mixture of cyclopentanol diastereoisomers ($\alpha: \beta=3: 1$) [18]. Removal of the terminal TES protecting group with PPTS in methanol and successive cleavage of vicinal diol in the α-side chain with NaIO_{4} produced cyclopentyl aldehyde. After protection of cyclopentyl alcohol with a TES group, reduction of aldehyde with NaBH_{4} furnished a mixture of α-OTES-12 and β-OTES-12 in 94% combined yield over five steps. Chiral cyclopentane α-OTES-12 was isolated in 70% yield. The use of commercially available and inexpensive reagents, and simple workup procedures between each step followed by single silica gel chromatography as the last step was noteworthy. Then, one carbon homologation of α-OTES- $\mathbf{1 2}$ was accomplished by mesylation and subsequent nucleophilic substitution with KCN to give compound $\mathbf{1 4}$ [19]. Treatment of $\mathbf{1 4}$ with DIBAL-H produced the key intermediate $\mathbf{4}$ in 99% yield. The versatile aldehyde moiety of $\mathbf{4}$ enables to introduce the (Z)-alkene upper side chain through Wittig reaction and the 6 -hydroxy or 6 -keto upper side chain through NHK coupling.

With the key intermediate $\mathbf{4}$ in hand, we focused our attention on the synthesis of $\mathrm{PGF}_{2 \alpha}(\mathbf{1})$ (Scheme 4). Initially, cross metathesis was performed for the installation of E-alkene at the lower side

α-OTES-12 (70\%) β-OTES-12 (24\%) $5 . \mathrm{NaBH}_{4}, \mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}$ OTES

4

Scheme 4. Total synthesis of $\mathrm{PGF}_{2 \alpha}$ (1).
chain. The best result was obtained with second-generation Hov-eyda-Grubbs catalyst 16 ($10 \mathrm{~mol} \%$) in 1,2-dichloroethane with chiral octenol 15 and the desired product 17 was formed in 64% yield (92% brsm) [17]. Chiral octenol 15 was easily prepared from commercially available 1 -octen-3-ol over 3 steps with 96% ee [20]. Treatment of $\mathbf{1 7}$ with the commercially available Wittig salt $\mathbf{1 8}$ in the presence of potassium tert-butoxide enabled the formation of Z-alkene at the upper side chain providing 19 in high yield [((6b-d))]. Finally, deprotection of all silyl groups of 19 under acidic conditions completed the total synthesis of $\mathrm{PGF}_{2 \alpha}(\mathbf{1})$. The identity of the synthetic $\mathrm{PGF}_{2 \alpha}$ has been fully established through comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and specific rotation, $[\alpha]_{D}^{25}=+24.7(c=0.5$, THF $)\left[\right.$ lit. $\left.[\alpha]_{D}^{20}=+23.7(c=0.5, \mathrm{THF})\right][21]$.

Our next goal was to synthesize the prostacyclin metabolites, 6,15-diketo- $\mathrm{PGF}_{1 \alpha}$ (2) and 6-keto- $\mathrm{PGF}_{1 \alpha}$ (3) from the key intermediate $\mathbf{4}$ (Schemes 5 and 6). We considered the Nozaki-Hiyama-Kishi

Scheme 5. Total synthesis of 6,15-diketo-PGF ${ }_{1 \alpha}$ (2).

Scheme 6. Completion of 6-keto-PGF 1 $_{1 \alpha}$ (3) synthesis.
(NHK) coupling reaction between vinyl iodides and the key intermediate $\mathbf{4}$ for the installation of the upper side chain of $\mathbf{2}$ and $\mathbf{3}$. To the best of our knowledge, there is no example that applies this reaction to the synthesis of prostaglandin derivatives. The NHK coupling reaction of $\mathbf{4}$ with vinyl iodide 20 [22] under THF: DMSO = 1:3 gave allylic alcohol 21 in 83% isolated yield [23]. Two epimers of allylic alcohol 21 were transformed to enone 22 using Dess-Martin periodinane. Selective conjugated reduction of α, β-enone was performed with Stryker's reagent and gave ketone 23 in 92% isolated yield [24]. Then, cross metathesis with Zhan Catalyst-1B (24) produced the precursor of target molecule, $\mathbf{2 5}$ in excellent E / Z selectivity [17]. Finally, deprotection of all silyl groups under HF-py conditions gave a 1:1 mixture of cyclized lactol-2 and 6,15-diketo- $\mathrm{PGF}_{1 \alpha}(\mathbf{2})$ which was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture. Unfortunately, lactol-2 and 6,15-diketo-PGF 1α (2) were inseparable and isolation of pure 2 was unsuccessful. Deprotection of silyl group with HCl conditions gave 5:1 mixture of lactol-2 and 6,15-diketo-PGF1 (2).

Continuing the synthesis for another prostacyclin metabolite 6-keto- $\mathrm{PGF}_{1 \alpha}$ (3), the NHK coupling reaction of $\mathbf{4}$ with vinyl iodide 26 [25] in degassed DMF furnished allylic alcohol 27 in 98% isolated yield (Scheme 5) [23]. A diastereomeric mixture of allylic alcohols 27 was subjected to Dess-Martin oxidation to give enone 28 in 79\% yield. Chemoselective conjugate reduction of $\mathbf{2 8}$ with Stryker's reagent furnished the desired ketone 29 in 93% yield [26]. Then, cross metathesis with second-generation Hoveyda-Grubbs catalyst (16) in dichloromethane produced E-alkene 30 in 64% yield (76% brsm) [17]. Selective TES group deprotection with PPTS and ethanol [27] gave a 12:1 mixture of lactol-31 and keto-31 which was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture. Interestingly, we observed lactol-31 was slowly converted to keto-31 at room temperature. As a result, a 1:2 mixture of lactol-31 and keto-31 was obtained after 7 days in dichloromethane and keto- $\mathbf{3 1}$ was isolated in 62% yield. Another single cycle of ring opening of the remaining mixture furnished the desired product keto-31 in 86% total yield. The spectroscopic data and specific rotation of the synthetic keto31 were in full agreement with those reported in the literature,
$[\alpha]_{D}^{25}=-12.3(c=1.0, \mathrm{MeOH})\left[\right.$ lit. $\left.[\alpha]_{D}^{22}=-14(c=2.3, \mathrm{MeOH})\right]$ [(10e)]. Keto-31 can be readily converted to 6-keto-PGF ${ }_{1 \alpha}$ (3) in two steps according to procedures in the literature [(10e)].

3. Conclusion

In summary, asymmetric total synthesis of $\mathrm{PGF}_{2 \alpha}$ and 6,15-diketo- $\mathrm{PGF}_{1 \alpha}$ and formal synthesis of 6 -keto- $\mathrm{PGF}_{1 \alpha}$ were achieved from (R)-4-t-butyldimethylsilyloxy-2-cyclopentenone (5). The key step is a three-component coupling of chiral cyclopentenone $\mathbf{5}$ with vinyl copper reagent and α-silyloxy aldehyde, which quantitatively provided the key intermediate $\mathbf{4}$ having suitable functionality for the required side chains. A cross metathesis approach with vinyl group of $\mathbf{4}$ enables to introduce the fully functionalized many types of (E)-lower side chain double bonds. Additionally, with the aldehyde moiety of common key intermediate 4 , the (Z)-alkene or the 6 -hydroxy upper side chain could be installed through Wittig reaction or NHK coupling, respectively. The Wittig reaction and cross metathesis of $\mathbf{4}$ have been successfully applied for the complete synthesis of $\mathrm{PGF}_{2 \alpha}(\mathbf{1})$. Moreover, the NHK coupling reaction and cross metathesis of 4 enabled the first synthesis of 6,15 -diketo$\mathrm{PGF}_{1 \alpha}$ (2) and formal synthesis of 6-keto- $\mathrm{PGF}_{1 \alpha}$ (3).

4. Experimental section

4.1. General description

Unless stated otherwise, reactions were performed in vacuumflame dried glassware under a positive pressure of dry argon atmosphere using freshly distilled solvents. Dry reagents were prepared by distillation over adequate drying reagents under nitrogen atmosphere. All reactions including reagents sensitive to air and moisture were held under nitrogen atmosphere (glove box and/or Schlenk techniques). Reactions were monitored by TLC using Merck silica gel $60 \mathrm{~F}_{254}$ plates. Flash column chromatography was performed using E. Merck silica gel ($40-60 \mu \mathrm{~m}$ particle size). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on an AVS 400 instrument (Bruker) at 500 and 125 MHz . Deuterated chloroform was used as solvent and spectra were calibrated against the residual solvent peak (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.0 ppm for ${ }^{13} \mathrm{C}$). Deuterated methanol was used as solvent and spectra were calibrated against the residual solvent peak (4.84 ppm for ${ }^{1} \mathrm{H}$ and 49.1 ppm for ${ }^{13} \mathrm{C}$). IR spectra were recorded on a Bruker Vertex 70. HRMS were recorded on LTQ Orbitrap XL mass spectrometer (ThermoFisher Scientific). LRMS data were obtained by Bruker Impact HD quadrupole time of flight and Agilent (1100). Analytic HPLC was performed on YL 9100 HPLC system using the denoted chiral column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$). Analytic GC was performed on YL 6500 GC system using the denoted chiral column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.12 \mu \mathrm{~m}$). Optical rotations were recorded on a Perkin-Elmer polarimeter Model 343 plus at 589 nm .

4.2. (R)-3-(tert-butyldimethylsilyloxy)-N-Methoxy-N-methylpent-4-enamide (7)

To a stirred solution of $\mathbf{6}(7.25 \mathrm{~g}, 28 \mathrm{mmol}, 1.0$ equiv) in THF (50 mL) at $-20^{\circ} \mathrm{C}$ was added N, O-dimethylhydroxylamine hydrochloride ($4.33 \mathrm{~g}, 43.5 \mathrm{mmol}, 1.55$ equiv). After 20 min isopropyl magnesium chloride ($42 \mathrm{~mL}, 84 \mathrm{mmol}, 3.0$ equiv, 2.0 M solution in THF) was added dropwise to the reaction mixture for 15 min at $-10^{\circ} \mathrm{C}$. The reaction mixture was stirred for 10 min and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 3$) on silica gel to obtain the product 7
($7.94 \mathrm{~g}, 98 \%$ yield) as yellow oil: TLC $R_{f}=0.22$ (silica gel, Diethyl ether: n-Hexane $=1: 3$); $[\alpha]_{D}^{25}=+11.4\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $\cup_{\text {max }}$ 2957, 2931, 2896, 2858, 1665, 1472, 1421, 1385, 1253, 1179, 1132, 1081, 1028, 1004, 952, 835, 778, $672 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.89\left(\mathrm{ddd}, J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=10.8 \mathrm{~Hz}, J_{\mathrm{AD}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.26\left(\mathrm{dt}, J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07\left(\mathrm{dt}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.68-4.72(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.82$ $\left(\mathrm{dd}, J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, J_{\mathrm{AC}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42 \quad\left(\mathrm{dd}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.8,141.0,114.3,70.9,61.5,40.6,32.1,26.0$, 18.3, $-4.4,-4.9$; LRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 296.17, found: $m / z=296.17$; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NNaO}_{3} \mathrm{Si}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z$ 296.1652, found: $m / z=296.1651$.

4.3. (R)-5-(tert-Butyldimethylsilyloxy)hepta-1,6-dien-3-one (8)

To a stirred solution of $7(4.5 \mathrm{~g}, 15.58 \mathrm{mmol}, 1.0$ equiv) in THF $(100 \mathrm{~mL})$ at $-15^{\circ} \mathrm{C}$ was added dropwise vinylmagnesium bromide ($46.7 \mathrm{~mL}, 46.74 \mathrm{mmol}$, 3.0 equiv, 1.0 M in THF). The reaction mixture was allowed to gradually warm to room temperature and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) at $0^{\circ} \mathrm{C}$ after completion of reaction. The aqueous layer was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether:n-Hexane $=1: 10$) on silica gel to obtain the product $\mathbf{8}(2.9 \mathrm{~g}, 77 \%$ yield) as yellow oil: TLC $R_{f}=0.71$ (silica gel, Diethyl ether: n-Hexane $=1: 3$); $[\alpha]_{D}^{25}=+20\left(c=1.0, \mathrm{CHCl}_{3}\right)$; IR (neat) $u_{\max } 2957,2930,2858,1684$, $1616,1473,1403,1362,1254,1084,1028,925,836,778,674 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.37\left(\mathrm{dd}, \mathrm{J}_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{\mathrm{AC}}=10.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 6.22\left(\mathrm{dd}, J_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{A C}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.83-5.88(\mathrm{~m}, 2 \mathrm{H})$, $5.23\left(\mathrm{dt}, J_{\mathrm{AB}}=17.4 \mathrm{~Hz}, J_{\mathrm{AC}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.06\left(\mathrm{dt}, J_{\mathrm{AB}}=10.8 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.65-4.68(\mathrm{~m}, 1 \mathrm{H}), 2.91\left(\mathrm{dd}, J_{\mathrm{AB}}=15.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59\left(\mathrm{dd}, J_{\mathrm{AB}}=15.0 \mathrm{~Hz}, J_{\mathrm{AC}}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.86(\mathrm{~s}$, $9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2$, 140.7, 137.6, 128.9, 114.4, 70.8, 47.8, 26.0, 18.3, -4.3, -4.4; LRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 263.14$, found: $\mathrm{m} /$ $z=263.14$; HRMS (ESI): Calcd. for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z$ 263.1438, found: $m / z=263.1437$.

4.4. (R)-4-(tert-Butyldimethylsilyloxy)cyclopent-2-enone (5)

To a stirred solution of $\mathbf{8}\left(6.3 \mathrm{~g}, 26.2 \mathrm{mmol}, 1.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(30 \mathrm{~mL})$ at room temperature was added a second-generation Grubbs catalyst ($667 \mathrm{mg}, 0.78 \mathrm{mmol}, 0.03$ equiv). The reaction mixture was refluxed for 3.5 h and cooled to room temperature. The reaction mixture was concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 10$) on silica gel to obtain the product $\mathbf{5}(4.9 \mathrm{~g}, 88 \%$ yield $)$ as brown oil. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{5}$ were in full agreement with those reported in the literature [28]: TLC $R_{f}=0.26$ (silica gel, Diethyl ether: n-Hexane $=1: 3) ;[\alpha]_{\mathrm{D}}^{25}=+51.5\left(c=1.0, \mathrm{CHCl}_{3}\right)$, Lit.: $[\alpha]_{\mathrm{D}}^{20}=+51.0\left(c=1.02, \mathrm{CHCl}_{3}, 98 \%\right.$ ee [28]; IR (neat) $u_{\max } 2956$, 2931, 2858, 1724, 1472, 1356, 1254, 1184, 1109, 1072, 900, 836, 778, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45(\mathrm{dd}, J=5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.18 (dd, $J=5.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (dtd, $J=5.9,2.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$ (dd, $J=18.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.24 (dd, $J=18.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 0.90 (s, $J=2.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.13(\mathrm{~s}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.5,163.8,134.4,70.8,44.9,25.7$, 18.1, -4.7, -4.8 ; LRMS (ESI): Calcd. for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{NaO}_{2} \mathrm{Si}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 235.11, found: $m / z=235.11$.
4.5. (2S,3R,4R)-4-(tert-Butyldimethylsilyloxy)-2-(1-hydroxy-2-(triethylsilyloxy)ethyl)-3-vinylcyclopentanone (11)

To a stirred solution of copper bromide dimethyl sulfide complex ($1.71 \mathrm{~g}, 8.24 \mathrm{mmol}, 0.3$ equiv) in THF (200 mL) at $-78^{\circ} \mathrm{C}$ were added vinylmagnesium bromide ($55 \mathrm{~mL}, 54.96 \mathrm{mmol}, 2.0$ equiv, 1.0 M in THF) and HMPA ($2.4 \mathrm{~mL}, 13.74 \mathrm{mmol}, 0.5$ equiv). The reaction mixture was stirred for 15 min . Compound 5 (5.84 g , $27.48 \mathrm{mmol}, 1.0$ equiv) in THF (20 mL) was added dropwise to the reaction mixture for 15 min and aldehyde $\mathbf{1 0}(7.15 \mathrm{~mL}, 35.7 \mathrm{mmol}$, 1.3 equiv) was added to the reaction mixture. After 2 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 50$) on silica gel to obtain the product 11 ($11.3 \mathrm{~g}, 99 \%$ yield, $3.7: 1$ ratio) as yellow oil: TLC $R_{f}=0.55$ (silica gel, Ethyl acetate: n-Hexane $=1: 7$); IR (neat) $u_{\text {max }}$ 3460, 2956, 2878, 1745, 1463, 1413, 1376, 1252, 1109, 1006, 917, 880, 837, 778, 743, $672 \mathrm{~cm}^{-1}$; LRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 437.25$, found: $m / z=437.25$; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{NaO}_{4} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 437.2514$, found: $m / z=437.2514$.

4.6. ((1S,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)methanol (α-OTES-12)

To a stirred solution of $\mathbf{1 1}(2.3 \mathrm{~g}, 5.56 \mathrm{mmol}, 1.0$ equiv) in methyl alcohol (50 mL) at $0^{\circ} \mathrm{C}$ was added sodium borohydride (1.05 g , $27.8 \mathrm{mmol}, 5.0$ equiv). After 30 min , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Without any purification, pyridinium ptoluenesulfonate ($419 \mathrm{mg}, 1.67 \mathrm{mmol}, 0.3$ equiv) was added to crude mixture in methyl alcohol (50 mL) at $0^{\circ} \mathrm{C}$. After 70 min , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Without any purification, sodium periodate ($2.38 \mathrm{~g}, 11.12 \mathrm{mmol}, 2.0$ equiv) was added to crude mixture in methyl alcohol (25 mL) and water $(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. After 30 min , water $(10 \mathrm{~mL})$ was added to the reaction mixture. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Without any purification, chlorotriethylsilane ($1.87 \mathrm{~mL}, \quad 11.12 \mathrm{mmol}, \quad 2.0$ equiv) and 4 dimethylaminopyridine ($34 \mathrm{mg}, 0.278 \mathrm{mmol}, 0.05$ equiv) were added to crude mixture in pyridine (25 mL) at room temperature. After 20 min , water (10 mL) was added to the reaction mixture. The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Without any purification, sodium borohydride ($819 \mathrm{mg}, 21.6 \mathrm{mmol}, 3.9$ equiv) was added to crude mixture in methyl alcohol (50 mL) at $0^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (10 mL) at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 30$) on silica gel to obtain the product α-OTES-12 ($1.5 \mathrm{~g}, 70 \%$ isolated yield) as colorless oil and its diastereomer 24% isolated yield: TLC $R_{f}=0.39$ (α-OTES-12), 0.3 (β-OTES-12, silica gel, Ethyl acetate: n-Hexane $=1: 9$); $[\alpha]_{D}^{25}=+18.6$ ($c=1.0, \mathrm{CHCl}_{3}$); IR(neat) $u_{\text {max }} 2956,2930,2878,1471,1362,1251$, $1131,1073,1006,894,836,776,744,670 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.60\left(\mathrm{ddd}, J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, J_{\mathrm{AD}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
$5.51\left(\mathrm{ddd}, J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=1.8 \mathrm{~Hz}, J_{\mathrm{AD}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.07$ (ddd, $\left.J_{\mathrm{AB}}=10.2 \mathrm{~Hz}, J_{\mathrm{AC}}=1.8 \mathrm{~Hz}, J_{\mathrm{AD}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.34(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80\left(\mathrm{ddd}, J_{\mathrm{AB}}=11.4 \mathrm{~Hz}, J_{\mathrm{AC}}=3.6 \mathrm{~Hz}, J_{\mathrm{AD}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.75(\mathrm{dt}$, $\left.J_{A B}=7.2 \mathrm{~Hz}, \quad J_{A C}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.64-3.68(\mathrm{~m}, 1 \mathrm{H}), 2.88$ (dd, $\left.J_{A B}=9.0 \mathrm{~Hz}, J_{A C}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.60-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{dt}$, $\left.J_{\mathrm{AB}}=13.2 \mathrm{~Hz}, J_{\mathrm{AC}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.73-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.63$ (ddd, $\left.J_{\mathrm{AB}}=13.2 \mathrm{~Hz}, J_{\mathrm{AC}}=9.0 \mathrm{~Hz}, J_{\mathrm{AD}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.97(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.62(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.5,117.0,75.8,73.0,61.6,51.9,48.2$, 45.3, 26.0, 18.2, 6.9, 4.9, -4.3, -4.4; LRMS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{NaO}_{3} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 409.26$, found: $m / z=409.26$; HRMS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{NaO}_{3} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): ~ m / z 409.2565$, found: $\mathrm{m} /$ $z(\%)=409.2565$.

4.7. ((1S,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)methyl methanesulfonate (13)

To a stirred solution of α-OTES-12 ($2.4 \mathrm{~g}, 6.23 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(48 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ were added triethylamine $(2.17 \mathrm{~mL}$, $15.6 \mathrm{mmol}, 2.5$ equiv) and methanesulfonyl chloride (0.97 mL , $12.46 \mathrm{mmol}, 2.0$ equiv). After 15 min , the reaction mixture was quenched with saturated NaHCO_{3} solution (20 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 20$) on silica gel to obtain the product 13 ($2.64 \mathrm{~g}, 91 \%$ yield) as colorless oil: TLC $R_{f}=0.31$ (silica gel, Ethyl acetate: n-Hexane $=1: 9$); $[\alpha]_{D}^{25}=+24.1\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}($ neat $)$ $u_{\max } 2956,2931,2879,1361,1251,1177,1109,1076,1005,954,893$, $836,777,746 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.59-5.65(\mathrm{~m}, 1 \mathrm{H})$, $5.11-5.12(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.10,(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ $\left(\mathrm{td}, J_{\mathrm{AB}}=5.4 \mathrm{~Hz}, J_{\mathrm{AC}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20\left(\mathrm{dd}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, J_{\mathrm{AC}}=4.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 3.85-3.89(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.42\left(\mathrm{td}, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.30\left(\mathrm{ddd}, J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, J_{\mathrm{AC}}=6.0 \mathrm{~Hz}, J_{\mathrm{AD}}=8.4 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 1.94-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.61$ (ddd, $J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, J_{\mathrm{AC}}=6.0 \mathrm{~Hz}$, $\left.J_{\mathrm{AD}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.97(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.61(\mathrm{q}$, $J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.003(\mathrm{~s}, 3 \mathrm{H}),-0.004(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 138.8,117.6,77.1,70.3,68.8,53.2,47.9,44.8,37.3,25.9,18.2$, $7.0,5.0,-4.4,-4.5$; LRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{NaO}_{5} \mathrm{SSi}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 487.23$, found: $m / z=487.23$.
4.8. 2-((1R,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-5-
(triethylsilyloxy)-2-vinylcyclopentyl)acetonitrile (14)

To a stirred solution of $\mathbf{1 3}(11.5 \mathrm{mg}, 0.024 \mathrm{mmol}, 1.0$ equiv) in DMSO (1 mL) at room temperature was added potassium cyanide ($5.6 \mathrm{mg}, 0.086 \mathrm{mmol}, 3.5$ equiv). The reaction mixture was allowed to $60^{\circ} \mathrm{C}$. After 28 h , the reaction mixture was quenched with water $(1 \mathrm{~mL})$ and brine (1 mL) was added to the reaction mixture. The aqueous layer was extracted with ethyl acetate $(3 \times 1 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 20$) on silica gel to obtain the product $14(5.5 \mathrm{mg}, 65 \%$ yield, the starting was recovered, 89% brsm) as colorless oil: TLC $R_{f}=0.57$ (silica gel, Diethyl ether: $n-$ Hexane $=1: 5) ;[\alpha]_{D}^{25}=+14.5\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}($ neat $) \cup_{\max } 2955$, 2928, 2878, 2349, 1741, 1462, 1434, 1250, 1134, 1089, 1016, 836, 777, $743,696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.56$ (ddd, $\mathrm{J}_{\mathrm{AB}}=16.8 \mathrm{~Hz}$, $\left.J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, J_{\mathrm{AD}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.14-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.13(\mathrm{~m}, 1 \mathrm{H})$, $4.26\left(\mathrm{td}, J_{\mathrm{AB}}=5.4 \mathrm{~Hz}, J_{\mathrm{AC}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.84-3.88(\mathrm{~m}, 1 \mathrm{H}), 2.49(\mathrm{dd}$, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.28$ (dd, $\left.J_{A B}=16.8 \mathrm{~Hz}, J_{A C}=4.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.79-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.62$ (ddd, $\left.J_{\mathrm{AB}}=14.4 \mathrm{~Hz}, J_{\mathrm{AC}}=6.0 \mathrm{~Hz}, J_{\mathrm{AD}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.98(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H})$, $0.86(\mathrm{~s}, 9 \mathrm{H}), 0.64(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.003(\mathrm{~s}, 3 \mathrm{H}),-0.005(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.3,119.8,118.4,76.8,71.1,55.9,45.4$,
44.6, 25.9, 18.2, 15.7, 7.0, 5.0, $-4.42,-4.5$; LRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{NNaO}_{2} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 418.26$, found: $m / z=418.25$.

4.9. 2-((1R,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)acetaldehyde (4)

To a stirred solution of $\mathbf{1 4}$ ($536 \mathrm{mg}, 1.35 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added dropwise diisobutylaluminium hydride ($1.76 \mathrm{~mL}, 1.76 \mathrm{mmol}, 1.3$ equiv, 1 M in cyclohexane). After 15 min , the reaction mixture was quenched with saturated Rochelle salt solution (5 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate:n-Hexane $=1: 30$) on silica gel to obtain the product 4 ($536 \mathrm{mg}, 99 \%$ yield) as yellow oil: TLC $R_{f}=0.61$ (silica gel, Ethyl acetate: n-Hexane $=1: 9) ;[\alpha]_{D}^{25}=+40.4\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{IR} u_{\max } 2955,2934,2878$, $2857,2712,1726,1462,1415,1366,1250,1142,1109,1075,1006,939$, 892, 836, 776, 742, $654 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{~s}$, $1 \mathrm{H}), 5.50-5.56(\mathrm{~m}, 1 \mathrm{H}), 5.08-5.10(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.21$ (td, $\left.J_{\mathrm{AB}}=6.0 \mathrm{~Hz}, J_{\mathrm{AC}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80-3.84(\mathrm{~m}, 1 \mathrm{H}), 2.74$ (ddd, $\left.J_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{\mathrm{AC}}=9.0 \mathrm{~Hz}, J_{\mathrm{AD}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.31-2.38(\mathrm{~m}, 3 \mathrm{H})$, 2.03-2.08 (m, 1H), 1.57 (ddd, $J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, J_{\mathrm{AC}}=6.6 \mathrm{~Hz}$, $\left.J_{\mathrm{AD}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.93(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.50-0.59(\mathrm{~m}$, 6 H), 0.003 ($\mathrm{s}, 3 \mathrm{H}$), $-0.003(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.7,139.4,117.6,76.7,71.1,55.9,45.1,42.6,42.2,36.0,18.2,7.0$, 5.0, -4.4, -4.4; LRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{NaO}_{3} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 421.26, found: $m / z=421.25$; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{42} \mathrm{NaO}_{3} \mathrm{Si}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 421.2565$, found: $m / z=421.2563$.
4.10. 2-((1R,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-2-((S,E)-3-(tert-butyldimethylsilyloxy)oct-1-enyl)-5-(triethylsilyloxy) cyclopentyl)acetaldehyde (17)

To a stirred solution of $\mathbf{4}(15.7 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.0$ equiv) and 15 ($58.6 \mu \mathrm{l}, 0.197 \mathrm{mmol}, 5.0$ equiv) in dichloroethane (1 mL) at room temperature was added second-generation Hoveyda-Grubbs catalyst ($2.4 \mathrm{mg}, 0.0039 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was refluxed for 12 h . After 12 h , the reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 99$) on silica gel to obtain the product 17 ($15.2 \mathrm{mg}, 64 \%$ isolated yield, 92% brsm, Only E-form was observed.) as colorless oil: TLC $R_{f}=0.51$ (silica gel, Ethyl acetate: n-Hexane $=1: 10$); $[\alpha]_{D}^{25}=+13.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}($ neat $) u_{\max } 2956,2929,2857,1727$, $1472,1361,1256,1086,1005,972,894,836,774,746,684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.78(\mathrm{~s}, 1 \mathrm{H}), 5.52(\mathrm{dd}, J=15.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.34 (dd, $J=15.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (dd, $J=8.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, $J=11.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=14.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=18.0$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.56$ (ddd, $J=13.8,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.19(\mathrm{~m}, 8 \mathrm{H}), 0.93$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.59-0.49(\mathrm{~m}, 6 \mathrm{H}), 0.03$ ($\mathrm{s}, J=5.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.02 to $-0.01(\mathrm{~m}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.4,136.5,129.6,76.9,72.7,71.0,53.8,45.0,42.9,42.0,38.6,31.8$, 25.9, 25.8, 25.1, 22.6, 18.2, 18.0, 14.0, 6.8, 4.8, -4.3, -4.5, -4.6, -4.8; HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{68} \mathrm{NaO}_{4} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 635.4318$, found: $m / z=635.4318$.

4.11. (Z)-7-((1R,2R,3R,5S)-3-(tert-Butyldimethylsilyloxy)-2-((S,E)-3-(tert-butyldimethylsilyloxy)oct-1-enyl)-5-(triethylsilyloxy) cyclopentyl)hept-5-enoic acid (19)

To a stirred solution of (4-carboxybutyl)triphenylphosphonium bromide ($\mathbf{1 8}, 67.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 6.0$ equiv) in tetrahydrofuran $(0.5 \mathrm{~mL})$ was added potassium tert-butoxide ($34 \mathrm{mg}, 0.3 \mathrm{mmol}, 12.0$
equiv) in tetrahydrofuran ($0.3 \mathrm{~mL}, 1 \mathrm{M}$) at $0^{\circ} \mathrm{C}$. After 40 min , compound 17 ($15.2 \mathrm{mg}, 0.025 \mathrm{mmol}, 1.0$ equiv) in tetrahydrofuran $(0.5 \mathrm{~mL})$ was added to the reaction mixture at $0^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with water (1 mL) and acidified by 1 N HCl to pH 1 at room temperature. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate:nHexane $=1: 30$) on silica gel to obtain the product 19 ($15.0 \mathrm{mg}, 87 \%$ yield, Only Z-form was observed.) as colorless oil: TLC $R_{f}=0.22$ (silica gel, Ethyl acetate: n-Hexane $=1: 3$); $[\alpha]_{D}^{25}=+11.5(c=1.0$, CHCl_{3}); IR(neat) $u_{\max } 2955,2929,2856,1711,1463,1250,1129,1006$, 970, 893, 836, $774,673 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.54-5.43(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{dd}, J=15.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{dt}, J=10.8$, $7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.12 (dd, $J=7.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08 (dd, $J=11.9,5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82$ (dt, $J=13.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35$ (dt, $J=15.1,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.21$ (ddd, $J=14.1,8.4,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.00(\mathrm{~m}, 3 \mathrm{H})$, $1.68(\mathrm{dt}, J=14.2,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.58$ (ddd, $J=14.0,5.4,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.52-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 10 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.89$ $(\mathrm{s}, J=5.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.58$ (ddd, $J=9.9,7.8,1.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.06$ $(\mathrm{s}, J=4.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.00(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.0,134.9,131.0,130.2,128.4,77.4,73.2$, $71.5,54.2,49.4,44.8,38.4,33.2,31.9,26.6,25.9,25.9,25.2,24.9$, 24.6, 22.6, 18.3, 18.0, 14.0, 6.9, 5.0, $-4.3,-4.5,-4.5,-4.7$; HRMS (ESI): Calcd. for $\mathrm{C}_{38} \mathrm{H}_{76} \mathrm{NaO}_{5} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: $m / z 719.4893$, found: $m /$ $z=719.4892$.

4.12. (Z)-7-((1R,2R,3R,5S)-3,5-Dihydroxy-2-((S,E)-3-hydroxyoct-1-enyl)cyclopentyl)hept-5-enoic acid (PGF ${ }_{2 \alpha}$, 1)

To a stirred solution of 19 ($13.8 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.0$ equiv) in acetone (1 mL) was added $1 \mathrm{~N} \mathrm{HCl}(0.26 \mathrm{~mL}, 0.26 \mathrm{mmol}, 13.0$ equiv) at room temperature. After 20 min , water $(1 \mathrm{~mL})$ and brine $(1 \mathrm{~mL})$ were added to the reaction mixture. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Acetic acid:Ethyl acetate $=1: 30$) on silica gel to obtain the product $\mathbf{1}$ ($6.9 \mathrm{mg}, 99 \%$ yield) as colorless oil: TLC $R_{f}=0.21$ (silica gel, Acetic acid:Ethyl acetate $=1: 30) ;[\alpha]_{D}^{25}=+24.7\left(c=0.5\right.$, THF), Lit.: $[\alpha]_{D}^{20}=+23.7$ ($c=0.5$, THF) [20]; IR(neat) $u_{\max } 3406,2959,2929,2879,2858$, 1729, 1560, 1458, 1410, 1254, 1188, 1116, 1068, $1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , MeOD) $\delta 5.52-5.41(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{dt}, J=10.4,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.07(\mathrm{td}, J=5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dt}, J=7.9$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.32 (ddd, $J=14.4,8.4,6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29-2.15 (m, 4H), $2.13-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.63(\mathrm{dd}, J=14.6,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.44(\mathrm{td}, J=9.7,5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=6.7 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 136.6,134.3,130.7,130.3,78.0$, 74.1, 72.3, 56.2, 51.0, 44.4, 38.5, 35.3, 33.1, 28.1, 27.0, 26.5, 26.3, 23.8, 14.5; HRMS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{NaO}_{5}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): \mathrm{m} / \mathrm{z} 377.2298$, found: $m / z=377.2299$.
4.13. (E)-Triisopropylsilyl 7-(($1 R, 2 R, 3 R, 5 S)$-3-(tert-butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6-hydroxyhept-4-enoate (21)

To chromium(II) chloride ($44.7 \mathrm{mg}, 0.36 \mathrm{mmol}, 4.1$ equiv) and nickel(II) chloride ($4.6 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.4$ equiv) was added DMSO (3 mL) and THF (1 mL) at room temperature. The reaction mixture was stirred for 5 min and $4(35.4 \mathrm{mg}, 0.089 \mathrm{mmol}, 1.0$ equiv) and vinyl iodide $\mathbf{2 0}$ ($0.68 \mathrm{~mL}, 0.22 \mathrm{mmol}, 2.5$ equiv) were added to the reaction mixture and the reaction mixture was stirred for 9 h at room temperature. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL) at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic
layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 10$) on silica gel to obtain the product 21 ($48 \mathrm{mg}, 83 \%$ yield) as yellow oil: $\operatorname{TLC} R_{f}=0.12$ (silica gel, Ethyl acetate: n-Hexane $=1: 9$); $\operatorname{IR}($ neat $) u_{\text {max }} 3357,2928$, 2866, 1712, 1464, 1383, 1252, 1065, 882, 836, 777, $678 \mathrm{~cm}^{-1}$; HRMS (ESI): Calcd. for $\mathrm{C}_{35} \mathrm{H}_{70} \mathrm{NaO}_{5} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 677.4423$, found: $\mathrm{m} /$ $z=677.4424$.
4.14. (E)-Triisopropylsilyl 7-(($1 R, 2 R, 3 R, 5 S)$-3-(tert-butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6-oxohept-4-enoate (22)

To a stirred solution of $\mathbf{2 1}$ ($72 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane $(1.26 \mathrm{~mL}$, 0.35 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 4.0$ equiv). The reaction mixture was stirred for 4 h . The reaction mixture was quenched with saturated NaHCO_{3} solution (2 mL), saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (2 mL) and water (2 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 30$) on silica gel to obtain the product 22 ($53.3 \mathrm{mg}, 74 \%$ yield) as colorless oil: TLC $R_{f}=0.43$ (silica gel, Ethyl acetate: n-Hexane $=1: 10$); $[\alpha]_{D}^{25}=+24.4$ ($c=0.5, \mathrm{CHCl}_{3}$); IR(neat) $u_{\text {max }} 2951,2871,1721,1464,1369,1258$, $1071,1005,885,836,748,670,512 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \delta 6.78-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.51$ (ddd, $\left.J_{\mathrm{AB}}=16.8 \mathrm{~Hz}, J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, J_{\mathrm{AD}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.04-5.07(\mathrm{~m}, 2 \mathrm{H})$, 4.21 (td, $\left.J_{\mathrm{AB}}=6.0 \mathrm{~Hz}, J_{\mathrm{AC}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.82\left(\mathrm{td}, J_{\mathrm{AB}}=8.4 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.89\left(\mathrm{dd}, J_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51(\mathrm{br}$ $\mathrm{s}, 3 \mathrm{H}), 2.28-2.38(\mathrm{~m}, 3 \mathrm{H}), 2.04-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (ddd, $\left.J_{\mathrm{AB}}=13.8 \mathrm{~Hz}, J_{\mathrm{AC}}=6.0 \mathrm{~Hz}, J_{\mathrm{AD}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.30($ sept, $J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.85(\mathrm{~s}, 9 \mathrm{H}), 0.45-0.55(\mathrm{~m}, 6 \mathrm{H}),-0.002(\mathrm{~s}, 3 \mathrm{H}),-0.007(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.13,172.46,144.20,139.88,131.44$, 117.25, 71.07, 55.78, 45.19, 43.02, 37.59, 34.26, 27.92, 25.98, 18.27, 17.91, 12.03, 7.03, 4.99, 0.15, -4.36, -4.43; HRMS (ESI): Calcd. for $\mathrm{C}_{35} \mathrm{H}_{68} \mathrm{NaO}_{5} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 675.4267$, found: $m / z=675.4268$.
4.15. Triisopropylsilyl 7-(($1 R, 2 R, 3 R, 5 S)$-3-(tert-
butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6oxoheptanoate (23)

To a stirred solution of $\mathbf{2 2}$ ($246.6 \mathrm{mg}, 0.38 \mathrm{mmol}, 1.0$ equiv) in toluene (3 mL) at room temperature were added t-butyl alcohol ($72 \mu \mathrm{l}, 0.76 \mathrm{mmol}, 2.0$ equiv) and Stryker's reagent $(227 \mathrm{mg}$, $0.12 \mathrm{mmol}, 0.3$ equiv) in toluene (10 mL). After 1 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (12 mL). The aqueous layer was extracted with ethyl acetate $(3 \times 12 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 30$) on silica gel to obtain the product 23 ($226.7 \mathrm{mg}, 92 \%$ yield) as colorless oil: TLC $R_{f}=0.47$ (silica gel, Ethyl acetate: n-Hexane $=1: 10$); $[\alpha]_{D}^{25}=+16.4$ $\left(c=0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{IR}($ neat $) \cup_{\max } 3007,2989,1718,1464,1276,1261$, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50$ (ddd, $\mathrm{J}_{\mathrm{AB}}=16.8 \mathrm{~Hz}$, $\left.J_{\mathrm{AC}}=10.2 \mathrm{~Hz}, J_{\mathrm{AD}}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.03-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{td}$, $\left.J_{\mathrm{AB}}=6.0 \mathrm{~Hz}, J_{\mathrm{AC}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80\left(\mathrm{td}, J_{\mathrm{AB}}=8.4 \mathrm{~Hz}, J_{\mathrm{AC}}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.70\left(\mathrm{dd}, J_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{\mathrm{AC}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.24-2.44(\mathrm{~m}, 7 \mathrm{H})$, $1.99-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.52$ (ddd, $J_{\mathrm{AB}}=13.8 \mathrm{~Hz}$, $\left.J_{\mathrm{AC}}=6.0 \mathrm{~Hz}, J_{\mathrm{AD}}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.29(\mathrm{sept}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 18 \mathrm{H}), 0.92(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H})$, $0.47-0.57(\mathrm{~m}, 6 \mathrm{H}),-0.006(\mathrm{~s}, 3 \mathrm{H}),-0.012(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.44,173.67,139.89,117.20,76.81,71.20$, $55.90,45.16,42.99,42.88,40.43,35.81,25.98,24.95,23.36,17.93$,
12.05, 7.03, 5.05, 0.15, -4.36, -4.42; HRMS (ESI): Calcd. for $\mathrm{C}_{35} \mathrm{H}_{70} \mathrm{NaO}_{5} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 677.4423$, found: $\mathrm{m} / \mathrm{z}(\%)=677.4424$.
4.16. Triisopropylsilyl 7-(($1 R, 2 R, 3 R, 5 S)$-3-(tert-butyldimethylsilyloxy)-2-((E)-3-oxooct-1-enyl)-5-(triethylsilyloxy) cyclopentyl)-6-oxoheptanoate (25)

To a stirred solution of 23 ($226.7 \mathrm{mg}, 0.346 \mathrm{mmol}, 1.0$ equiv) and 1-octen-3-one ($157 \mu \mathrm{l}, 1.04 \mathrm{mmol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 mL) at room temperature was added Zhan Catalyst-1B (13 mg , $0.017 \mathrm{mmol}, 0.05$ equiv). The reaction mixture was allowed to reflux and stirred for 11 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 20$) on silica gel to obtain the product 25 ($170.3 \mathrm{mg}, 65 \%$ yield, 96% brsm, Only E form was observed.) as colorless oil: TLC $R_{f}=0.3$ (silica gel, Ethyl acetate: n-Hexane $=1: 10) ;[\alpha]_{\mathrm{D}}^{25}=+17.2\left(c=0.5, \mathrm{CHCl}_{3}\right)$; IR(neat) $u_{\max } 2953,2871,1717,1464,1370,1253,1006,980,884,837,747$, $520 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.54\left(\mathrm{dd}, \mathrm{J}_{\mathrm{AB}}=15.6 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.12\left(\mathrm{dd}, J_{\mathrm{AB}}=16.2 \mathrm{~Hz}, J_{\mathrm{AC}}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24(\mathrm{td}$, $\left.J_{\mathrm{AB}}=6.0 \mathrm{~Hz}, J_{\mathrm{AC}}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.91\left(\mathrm{td}, J_{\mathrm{AB}}=8.4 \mathrm{~Hz}, J_{\mathrm{AC}}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.74\left(\mathrm{dd}, J_{\mathrm{AB}}=18.0 \mathrm{~Hz}, J_{\mathrm{AC}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.41(\mathrm{~m}, 5 \mathrm{H}), 2.20\left(\mathrm{dd}, J_{\mathrm{AB}}=18.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{AC}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.13-2.18(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.63(\mathrm{~m}, 7 \mathrm{H}), 1.25-1.35$ $(\mathrm{m}, 7 \mathrm{H}), 1.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 18 \mathrm{H}), 0.92(\mathrm{t}, J=8.4 \mathrm{~Hz}, 9 \mathrm{H}), 0.89(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.48-0.58(\mathrm{~m}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.04$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.62, 200.48, 173.60, 147.76, 132.39, 76.68, 71.31, 54.68, 45.32, 43.731, 42.79, 40.33, 40.28, $35.75,31.64,25.87,24.90,24.13,23.25,22.63,18.15,17.92,14.08$, 12.03, 6.99, 5.01, $-4.45,-4.52$; HRMS (ESI): Calcd. for $\mathrm{C}_{41} \mathrm{H}_{80} \mathrm{NaO}_{6} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 775.5155$, found: $m / z=775.5155$.
4.17. 7-((1R,2R,3R,5S)-3,5-dihydroxy-2-((E)-3-oxooct-1-enyl) cyclopentyl)-6-oxoheptanoic acid (6,15-diketo- PGF $_{1 \alpha}$, 2)

To a stirred solution of $\mathbf{2 5}$ ($32 \mathrm{mg}, 0.026 \mathrm{mmol}, 1.0$ equiv) in acetonitrile (2 mL) at room temperature was added pyridine $(0.03 \mathrm{~mL})$ and hydrogen fluoride-pyridine $(0.09 \mathrm{~mL})$. The reaction mixture was stirred for 14 h . The reaction mixture was quenched with water (2 mL) and brine (2 mL). The aqueous layer was extracted with diethyl ether $(3 \times 2 \mathrm{~mL})$ and concentrated in vacuo at $0^{\circ} \mathrm{C}$ to obtain the product lactol-2 and 6,15 -diketo-PGF ${ }_{1 \alpha}$ (2) mixture ($15.5 \mathrm{mg}, 99 \%$ yield) as yellow oil. The ratio of lactol-2 and 6,15 -diketo- $\mathrm{PGF}_{1 \alpha}$ (1:1) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude mixture: TLC $R_{f}=0.52$ (lactol-2), 0.27 (6,15 -diketo-PGF 1α, silica gel, Acetic acid:Ethyl acetate $=1: 100$); IR(neat) $u_{\text {max }} 3440$, 2955, 2924, 2854, 1711, 1627, 1461, 1378, 1250, 1065, 984, 880, 732, 593, $555,527 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, mixture) $\delta 6.72-6.60(\mathrm{~m}, 1 \mathrm{H}$, lactol-2), 6.53 (dd, $J=16.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2}), 6.20$ (dd, $J=20.3,9.8 \mathrm{~Hz}, 1 \mathrm{H}$, lactol-2), 6.08 (dd, $J=16.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, 2$), 4.81 (t, $J=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2}$), 4.46 (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathbf{2}$), 4.06 (ddd, $J=18.6,13.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}$, lactol-2), $3.03-2.91$ (m, 2H, 2), $2.80-2.61$ (m, 1H, lactol-2), 2.57-2.44 (m,5H), 2.42-2.28 (m, 5H), 2.23-2.03 (m, 3H), 1.98-1.83 (m, 3H), 1.78-1.53 (m, 12H), 1.53-1.34 (m, 5H), $1.34-0.95(\mathrm{~m}, 13 \mathrm{H}), 0.93-0.85(\mathrm{~m}, 6 \mathrm{H})$; HRMS (ESI): Calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{6}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z$ 391.2091, found: $m / z=391.2093$.
4.18. (E)-Methyl 7-((1R,2R,3R,5S)-3-(tert-butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6-hydroxyhept-4-enoate (27)

To chromium(II) chloride ($280 \mathrm{mg}, 2.28 \mathrm{mmol}, 10.0$ equiv) and nickel(II) chloride ($295.5 \mathrm{mg}, 2.28 \mathrm{mmol}, 10.0$ equiv) was added DMF (1.5 mL) at room temperature (chromium(II) chloride and nickel(II) chloride were handled in a glove box and DMF was degassed by argon gas for 10 min). The reaction mixture was stirred
for 30 min and $\mathbf{4}$ ($91 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.0$ equiv) in DMF (1 mL) was added to the reaction mixture. Vinyl iodide 26 ($0.1 \mathrm{~mL}, 0.68 \mathrm{mmol}$, 3.0 equiv) was added dropwise to the reaction mixture and the reaction mixture was stirred for 48 h at room temperature. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The aqueous layer was extracted with diethyl ether $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate:nHexane $=1: 8$) on silica gel to obtain the product 27 ($114 \mathrm{mg}, 98 \%$ yield, $1: 1$ ratio) as yellow oil: TLC $R_{f}=0.09$ (silica gel, Ethyl acetate: n-Hexane $=1: 10$); $\operatorname{IR}($ neat $) u_{\max } 2955,2935,2879,1742,1462$, 1438, 1414, 1374, 1249, 1067, 1006, 894, 836, 776, 743, 726, $670 \mathrm{~cm}^{-1}$; LRMS (ESI): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{NaO}_{5} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 535.32 , found: $m / z=535.32$; HRMS (ESI): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{NaO}_{5} \mathrm{Si}_{2}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 535.3246$, found: $m / z=535.3246$.
4.19. (E)-Methyl 7-((1R,2R,3R,5S)-3-(tert-butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6-oxohept-4-enoate (28)

To a stirred solution of 27 ($8.4 \mathrm{mg}, 0.016 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added Dess-Martin periodinane (18 mg , $0.04 \mathrm{mmol}, 2.5$ equiv). The reaction mixture was allowed to warm to room temperature and stirred for 12 h . The reaction mixture was quenched with saturated NaHCO_{3} solution (2 mL), saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (2 mL) and water (2 mL). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate:nHexane $=1: 8$) on silica gel to obtain the product $28(6.5 \mathrm{mg}, 79 \%$ yield) as colorless oil: TLC $R_{f}=0.43$ (silica gel, Ethyl acetate:nHexane $=1: 10) ;[\alpha]_{D}^{25}=+38.0\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}($ neat $) u_{\max } 2955$, 2935, 2878, 2857, 1742, 1699, 1677, 1637, 1462, 1438, 1372, 1248, 1111, 1070, 1007, 895, 837, 777, 742, $669 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 6.77(\mathrm{dt}, J=15.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dt}, J=15.7,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 5.51 (ddd, $J=17.0,10.1,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.19$ (td, $J=5.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{td}, J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.89$ (dd, $J=18.1,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.55-2.42 (m, 4H), 2.38-2.26 (m, 3H), $2.12-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.51$ (ddd, $J=14.0,6.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.88$ (t, $J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.53-0.44(\mathrm{~m}, 6 \mathrm{H}),-0.02(\mathrm{~s}, 3 \mathrm{H}),-0.02$ ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.0,172.7,143.7,139.7,131.4$, 117.1, 70.9, 55.6, 51.8, 45.0, 42.8, 37.5, 32.3, 27.4, 25.8, 18.1, 6.9, 6.8, 4.8, $-4.5,-4.6$; LRMS (ESI): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{50} \mathrm{NaO}_{5} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 533.31, found: $m / z=533.30$.

4.20. Methyl 7-(($1 R, 2 R, 3 R, 5 S)$-3-(tert-butyldimethylsilyloxy)-5-(triethylsilyloxy)-2-vinylcyclopentyl)-6-oxoheptanoate (29)

To a stirred solution of $\mathbf{2 8}$ ($30.5 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0$ equiv) in toluene (1 mL) at room temperature were added t-butyl alcohol ($11.4 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 2.0$ equiv) and Stryker's reagent (39 mg , $0.018 \mathrm{mmol}, 0.3$ equiv) in toluene (2 mL). After 1 h , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 mL). The aqueous layer was extracted with ethyl acetate $(3 \times 2 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography (Ethyl acetate: n-Hexane $=1: 10$) on silica gel to obtain the product 29 ($28.5 \mathrm{mg}, 93 \%$ yield) as colorless oil: TLC $R_{f}=0.71$ (silica gel, Ethyl acetate: n-Hexane $=1: 5$); $[\alpha]_{D}^{25}=+25.9$ ($c=1.0, \mathrm{CHCl}_{3}$); IR(neat) $u_{\text {max }} 2954,2933,2878,2857,1742,1715$, $1462,1413,1371,1250,1100,1073,1007,895,837,776,742,728$, $670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.49$ (ddd, $J=16.9,10.3$, $9.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.07-5.01(\mathrm{~m}, 2 \mathrm{H}), 4.18$ (td, $J=5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (td, $J=8.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{dd}, J=18.1,9.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40-2.23(\mathrm{~m}, 7 \mathrm{H}), 2.03-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.49(\mathrm{~m}, 5 \mathrm{H}), 0.91(\mathrm{t}$,
$J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.84(\mathrm{~s}, J=2.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.55-0.48(\mathrm{~m}, 6 \mathrm{H}),-0.02(\mathrm{~s}$, $J=2.1 \mathrm{~Hz}, 3 \mathrm{H}),-0.02(\mathrm{~s}, J=3.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,173.8,139.7,117.0,76.6,71.0,55.7,51.4,45.0,42.8,42.6,40.3$, 33.8, 25.8, 24.5, 23.1, 18.0, 6.8, 4.9, -4.6, -4.6; LRMS (ESI): Calcd. for $\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{NaO}_{5} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 535.32$, found: $m / z(\%)=535.32$.
4.21. Methyl 7-((1R,2R,3R,5S)-3-(tert-butyldimethylsilyloxy)-2-((S,E)-3-(tert-butyldimethylsilyloxy)oct-1-enyl)-5-(triethylsilyloxy) cyclopentyl)-6-oxoheptanoate (30)

To a stirred solution of $\mathbf{2 9}(3.9 \mathrm{mg}, 0.008 \mathrm{mmol}, 1.0$ equiv) and 15 ($11.3 \mu \mathrm{l}, 0.038 \mathrm{mmol}, 5.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ at room temperature was added second-generation Hoveyda-Grubbs catalyst ($0.56 \mathrm{mg}, 0.0008 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was allowed to reflux and stirred for 14 h . The reaction mixture was cooled to room temperature and concentrated in vacuo. The residue was purified by column chromatography (Diethyl ether:n-Hexane $=1: 10$) on silica gel to obtain the product $\mathbf{3 0}$ ($3.5 \mathrm{mg}, 64 \%$ yield, 76% brsm, Only E-form was observed.) as colorless oil: $\operatorname{TLC} R_{f}=0.46$ (silica gel, Ethyl acetate: n-Hexane $=1: 10) ;[\alpha]_{D}^{25}=+19.2(c=0.5$, CHCl_{3}); IR(neat) $u_{\text {max }} 2955,2930,2858,1743,1416,1462,1372,1252$, $1069,1007,973,837,775,735,668 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 5.49(\mathrm{dd}, J=15.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.31$ (ddd, $J=15.4,8.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.19(\mathrm{td}, J=5.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{td}, J=8.1$, $6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.66 (s, 3H), 2.72 (dd, $J=18.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38-2.21 (m, 7H), 2.00-1.93 (m, 1H), 1.63-1.48 (m, 6H), 1.44-1.38 (m, 2H), $1.32-1.22(\mathrm{~m}, 8 \mathrm{H}), 0.91(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~s}$, $J=3.1 \mathrm{~Hz}, 9 \mathrm{H}), 0.55-0.46(\mathrm{~m}, 6 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.00$ $(\mathrm{s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.1,173.8$, $136.2,130.1,72.8,71.0,53.7,51.5,45.0,43.1,42.5,40.1,38.7,33.9$, $31.9,30.3,25.9,25.9,25.1,24.6,23.2,22.7,18.2,18.1,14.1,6.9$, 4.9, $-4.2,-4.5,-4.5,-4.8$; LRMS (ESI): Calcd. for $\mathrm{C}_{39} \mathrm{H}_{78} \mathrm{NaO}_{6} \mathrm{Si}_{3}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 749.50$, found: $m / z=749.50$; HRMS (ESI): Calcd. for $\mathrm{C}_{39} \mathrm{H}_{78} \mathrm{NaO}_{6} \mathrm{Si}_{3}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z 749.4998$, found: $m / z=749.4999$.

4.22. Methyl 7-(($1 R, 2 R, 3 R, 5 S)-3-($ tert-butyldimethylsilyloxy)-2-((S,E)-3-(tert-butyldimethylsilyloxy)oct-1-enyl)-5-hydroxycyclopentyl)-6-oxoheptanoate (keto-31)

To a stirred solution of $\mathbf{3 0}(32.4 \mathrm{mg}, 0.04 \mathrm{mmol}, 1.0$ equiv) in ethyl alcohol (2 mL) at room temperature was added pyridinium p toluenesulfonate ($1 \mathrm{mg}, 0.004 \mathrm{mmol}$, 0.1 equiv). After 3 h , the reaction mixture was quenched with saturated NaHCO_{3} solution $(2 \mathrm{~mL})$ and stirred for 1 h . The aqueous layer was extracted with diethyl ether ($3 \times 5 \mathrm{~mL}$) and the organic layer was washed with saturated NaHCO_{3} solution (1 mL), water (1 mL), and brine (1 mL). The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The ratio of lactol-31 and keto-31 (12:1) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude mixture in CDCl_{3}. The residue was purified by column chromatography (Diethyl ether:nHexane $=1: 10$) on silica gel to obtain the mixture of lactol-31 and keto-31 as colorless oil. Then, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added to the mixture of lactol-31 and keto-31. The reaction mixture was stirred for 7 d at room temperature and concentrated in vacuo. The ratio of lactol-31 and keto-31 (1:2) was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude mixture. The residue was purified by column chromatography (Diethyl ether: n-Hexane $=1: 10$) on silica gel to obtain the product keto- $\mathbf{3 1}$ ($15.2 \mathrm{mg}, 62 \%$ isolated yield) as colorless oil. The remaining lactol-31 was completely recovered and after one cycle of ring opening attempt, total 21.1 mg of keto- 31 (86% total yield) was obtained. Because tautomer of the product keto- $\mathbf{3 1}$ was observed by NMR, it was taken at $50^{\circ} \mathrm{C}$ and assigned for major peaks: TLC $R_{f}=0.64$ (lactol-31), 0.20 (keto-31, silica gel, Ethyl acetate: n-Hexane $=1: 5) ; \quad[\alpha]_{D}^{25}=-12.3 \quad(c=1.0, \quad$ MeOH $), \quad$ Lit.: $[\alpha]_{D}^{22}=-14(c=2.3, \mathrm{MeOH})[10(\mathrm{e})] ; \operatorname{IR}($ neat $) u_{\max } 3675,2959,2929$,

2901, 1742, 1471, 1393, 1251, 1066, 1056, 973, 836, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.49-5.34(\mathrm{~m}, 2 \mathrm{H}), 4.63-3.91(\mathrm{~m}, 3 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.80-1.30(\mathrm{~m}, 23 \mathrm{H}), 0.93-0.87(\mathrm{~m}, 21 \mathrm{H}), 0.03$ to -0.06 $(\mathrm{m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.7,173.7,135.4,130.0$, $78.9,73.2,73.1,55.9,51.4,45.9,43.4,42.8,41.3,38.6,33.8,31.9,25.9$, 25.8, 25.0, 24.5, 23.3, 22.6, 18.2, 17.9, 13.9, -4.2, -4.6, -4.7, -4.7; LRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{NaO}_{6} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 635.41 , found: $\mathrm{m} /$ $z=635.41$; HRMS (ESI): Calcd. for $\mathrm{C}_{33} \mathrm{H}_{64} \mathrm{NaO}_{6} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): m / z$ 635.4134, found: $m / z=635.4134$.

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2019R1H1A2080189, No. 2019R1A4A2001440).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.tet.2019.130593.

References

[1] (a) K.H. Gibson, Chem. Soc. Rev. 6 (1977) 489-510;
(b) Curtis-Prior, P.B. Prostaglandins, Biology and Chemistry of Prostaglandins and Related Eicosanoids, Churchill Livingstone, New York, 1988;
(c) F. Marks, G. Fürstenberger, Prostaglandins, Leukotrienes and Other Eicosanoids, Wiley-VCH, Verlag, New York, 1999 (and references therein);
(d) I. Dams, J. Wasyluk, M. Prost, A. Kutner, Prostaglandins Other Lipid Mediat. 104-105 (2013) 109-121.
[2] (a) P.W. Collins, S.W. Djuric, Chem. Rev. 93 (1993) 1533-1564;
(b) S.J. Halliday, M. Xu, T.E. Thayer, J.D. Mosley, Q. Sheng, F. Ye, E.H. FarberEger, M.E. Pugh, I.R. Robbins, T.R. Assad, J.D. West, E.L. Brittain, A.R. Hemnes, Pulm. Circ. 8 (2018) 1-9;
(c) S. Toki, W. Zhou, K. Goleniewska, S. Reiss, D.E. Dulek, D.C. Newcomb, W.E. Lawson, R.S. Jr Peebles, Prostaglandins Other Lipid Mediat. 136 (2018) 33-43;
(d) U.N. Das, Arch. Med. Res. 50 (2019) 11-14;
(e) S. Tada, T. Okuno, M. Shimizu, Y. Sakai, H. Sumi-Akamaru, M. Kinoshita,
K. Yamashita, E. Sanda, C.-J. Choong, A. Namba, T. Sasaki, T. Koda, K. Takata,
S. Miyagawa, Y. Sawa, Y. Nakatsuji, H. Mochizuki, Sci. Rep. 9 (2019) 1-9.
[3] (a) S. Das, S. Chandrasekhar, J.S. Yadav, R. Grée, Chem. Rev. 107 (2007) 3286-3337;
(b) H. Peng, F.-E. Chen, Org. Biomol. Chem. 15 (2017) 6281-6301.
[4] E.J. Corey, N.M. Weinshenker, T.K. Schaaf, W. Huber, J. Am. Chem. Soc. 91 (1969) 5675-5677.
[5] R. Noyori, M. Suzuki, Angew Chem. Int. Ed. Engl. 23 (1984) 847-876.
[6] (a) G. Kawauchi, S. Umemiya, T. Taniguchi, K. Monde, Y. Hayashi, Chem. Eur J. 24 (2018) 8409-8414;
(b) G. Coulthard, W. Erb, V.K. Aggarwal, Nature 489 (2012) 278-281;
(c) S. Prévost, K. Thai, N. Schützenmeister, G. Coulthard, W. Erb, V.K. Aggarwal, Org. Lett. 17 (2015) 504-507;
(d) H. Baars, M.J. Classen, V.K. Aggarwal, Org. Lett. 19 (2017) 6008-6011.
[7] C. Xu, X. Shen, A.H. Hoveyda, J. Am. Chem. Soc. 139 (2017) 10919-10928.
[8] (a) M.J. Cho, M.A. Allen, Prostaglandins 15 (1978) 943-954;
(b) J.M. Armstrong, G. Thirsk, J.A. Salmon, Hypertension 1 (1979) 309-315.
[9] (a) O.R. Etingin, B.B. Weksler, D.P. Hajjar, J. Lipid. Res. 27 (1986) 530-536;
(b) B. Mayer, H. Gleispach, W.R. Kukovetz, Biochim. Biophys. Acta 918 (1987) 209-216;
(c) G.E. Revtyak, A.R. Johnson, W.B. Campbell, Thromb. Res. 48 (1987) 671-683;
(d) M. Hecker, V. Ullrich, J. Biol. Chem. 264 (1989) 141-150.
[10] (a) R.A. Johnson, F.H. Lincoln, E.G. Nidy, W.P. Schneider, J.L. Thompson, U. Axen, J. Am. Chem. Soc. 100 (1978) 7690-7705;
(b) B. Rosenkranz, C. Fischer, K.E. Weimer, J.C. Frölich, J. Biol. Chem. 255 (1980)

10194-10198;
(c) P. Falardeau, J.A. Oates, A.R. Brash, Anal. Biochem. 115 (1981) 359-367;
(d) J. Nokami, T. Ono, J. Hiraga, S. Wakabayashi, Chem. Lett. 14 (1985) 557-560;
(e) T. Tanaka, A. Hazato, K. Bannai, N. Okamura, S. Sugiura, K. Manabe, T. Toru, S. Kurozumi, M. Suzuki, T. Kawagishi, R. Noyori, Tetrahedron 43 (1987) 813-824;
(f) K.B. Brosnihan, V.M. Pulgar, M.S. Bharadwaj, L.A.A. Neves, L.M. Yamaleyeva, Reprod. Biol. Endocrinol. (2016) 14;
(g) R. Kasimu, X. Wang, X. Wang, J. Hu, X. Wang, Y. Mu, Sci. Rep. 8 (2018) 1-10.
[11] For several studies on the synthesis of chiral 4-silyloxy-2-cyclopentenone and its derivatives, see: (a) K. Ulbrich, P. Kreitmeier, T. Vilaivan, O. Reiser, J. Org. Chem. 78 (2013) 4202-4206;
(b) T. Kumaraguru, P. Babita, G. Sheelu, K. Lavanya, N.W. Fadnavis, Org. Process Res. Dev. 17 (2013) 1526-1530;
(c) G. Singh, A. Meyer, J. Aubé, J. Org. Chem. 79 (2014) 452-458;
(d) K. Ren, M. Zhao, B. Hu, B. Lu, X. Xie, V. Ratovelomanana-Vidal, Z. Zhang, J. Org. Chem. 80 (2015) 12572-12579;
(e) C. Holec, D. Sandkuhl, D. Rother, W. Kroutil, J. Pietruszka, ChemCatChem 7 (2015) 3125-3130.
[12] For synthetic utilities of chiral 4-silyloxy-2-cyclopentenone, see: Roche, S. P.; Aitken, D. J. Eur. J. Org. Chem. 2010, vol. 28, 5339-5358.
[13] B. Schmidt, O. Kunz, M.H. Petersen, J. Org. Chem. 77 (2012) 10897-10906.
[14] J.M. Williams, R.B. Jobson, N. Yasuda, G. Marchesini, U.-H. Dolling, E.J.J. Grabowski, Tetrahedron Lett. 36 (1995) 5461-5464.
[15] Several attempts for α-alkylation of enolate with various alkyl halides (diiodomethane, iodoacetonitrile, bromoacetonitrile, prenyl bromide, SEMchloride and ethyl bromoacetate) gave a low yield product or no reaction. Attempts with epoxide 32 and N -formylpiperidine produced protonated

[16] α-Silyloxy aldehyde 10 was prepared from commercially available ethyl glycolate over 2 steps in 93% overall yield [29].
[17] (a) A.K. Chatterjee, T.-L. Choi, D.P. Sanders, R.H. Grubbs, J. Am. Chem. Soc. 125 (2003) 11360-11370;
(b) N.A. Sheddan, J. Mulzer, Org. Lett. 8 (2006) 3101-3104;
(c) J. Li, T.S. Ahmed, C. Xu, B.M. Stoltz, R.H. Grubbs, J. Am. Chem. Soc. 141 (2019) 154-158.
[18] All attempts for stereoselective reduction with CBS catalyst, DIBAL-H, LAH or $\mathrm{Zn}(\mathrm{BH} 4)_{2}$ were unsuccessful in the selectivity or yield aspects.
[19] Attempts for homologation with NaCN resulted in up to 47% yield.
[20] F. Felluga, C. Forzato, F. Ghelfi, P. Nitti, G. Pitacco, U.M. Pagnoni, F. Roncaglia, Tetrahedron: Asymmetry 18 (2007) 527-536.
[21] J.-F. Syu, Y.-T. Wang, K.-C. Liu, P.-Y. Wu, J.P. Henschke, H.-L. Wu, J. Org. Chem. 81 (2016) 10832-10844.
[22] Vinyl iodide 20 was easily prepared from commercially available 4-pentynoic acid by TIPS protection, hydrozirconation and iodination in 80% overall yield [30].
[23] (a) J.Y. Kim, G.-S. Hwang, S.M. Lee, J.H. Han, E.Y. Kim, D.H. Ryu, Bull. Korean Chem. Soc. 30 (2009) 289-290;
(b) Z. Ferjančić, R. Matović, F. Bihelović, J. Serb. Chem. Soc. 79 (2014) 627-636.
[24] Addition of tert-butanol enhanced the reaction rate [31]. Without tertbutanol, a moderate yield was obtained (75\% isolated yield) during the same time.
[25] Vinyl iodide 26 was easily prepared from commercially available 4-pentynoic acid by methyl esterification, hydrozirconation and iodination in 85% overall yield [30].
[26] Addition of tert-butanol enhanced the reaction rate [31]. Without tertbutanol, a moderate yield was obtained (68% isolated yield) during the same time.
[27] R.D. Crouch, Tetrahedron 69 (2013) 2383-2417.
[28] H. Grugel, F. Albrecht, M.M.K. Boysen, Adv. Synth. Catal. 356 (2014) 3289-3294.
[29] S.R. Angle, I. Choi, F.S. Tham, J. Org. Chem. 73 (2008) 6268-6278.
[30] S.E. Denmark, J.H.-C. Liu, J.M. Muhuhi, J. Org. Chem. 76 (2011) 201-215.
[31] C. Deutsch, N. Krause, B.H. Lipshutz, Chem. Rev. 108 (2008) 2916-2927.

[^0]: * Corresponding author.

 E-mail address: dhryu@skku.edu (D.H. Ryu).

