Deconjugation of α, β-Unsaturated Esters and an Intramolecular Michael Reaction of Bis- α, β-unsaturated Esters with Trialkylsilyl Trifluoromethanesulfonate in the Presence of Tertiary Amine: Synthesis of (\pm)-Ricciocarpin A

Masataka Ihara, Shuichi Suzuki, Nobuaki Taniguchi and Keiichiro Fukumoto* Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan

Abstract

Treatment of the α, β-unsaturated esters 1,6 and 8 with trialkylsilyl trifluoromethanesulfonate in the presence of a tertiary amine gave, via silyl dienol ethers, the corresponding deconjugated esters 3, 7 and 9 as the major products, respectively. Reaction of bis- α, β-unsaturated esters 12a and 12 b with a trialkylsilyl trifluoromethansulfonate in the presence of a tertiary amine caused an intramolecular Michael reaction to produce the cyclopentanes 14a and 20a and the cyclohexanes 14b and 20b. Bicyclic compounds 21a and 21b formed by tandem Michael-Dieckmann or intramolecular Diels-Alder reaction were concurrently obtained. The cyclohexane derivative 14b was converted into the racemate of a sesquiterpene, (\pm)-ricciocarpin A 22.

Abstract

Formation of enolates and their selective reactions are among the most important processes in organic synthesis. ${ }^{1}$ Stereoselective aldol and Michael reactions have been developed utilizing several metal enolates, such as lithium, boron, aluminium, silicon, titanium, tin and zinc. Among them, silyl enolates are superior to other metal enolates in isolation, regioselective formation, and inherent reactivities under mild conditions. ${ }^{2}$ Trialkylsilyl trifluoromethanesulfonates are known as the most potent silylating agent, smoothly converting a wide range of ketones, diketones and esters directly into their silyl enol ethers or silyl ketene acetals. ${ }^{2,3}$ In the course of our studies of tandem reactions using trialkylsilyl trifluoromethanesulfonates, ${ }^{4-6}$ the ready formation of silyl dienol ethers from α, β-unsaturated esters was observed. We here report the deconjugation of α, β-unsaturated esters and an intramolecular Michael reaction of bis- α, β-unsaturated esters based on the creation of the silyl dienol ethers together with an application of the method to a synthesis of a natural product. ${ }^{7}$

Results and Discussion

Deconjugation Reaction of α, β-Unsaturated Esters.-Treatment of the (E)-unsaturated ester 1 , which was prepared by benzoylation of methyl (E)-7-hydroxyhept-2-enoate, ${ }^{8}$ with an excess of tert-butyldimethylsilyl trifluoromethanesulfonate (TBDMSOTf) in the presence of triethylamine in dichloromethane at room temperature followed by work-up provided the deconjugated esters $\mathbf{3}$ as major products. It was revealed from $500 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectrum that the deconjugated esters 3 were composed of two isomers in a 1:1.3 ratio. When the reaction mixture of 1 with TBDMSOTf and triethylamine was quenched with deuterium oxide, the α-deuteriated esters 4 were obtained. The fact was supported by spectroscopic evidence: reduction of the integration of the resonance due to the α hydrogens in the $500 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectrum and the molecular ion peak observed at $m / z 263$. The result indicates a formation of the silyl dienol ether 2. The deconjugated ester 3 must be formed by a kinetic protonation of 2 (Scheme 1).

The deconjugation of α, β-unsaturated esters was examined under various conditions and the results are shown in Table 1. The reaction proceeded in the presence of a tertiary amine such as triethylamine or diisopropylethylamine (Entries 1 and 2), but the use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU),
pyridine and hexamethyldisilazane as a base did not give the deconjugated product 3 (Entries 3-5). Among the solvents tested, the silyl dienol ether 2 was quickly formed in dichloromethane (Entry 1) and dichloroethane (Entry 6). Considerable exchange of methyl group of the ester function with the tert-butyldimethylsilyl group was observed during the reaction in dichloroethane over 1 h (Entry 6). The reaction was sluggish in chloroform (Entry 7), carbon tetrachloride (Entry 8), tetrahydrofuran (THF) (Entry 9), benzene (Entry 11) and hexane (Entry 12), and in diethyl ether for 1 h , no deconjugation was detected (Entry 10).
Treatment of the ester 6 with both TBDMSOTf and triisopropylsilyl trifluoromethanesulfonate (TIPSOTf) in the presence of triethylamine produced mainly the deconjugated products 7 (Entries 13 and 14). The silyl dienol ether formed by the reaction with TIPSOTf was rather stable and the product was decomposed by the acetic acid (Entries 14 and 16). The deconjugated ester 9 was exclusively produced from the conjugated ester 8 although the yield was low (Entry 15). It was interesting that the formation of the deconjugated ester $\mathbf{1 1}$ from the conjugated ester 10 possessing a substituent at the γ position was poor (Entry 16).

Intramolecular Michael Reaction of Bis- α, β-unsaturated Esters.-The intramolecular Michael reaction provides a powerful tool for the construction of ring systems. ${ }^{9}$ The above observation about the facile formation of silyl dienol ethers from α, β-unsaturated esters led us to investigate a novel intramolecular Michael reaction of bis $-\alpha, \beta$-unsaturated esters. The intramolecular conjugate addition of the bis- α, β-unsaturated esters $\mathbf{1 2}$ to form the cyclic compound 14 would take place through the silyl dienol ethers 13 under the given reaction conditions (Scheme 2). It was further expected that the bicyclic compounds 15 would be assembled by the tandem MichaelDieckmann reaction ${ }^{10}$ or by the intramolecular Diels-Alder reaction of 13.
Two substrates 12a and 12b for the key reaction were effectively prepared starting from 2 -methylpropanal dimethylhydrazone. The reaction of the hydrazone with the alkyl bromides $16 \mathbf{a}^{11}$ and $\mathbf{1 6 b}$, in the presence of lithium diisopropylamide (LDA) proceeded through elimination ${ }^{12}$ to afford the nitriles 17a and 17b (Scheme 3). Reduction of the latter with diisobutylaluminium hydride (DIBALH), followed by treatment of the products with silica gel provided the

Scheme 2
aldehydes 18a and 18b. These reacted with trimethyl phosphonoacetate in the presence of sodium hydride to yield the (E)-unsaturated esters 19a and 19b. After deprotection of the acetal groups of 19a and 19b using pyridinium toluene-psulfonate (PPTS), condensation with methyl triphenylphosphoranylideneacetate in acetonitrile gave the required bis(E, E)-unsaturated esters 12a and 12b.

Scheme 3 Reagents: i, 2-methylpropanal dimethylhydrazone, LDA; ii, DIBALH then silica gel; iii, (MeO$)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaH}$; iv, PPTS; $\mathrm{v}, \mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}$

The outcome of the reaction of the bis- (E, E)-unsaturated esters 12a and 12b with various trialkylsilyl trifluoromethanesulfonates in the presence of triethylamine in dichloromethane is summarised in Table 2. An inseparable mixture of the cyclopentane derivatives 14 a and 20a and cyclohexane derivatives 14b and 20b were obtained from 12a and 12b, respectively. The cyclopentane 14 a having the (E)-conjugated ester was obtained as a single stereoisomer, while two isomeric cyclohexanes 14b were obtained. It was later established by the equilibration of the aldehydes 24 derived from 14b that the major isomer was the trans-substituted cyclohexane and the minor was the $c i s$-substituted one. The (E)-structures of the deconjugated esters 20a and 20b were tentatively assigned, mainly on the basis of their thermodynamic stability. It was noteworthy that the bicyclic compounds 21a and 21b were obtained only by the reactions carried out with TBDMSOTf (Entries 1 and 3), although it is difficult to determine the precise mechanism: the tandem Michael-Dieckmann or the intramolecular cycloaddition process. The products 21a and 21b were each formed as a single stereoisomer. The stereostructure of 21a was uncertain, but the trans-fused structure of 21b was established by the coupling constants of the signal due to the angular 4a-H observed as a doublet, $J 12.8$ and 11.4 Hz .
On the other hand, it was observed that treatment of bis(E, E)-unsaturated esters 12a and 12b with various bases did not effectively induce the desired intramolecular Michael reaction. Thus, compounds 14a and 14b were obtained in very poor yield by the reaction with a base such as LDA or sodium hydride.

Synthesis of (\pm)-Ricciocarpin A.-Ricciocarpin A 22, which was isolated from Ricciocarpos natans by Becker ${ }^{12}$ in 1990, exhibits potent molluscicidal activity. ${ }^{14}$ Recently, Eicher and

Table 1 Reaction of α, β-unsaturated esters with trialkylsilyl trifluoromethanesulfonate in the presence of amine for 1 h at $18^{\circ} \mathrm{C}$

Entry	Substrate	$\mathrm{R}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$	Amine	Solvent	Product	Yield (\%)	Recovered (\%)
1	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	82	14
2	1	TBDMSOTf	$\mathrm{Pr}^{1}{ }_{2} \mathrm{NEt}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	80	16
3	1	TBDMSOTf	DBU	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	0	98
4	1	TBDMSOTf	Pyridine	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	0	98
5	1	TBDMSOTf	$\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NH}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	3	0	98
6	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	3	56	4
					5	20	
7	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	CHCl_{3}	3	14	84
8	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	CCl_{4}	3	12	86
9	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	THF	3	16	82
10	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{Et}_{2} \mathrm{O}$	3	0	98
11	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	Benzene	3	11	87
12	1	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	Hexane	3	11	87
13	6	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	90	5
14	6	TIPSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	7	93	5
15	8	TBDMSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	9	38	0
16	10	TIPSOTf	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	11	15	75

Table 2 Reaction of the diesters 12 with trialkylsilyl trifluoromethanesulfonate in the presence of $\mathrm{Et}_{3} \mathrm{~N}$

co-workers synthesised the racemate of $22 .{ }^{15}$ Therefore, we were interested in the conversion of the above Michael product 14b into the natural product $\mathbf{2 2}$. The mixture of the cyclohexanes $\mathbf{1 4 b}$ and 20b, obtained by the above method (Entry 3) was subjected to ozonolysis to give the ketone 23 and the aldehydes 24, which were composed of two isomers in a 1.5:1 ratio. The ratio of two isomers of 24 was changed to $7.5: 1$ by their treatment with DBU in dichloromethane at room temperature. Reduction of the equilibrated products with sodium borohydride produced the cyclic hemiacetals 25 , which consisted of the trans- and cis-fused isomers in a $7.5: 1$ ratio. Since the coupling reaction of the hemiacetals 25 with 3 -furyllithium gave a poor result, they were transformed into the thioacetals 26 by the action of propane-1,3-dithiol in the presence of boron
trifluoride-diethyl ether. After the protection of the hydroxy group with the tert-butyldimethylsilyl group, deprotection of the thioacetal group of 27, followed by the reaction of the resulting aldehyde with 3 -furyllithium smoothly produced the epimeric mixture of the alcohols 28 . Removal of the protecting group of 28 provided a 1.3:1 mixture of the diols 29 . It was interesting that oxidation of the mixture of diols 29 with pyridinium dichromate (PDC) in dimethylformamide (DMF)

Scheme 4 Reagents: i, O_{3}; then $\mathrm{Et}_{3} \mathrm{~N}$; ii, DBU ; iii, NaBH_{4}; iv, $\left(\mathrm{HSCH}_{2}\right)_{2} \mathrm{CH}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; v, TBDMSOTf, 2,6-dimethylpyridine; vi, $\mathrm{MeI}, \mathrm{NaHCO} 3$; vii, 3-bromofuran, BuLi ; viii, $\mathrm{Bu}_{4} \mathrm{NF}$; ix, PDC, DMF
produced the keto acid 30 , m.p. $130-131^{\circ} \mathrm{C}$ (lit., ${ }^{15} 131-132^{\circ} \mathrm{C}$), together with (\pm)-ricciocarpin A 22, m.p. 92.5-93 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{15} 95$ $96^{\circ} \mathrm{C}$). The keto acid 30 had been stereoselectively transformed into (\pm)-ricciocarpin A $22 .{ }^{15}$ The ${ }^{1} \mathrm{H}$ NMR spectrum of the synthetic 22 was identical with that of the natural product.

Experimental

General Methods.-M.p.s were determined on a Yanako micromelting point apparatus and are uncorrected. IR spectra were recorded on a JASCO-IR-Report-100 spectrophotometer, with the sample prepared as a neat film or in chloroform solution. The assignable absorptions are reported. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on the following instruments: Hitachi R-1200 (60 MHz), Hitachi R-3000 (300 MHz) and JEOL GX$500(500 \mathrm{MHz})$. Chemical shifts (δ) are measured relative to tetramethylsilane, using either SiMe_{4} or the solvent as internal reference. All J values are given in Hz and only characteristic signals are recorded. The ratio of products was determined by integrations in the 500 MHz NMR spectra. Mass spectra were recorded on either a JEOL DX-300 or a JEOL DX-303 instrument. Ordinary chromatography was performed on Merck Kieselgel 60 Art 7734, while flash chromatography was carried out using Merck Kieselgel 60 Art 9385. HPLC was carried out with a Gilson HPLC system Model 320/303 and monitored by UV absorption and refractive-index measurements. All reactions were carried out under N_{2} or Ar atmospheres. Solvents were distilled prior to use: THF, $\mathrm{Et}_{2} \mathrm{O}$ and benzene were distilled from sodium-benzophenone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and DME were distilled from CaH_{2} and stored over molecular sieves $4 \AA$. All extracts were dried over MgSO_{4} unless otherwise stated, and solvents were removed on a rotary evaporator at $30-40^{\circ} \mathrm{C}$. Oily NaH was washed with dry hexane three times prior to use. All new compounds described in this Experimental section were homogeneous on TLC and HPLC.

Methyl (E)-7-Benzoyloxyhept-2-enoate 1.-To a solution of methyl (E - -7-hydroxyhept-2-enoate ${ }^{8}(500 \mathrm{mg}, 3.16 \mathrm{mmol})$ in dry pyridine ($10 \mathrm{~cm}^{3}$) was added benzoyl chloride $\left(1.5 \mathrm{~cm}^{3}, 12.9\right.$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 2.5 h at room temp. After addition of $\mathrm{MeOH}\left(1 \mathrm{~cm}^{3}\right)$, the mixture was stirred for 10 min at the same temperature and then diluted with benzene. The resulting mixture was washed with $10 \% \mathrm{HCl}$, saturated aq. NaHCO_{3} and brine, dried, and evaporated to give a residue which was subjected to chromatography on silica gel. Elution with hexane- $\operatorname{EtOAc}(9: 1 \mathrm{v} / \mathrm{v})$ afforded the methyl ester $1(785 \mathrm{mg}, 95 \%)$ as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720-1715(\mathrm{C}=\mathrm{O})$ and $1655(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.60-1.69(2 \mathrm{H}, \mathrm{m})$, $1.76-1.86(2 \mathrm{H}, \mathrm{m}), 2.29\left(2 \mathrm{H}, \mathrm{ddt}, J 7.3,7.3\right.$ and $\left.1.5, \mathrm{CH}_{2} \mathrm{CH}=\right)$, $3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.33\left(2 \mathrm{H}, \mathrm{t}, J 6.4, \mathrm{CH}_{2} \mathrm{O}\right), 5.86(1 \mathrm{H}, \mathrm{dt}, J$ 15.3 and $\left.1.5, \mathrm{CHCO}_{2} \mathrm{Me}\right), 6.98(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and 7.3 , $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right), 7.39-7.47(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH})$ and $7.52-7.58$ ($2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}$) $; m / z 262\left(\mathrm{M}^{+}\right)$.

Methyl (E)-8-tert-Butyldiphenylsiloxy-4-methyloct-2-enoate
10.-According to the reported procedure, ${ }^{5}$ 2-methyl- ε-caprolactone ($200 \mathrm{mg}, 1.56 \mathrm{mmol}$) was reduced with DIBALH in hexane $\left(0.93 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 1.84 \mathrm{~cm}^{3}, 1.71 \mathrm{mmol}\right)$ to give the aldehyde, which was used in the following reaction without purification. A mixture of the aldehyde and methyl triphenylphosphoranylideneacetate ($782 \mathrm{mg}, 2.34 \mathrm{mmol}$) in dry MeCN $\left(6 \mathrm{~cm}^{3}\right)$ was stirred for 16 h at room temp. and heated for 5 h at $60^{\circ} \mathrm{C}$. Evaporation of the solvent gave a residue, which was subjected to chromatography on silica gel. Elution with hexaneEtOAc (3:1 v/v) provided methyl 8-hydroxy-4-methyloct-2enoate ($225 \mathrm{mg}, 77 \%$ overall yield) as a mixture of two (E) - and (Z)-isomers; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3380(\mathrm{OH})$ and $1710(\mathrm{C}=\mathrm{O})$ and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe})$,
$3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.76\left(1 \mathrm{H}, \mathrm{dd}, J 15.7\right.$ and $\left.0.9, \mathrm{CHCO}_{2} \mathrm{Me}\right)$ and $6.88\left(1 \mathrm{H}\right.$, dd, $J 15.7$ and $\left.7.6, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right) ; m / z 186$ $\left(\mathrm{M}^{+}\right)$and $168\left(\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{H}_{2} \mathrm{O}, 168.1149$, $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $m / z, 168.1131$).

A mixture of the alcohols ($54 \mathrm{mg}, 0.29 \mathrm{mmol}$), imidazole ($45 \mathrm{mg}, 0.66 \mathrm{mmol}$) and tert-butyldiphenylsilyl chloride (TBDPSCl) $\left(0.11 \mathrm{~cm}^{3}, 0.43 \mathrm{mmol}\right)$ in dry DMF $\left(1 \mathrm{~cm}^{3}\right)$ was stirred for 2 h at room temp. After being poured into water, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was chromatographed on silica gel with hexane- $\mathrm{Et}_{2} \mathrm{O}(30: 1 \mathrm{v} / \mathrm{v})$ as the eluent to afford the (Z)-unsaturated ester ($6 \mathrm{mg}, 5 \%$) as an oil; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1721(\mathrm{C}=\mathrm{O})$ and 1650 and $1641(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.89(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}), 1.04(9 \mathrm{H}, \mathrm{s}$, SiBu^{t}), 3.42-3.55 (1 H, m, CHCH=CH), 3.63 ($2 \mathrm{H}, \mathrm{t}, J 6.6$, $\left.\mathrm{OCH}_{2}\right), 3.69(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.71(1 \mathrm{H}$, dd, $J 11.4$ and 0.8 , $\mathrm{CHCO}_{2} \mathrm{Me}$), $5.95\left(1 \mathrm{H}\right.$, dd, $J 11.4$ and $\left.10.3, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$, $7.31-7.45(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArH})$ and $7.62-7.70(4 \mathrm{H}, \mathrm{m}, 4 \times$ $\mathrm{ArH}) ; m / z 393\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$ and $367\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right)$ (Found: $\mathrm{M}^{+}-\mathrm{Bu}^{t}, 367.1725 . \mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}_{3}$ Si requires $m / z, 367.1729$).

Further elution gave the (E)-unsaturated ester 10 (98 mg, 80%) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1721(\mathrm{C}=\mathrm{O})$ and $1652(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{d}, J 6.6, \mathrm{CHMe}), 1.04(9 \mathrm{H}, \mathrm{s}$, $\mathrm{SiBu}{ }^{t}$), 2.21-2.33 (1 H, m, $\left.\mathrm{CHCH}=\mathrm{CH}\right), 3.64(2 \mathrm{H}, \mathrm{t}, J 6.7$, $\left.\mathrm{OCH}_{2}\right), 3.72(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.67(1 \mathrm{H}, \mathrm{dd}, J 15.7$ and 1.1 , $\mathrm{CHCO}_{2} \mathrm{Me}$), $6.85\left(1 \mathrm{H}\right.$, dd, $J 15.7$ and $8.1, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$), $7.34-7.45(6 \mathrm{H}, \mathrm{m}, 6 \times \mathrm{ArH})$ and $7.64-7.67(4 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{ArH})$; $m / z 393$ ($\mathrm{M}^{+}-\mathrm{OMe}$) (Found: $\mathrm{M}^{+}-\mathrm{OMe}$ 393.2232. $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Si}$ requires $m / z, 393.2250$).

Typical Procedures for Deconjugation Reaction.-(A). To a stirred solution of the α, β-unsaturated ester $1(27 \mathrm{mg}, 0.10$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.12 \mathrm{~cm}^{3}, 0.86 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was added dropwise TBDMSOTf ($0.12 \mathrm{~cm}^{3}, 0.52 \mathrm{mmol}$) at $18^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the resulting mixture was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. The residue was subjected to column chromatography on silica gel with hexane-EtOAc $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent to give a $6: 1$ mixture of the deconjugated ester 3 and the recovered starting material $1(26 \mathrm{mg}, 96 \%)$ as an oil. The deconjugated ester 3 was composed of two isomers in a $1: 1.3$ ratio; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.03-$ 3.06 and $3.10-3.12\left[2 \mathrm{H}(1: 1.3)\right.$, each $\left.\mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right], 3.67$ and $3.68[3 \mathrm{H}(1.3: 1)$, each s, OMe $]$ and $5.59-5.65(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$; $m / z 262\left(\mathrm{M}^{+}\right)$.
(B). To a stirred solution of the α, β-unsaturated ester 6 (21 $\mathrm{mg}, 0.11 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.12 \mathrm{~cm}^{3}, 0.88 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(0.65 \mathrm{~cm}^{3}\right)$ was added dropwise at $18^{\circ} \mathrm{C}$ TIPSOTf $\left(0.12 \mathrm{~cm}^{3}\right.$, 0.45 mmol). After being stirred for 1 h at $18^{\circ} \mathrm{C}$, followed by addition of $\mathrm{AcOH}\left(0.063 \mathrm{~cm}^{3}, 1.10 \mathrm{mmol}\right)$ whilst being cooled with ice, the resulting mixture was stirred for 2 h at $18^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with water saturated aq. NaHCO_{3} and brine, dried and evaporated. Chromatography of the residue on silica gel with hexane- $\mathrm{Et}_{2} \mathrm{O}$ ($15: 1 \mathrm{v} / \mathrm{v}$) as the eluent afforded an $18: 1$ mixture of the deconjugated esters 7 and the starting material 6 ($20.5 \mathrm{mg}, 98 \%$) as an oil. The deconjugated esters 7 were composed of two isomers in a $1.9: 1$ ratio; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1735(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 3.07 ($0.69 \mathrm{H}, \mathrm{d}, J 5.9, \mathrm{PhCH}_{2}$), $3.21(1.31 \mathrm{H}, \mathrm{d}$, $\left.J 6.6, \mathrm{PhCH}_{2}\right), 3.38\left(0.69 \mathrm{H}, \mathrm{d}, J 6.9, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.41$ $\left(1.31 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.6, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.69(1.03 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.71(1.97$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.59-5.87(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH})$ and $7.16-7.32(5 \mathrm{H}, \mathrm{m}$, Ph).

6,6-Dimethoxy-2,2-dimethylhexanenitrile 17a.-To a stirred solution of LDA [prepared from diisopropylamine (0.65 $\mathrm{cm}^{3}, 4.64 \mathrm{mmol}$) and BuLi in hexane $\left(1.56 \mathrm{~mol} \mathrm{~cm}^{-3} ; 2.76 \mathrm{~cm}^{3}\right.$,
4.31 mmol) in dry THF $\left(5 \mathrm{~cm}^{3}\right)$] was added a solution of 2-methylpropanal dimethylhydrazone ($410 \mathrm{mg}, 3.59 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$. After addition of a solution of the bromide $16 \mathrm{a}^{11}(630$ $\mathrm{mg}, 3.21 \mathrm{mmol})$ in dry THF $\left(2 \mathrm{~cm}^{3}\right)$, the resulting mixture was further stirred for 50 min at $0^{\circ} \mathrm{C}$ and then poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$. After extraction with $\mathrm{Et}_{2} \mathrm{O}$, the extract was washed with brine, dried and evaporated to give a residue, which was chromatographed on silica gel. Elution with hexane$\operatorname{EtOAc}(9: 1 \mathrm{v} / \mathrm{v}$) provided the nitrile $17 \mathrm{a}(450 \mathrm{mg}, 76 \%$) as an oil (Found: C, 64.8; H, 10.35; H, 7.45. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires C, 64.8; $\mathrm{H}, 10.35 ; \mathrm{N}, 7.55 \%) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 2230(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 3.33(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$ and $4.38[1$ $\left.\mathrm{H}, \mathrm{t}, J 5.3, \mathrm{C} H(\mathrm{OMe})_{2}\right] ; m / z 184\left(\mathrm{M}^{+}-1\right)$.

7,7-Dimethoxy-2,2-dimethylheptanenitrile 17b.-To a solution of ethyl 5 -bromovalerate ($10.0 \mathrm{~g}, 47.9 \mathrm{mmol}$) in a mixture of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ and DME $\left(25 \mathrm{~cm}^{3}\right)$ was added dropwise DIBALH in hexane ($0.99 \mathrm{~mol} \mathrm{~cm}{ }^{-3} ; 53.2 \mathrm{~cm}^{3}, 52.7 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of water ($40 \mathrm{~cm}^{3}$), the resulting mixture was stirred for 1 h and then filtered through Celite. Evaporation of the filtrate gave the aldehyde, which was used in the next reaction without purification.

A mixture of the above aldehyde and $\mathrm{NH}_{4} \mathrm{Cl}(200 \mathrm{mg})$ in $\mathrm{MeOH}\left(100 \mathrm{~cm}^{3}\right)$ was heated for 12 h under reflux. After concentration, the residue was partitioned between saturated aq. NaHCO_{3} and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried and evaporated to give a residue, which was distilled to give the acetal $\mathbf{1 6 b}(6.7 \mathrm{~g}, 67 \%)$ as an oil, b.p. $97-107^{\circ} \mathrm{C} / 25 \mathrm{mmHg}$ (Found: C, 40.2; H, 7.2; Br, 37.4. $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 40.0 ; \mathrm{H}, 7.2 ; \mathrm{Br}, 37.6 \%$); m/z 209 and $211\left(\mathrm{M}^{+}-1\right)$.
To a solution of LDA [prepared from diisopropylamine (0.38 $\left.\mathrm{cm}^{3}, 2.68 \mathrm{mmol}\right)$ and BuLi in hexane ($1.56 \mathrm{dm}^{-3} ; 1.58 \mathrm{~cm}^{3}, 2.47$ $\mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$] was added a solution of the hydrazone ($258 \mathrm{mg}, 2.26 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 40 min at $0^{\circ} \mathrm{C}$. After addition of a solution of the above bromide $\mathbf{1 6 b}(432 \mathrm{mg}, 2.06 \mathrm{mmol})$ in dry THF $\left(1 \mathrm{~cm}^{3}\right)$, the resulting mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. After being poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the resulting mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with hexane-EtOAc ($9: 1 \mathrm{v} / \mathrm{v}$) afforded the nitrile $17 \mathrm{~b}(287 \mathrm{mg}$, 70%) as an oil (Found: C, 66.25; H, 10.3; N, 7.4. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{2}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 10.65 ; \mathrm{N}, 7.05 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2230$ $(\mathrm{C} \equiv \mathrm{N}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.34\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 1.37-1.42(2$ $\mathrm{H}, \mathrm{m}), 1.50-1.53(4 \mathrm{H}, \mathrm{m}), 1.61-1.66(2 \mathrm{H}, \mathrm{m}), 3.32(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe})$ and $4.37\left[1 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{CH}(\mathrm{OMe})_{2}\right] ; 198\left(\mathrm{M}^{+}-1\right)$.

6,6-Dimethoxy-2,2-dimethylhexanal 18a.-To a stirred solution of the nitrile 17 a ($178 \mathrm{mg}, 0.96 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}) was added DIBALH in hexane ($0.99 \mathrm{~mol} \mathrm{dm}^{-3} ; 1.07 \mathrm{~cm}^{3}$, 1.06 mmol) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$. After addition of further DIBALH in hexane (0.99 mol $\left.\mathrm{dm}^{-3}, 0.1 \mathrm{~cm}^{3}, 0.099 \mathrm{mmol}\right)$, the mixture was further stirred for 20 min at $-78^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, followed by addition of water $\left(0.9 \mathrm{~cm}^{3}\right)$, the mixture was stirred for 30 min at room temp. and then filtered through Celite. Evaporation of the filtrate gave a residue, which was adsorbed on silica gel. After being allowed to stand for 1.5 h at room temperature, elution with hexane-EtOAc ($9: 1 \mathrm{v} / \mathrm{v}$) provided the aldehyde 18 a $(168 \mathrm{mg}, 93 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1725(\mathrm{C}=0) ; \delta_{\mathrm{H}}(60$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 3.32\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}^{2}\right)$ and 9.48 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}$); $m / z 157\left(\mathrm{M}^{+}\right.$- OMe) (Found: $\mathrm{M}^{+}-$ OMe , 157.1241. $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}_{2}$ requires m / z 157.1229.

7,7-Dimethoxy-2,2-dimethylheptanal 18b.-The nitrile 17b $(1.50 \mathrm{~g}, 7.53 \mathrm{mmol})$ was similarly converted as above into the aldehyde 18b ($1.40 \mathrm{~g}, 92 \%$) as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1725$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 3.32(6 \mathrm{H}, \mathrm{s}$, $2 \times \mathrm{OMe})$ and $9.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z 201\left(\mathrm{M}^{+}-1\right)$ (Found: $\mathrm{M}^{+}-1$, 201.1489. $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{O}_{3}$ requires m / z 201.1491).

Methyl (E)-8,8-Dimethoxy-4,4-dimethyloct-2-enoate 19a.To a suspension of $\mathrm{NaH}(60 \mathrm{w} / \mathrm{w} \%$ in oil; $438 \mathrm{mg}, 11.0 \mathrm{mmol})$ in dry DME ($30 \mathrm{~cm}^{3}$) was added trimethyl phosphonoacetate $\left(1.86 \mathrm{~cm}^{3}, 11.5 \mathrm{mmol}\right)$ at room temp. After being stirred for 15 min , a solution of the aldehyde $\mathbf{1 8 a}(1.03 \mathrm{~g}, 5.48 \mathrm{mmol})$ in dry DME ($8 \mathrm{~cm}^{3}$) was added to the mixture. After being stirred for 22 h at room temp, the resulting mixture was diluted with water and then extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated. Chromatography of the residue on silica gel with hexane-EtOAc $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent gave the ester 19a ($1.10 \mathrm{~g}, 83 \%$) as an oil (Found: C, 63.95; H, 9.9. $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $\left.64.0 ; \mathrm{H}, 9.9 \%\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720$ $(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05(6 \mathrm{H}, \mathrm{s}$, CMe_{2}), $3.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.34[1$ $\left.\mathrm{H}, \mathrm{t}, J 5.8, \mathrm{CH}(\mathrm{OMe})_{2}\right], 5.72\left(1 \mathrm{H}, \mathrm{d}, J 15.9 \mathrm{~Hz}, \mathrm{C} H \mathrm{CO}_{2} \mathrm{Me}\right)$ and 6.92 ($1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$); $m / z 243\left(\mathrm{M}^{+}-1\right)$.

Methyl (E)-9,9-Dimethoxy-4,4-dimethylnon-2-enoate 19b.The aldehyde 18b ($1.37 \mathrm{~g}, 6.78 \mathrm{mmol}$) was similarly transformed into the ester 19b $(1.66 \mathrm{~g}, 95 \%)$ as an oil(Found: C, $65.05 ; \mathrm{H}, 10.15$. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}_{4}$ requires C, $64.95 ; \mathrm{H}, 10.1 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1722$ $(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04(6 \mathrm{H}, \mathrm{s}$, CMe_{2}), $3.31(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe}), 3.73\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right), 4.33$ [1 $\left.\mathrm{H}, \mathrm{t}, J 5.5, \mathrm{C} H(\mathrm{OMe})_{2}\right], 5.71\left(1 \mathrm{H}, \mathrm{d}, J 15.9, \mathrm{CHCO}_{2} \mathrm{Me}\right)$ and $6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$; $m / z 257\left(\mathrm{M}^{+}-1\right)$.

Dimethyl (2E,8E)-4,4-Dimethyldec-2,8-dienedicarboxylate 12a.-A solution of the acetal 19a ($86 \mathrm{mg}, 0.35 \mathrm{mmol}$) and PPTS ($440 \mathrm{mg}, 1.75 \mathrm{mmol}$) in a mixture of THF ($2 \mathrm{~cm}^{3}$) and water ($2 \mathrm{~cm}^{3}$) was stirred for 30 min at room temp and for 1.5 h at $45{ }^{\circ} \mathrm{C}$. After neutralisation with saturated aqueous NaHCO_{3} whilst being cooled with ice, the mixture was thoroughly extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with brine, dried and evaporated to give the aldehyde; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1720(\mathrm{C}=\mathrm{O})$ and $1640(\mathrm{C}=\mathrm{C})$, which was used in the following reaction without purification.
A mixture of the above aldehyde and methyl triphenylphosphoranylideneacetate ($235 \mathrm{mg}, 0.70 \mathrm{mmol}$) in dry MeCN ($5 \mathrm{~cm}^{3}$) was stirred for 7 h at room temp. and for 1 h at $40^{\circ} \mathrm{C}$. After evaporation of the solvent, the residue was subjected to chromatography on silica gel. Elution with hexane-EtOAc ($9: 1 \mathrm{v} / \mathrm{v}$) afforded the diester 12a ($87 \mathrm{mg}, 97 \%$) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1720(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.05\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right)$, 1.35-1.39 ($4 \mathrm{H}, \mathrm{m}$), 2.13-2.21 (2 H , $\left.\mathrm{m}, 7-\mathrm{H}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $5.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $15.9,2-\mathrm{H}), 5.81(1 \mathrm{H}, \mathrm{br}, \mathrm{d}, J 15.3,9-\mathrm{H}), 6.90(1 \mathrm{H}, \mathrm{d}, J 15.9$, $3-\mathrm{H})$ and $6.93(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $6.7,8-\mathrm{H}) ; m / z 239$ ($\mathrm{M}^{+}-\mathrm{Me}$) (Found: $\mathrm{M}^{+}-\mathrm{Me}, 239.1300 . \mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4}$ requires $m / z, 239.1283$).

Dimethyl (2E,9E)-4,4-Dimethylundeca-2,9-dienedicarboxylate 12b.-The acetal 19b ($604 \mathrm{mg}, 2.34 \mathrm{mmol}$) was similarly transformed via the corresponding aldehyde $\left[v_{\text {max }}(\right.$ neat $) / \mathrm{cm}^{-1}$ $1720(\mathrm{C}=\mathrm{O})$ and $1648(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right), 1.04(6 \mathrm{H}, \mathrm{s}$, CMe_{2}), $2.42\left(2 \mathrm{H}, \mathrm{dt}, J 7.3\right.$ and $\left.1.8 \mathrm{CH}_{2} \mathrm{CHO}\right), 3.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 5.71\left(1 \mathrm{H}, \mathrm{d}, J 16.0, \mathrm{CHCO}_{2} \mathrm{Me}\right), 6.90(1 \mathrm{H}, \mathrm{t}, J 16.0$, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$ and $9.75(1 \mathrm{H}, \mathrm{t}, J 1.8, \mathrm{CHO})$] into the diester 12b $(621 \mathrm{mg}, 99 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1720(\mathrm{C}=0)$ and $1650(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.04\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.16-$ $2.21\left(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}_{2}\right), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), 5.72 ($1 \mathrm{H}, \mathrm{d}, J 15.9,2-\mathrm{H}), 5.81$ ($1 \mathrm{H}, \mathrm{dr}, J 15.3$ and $1.2,10-\mathrm{H}), 6.91$
($1 \mathrm{H}, \mathrm{d}, J 15.9,3-\mathrm{H}$) and $6.94(1 \mathrm{H}, \mathrm{dt}, J 15.3$ and $7.3,9-\mathrm{H}$); $m / z 268\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 268.1681 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}$ requires M, 268.1675).

Reaction of Dimethyl (2E,8E)-4,4-Dimethyldeca-2,8-dienedicarboxylate 12a with Trialkylsilyl Trifluoromethanesulfonate in the Presence of Triethylamine.-(A) To a stirred solution of the diester 12a ($19 \mathrm{mg}, 0.075 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.085 \mathrm{~cm}^{3}, 0.61\right.$ mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added TBDMSOTf (0.085 $\mathrm{cm}^{3}, 0.37 \mathrm{mmol}$) at $18^{\circ} \mathrm{C}$ and the mixture was stirred for 3 h at the same temperature. After being poured into 10% aq. KHSO_{4}, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with brine, dried and evaporated to give a residue, which was dissolved in THF $\left(1 \mathrm{~cm}^{3}\right)$ and then treated with 10% aq. $\mathrm{HClO}_{4}\left(1 \mathrm{~cm}^{3}\right)$ for 2 h at $18{ }^{\circ} \mathrm{C}$. The resulting mixture was thoroughly extracted with CHCl_{3}. The extract was washed with brine, dried and evaporated. The residue was chromatographed on silica gel with hexane- $\operatorname{EtOAc}(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent to give a $3: 1$ mixture of the cyclopentanes 14 a and $\mathbf{2 0 a}$ ($10 \mathrm{mg}, 53 \%$) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1735$ and $1725(\mathrm{C}=\mathrm{O})$ and $1650(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.72$ and 0.84 [$3 \mathrm{H}(1: 3)$, each s, CMeMe], 1.00 and 1.02 [$3 \mathrm{H}(1: 3)$, each s, CMeMe], $2.14(0.75 \mathrm{H}, \mathrm{dd}, J$ 14.6 and $8.5, \mathrm{C} H \mathrm{HCO}_{2} \mathrm{Me}$), $2.29(0.25 \mathrm{H}, \mathrm{dd}, J 15.3$ and 8.6 , $\left.\mathrm{CHHCO} \mathrm{O}_{2} \mathrm{Me}\right), 2.30\left(0.75 \mathrm{H}, \mathrm{dd}, J 14.6\right.$ and $\left.6.1, \mathrm{CH} \mathrm{CCO}_{2} \mathrm{Me}\right)$, $2.35\left(0.25 \mathrm{H}\right.$, dd, $J 15.3$ and $5.5, \mathrm{CHHCO}_{2} \mathrm{Me}$), 2.39-2.47 (0.75 $\mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}), 2.51-2.56(0.25 \mathrm{H}, \mathrm{m}), 3.02(0.5 \mathrm{H}, \mathrm{br}, \mathrm{d}, J$ 7.3, $\left.\mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.59$ and $3.67[3 \mathrm{H}(3: 1)$, each s , OMe], 3.70 and 3.72 [$3 \mathrm{H}(1: 3$), each s, OMe], 5.22-5.28 (0.25 $\mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}), 5.74\left(0.75 \mathrm{H}\right.$, br d$\left., J 15.9, \mathrm{CH}=\mathrm{C} H \mathrm{CO}_{2} \mathrm{Me}\right), 6.82$ $\left(0.75 \mathrm{H}\right.$, dd, $J 15.9$ and $\left.9.8, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right) ; m / z 254\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 254.1516 . \mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $M, 254.1518$).

Further elution provided the indane derivative 21a (2 mg , 12%) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1725$ and $1703(\mathrm{C}=\mathrm{O})$ and $1652(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.94(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 1.04(3 \mathrm{H}$, $\mathrm{s}, \mathrm{CMe})$, 2.56-2.64 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}=\mathrm{CH}$), $3.44(1 \mathrm{H}, \mathrm{d}, J 8.5$, $\mathrm{CHCO} 2 \mathrm{Me}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.89(1 \mathrm{H}, \mathrm{dd}, J 15.9$ and 1.2 , $\mathrm{CH}=\mathrm{CHCO}$) and 6.96 ($1 \mathrm{H}, \mathrm{dd}, J 15.9$ and $7.9, \mathrm{CH}=\mathrm{CHCO}$); $m / z 221\left(\mathrm{M}^{+}-1\right)$.
(B) To a stirred solution of the diester 12a ($36 \mathrm{mg}, 0.14 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}\left(0.14 \mathrm{~cm}^{3}, 0.97 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1.5 \mathrm{~cm}^{3}\right)$ was added TMSOTf $\left(0.14 \mathrm{~cm}^{3}, 0.70 \mathrm{mmol}\right)$ at $18^{\circ} \mathrm{C}$ and the mixture was stirred for 2.5 h at $18^{\circ} \mathrm{C}$. The same work-up, followed by purification as above, gave a $2: 1$ mixture of the cyclopentanes 14a and 20 a ($26 \mathrm{mg}, 81 \%$).

Reaction of Dimethyl (2E,9E)-4,4-Dimethylundeca-2,9-dienedicarboxylate 12b with Trialkylsilyl Trifluoromethanesulfonate in the presence of Triethylamine.- (A) To a stirred solution of the diester $\mathbf{1 2 b}(150 \mathrm{mg}, 0.56 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.6 \mathrm{~cm}^{3}, 4.31\right.$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added TBDMSOTf $\left(0.6 \mathrm{~cm}^{3}\right.$, 2.61 mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. After being poured into $10 \% \mathrm{HCl}$, the mixture was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. Chromatography of the residue on silica gel with hexane-EtOAc $(9: 1 \mathrm{v} / \mathrm{v})$ as the eluent afforded a 5:3 mixture of the cyclohexanes $\mathbf{1 4 b}$ and $\mathbf{2 0 b}$ ($133 \mathrm{mg}, 89 \%$) as an oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1738$ and $1660(\mathrm{C}=\mathrm{O})$, 1650 and $1645(\mathrm{C}=\mathrm{C}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.81(2.25 \mathrm{H}, \mathrm{s}$, CMe), $0.83(0.75 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 0.92,0.93$ and $1.04[3 \mathrm{H}$ (1.5:1.5:1), each s, CMe], 1.76 (0.38 H , ddd, $J 16.6,7.9$ and $\left.3.1, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 1.99(0.38 \mathrm{H}$, dd, $J 16.5$ and 7.9 , $\left.\mathrm{CH} \mathrm{HCO}_{2} \mathrm{Me}\right) .2 .34\left(0.38 \mathrm{H}\right.$, dd, $J 16.5$ and 3.1, $\mathrm{CH} H \mathrm{CO}_{2} \mathrm{Me}$), $2.44\left(0.38 \mathrm{H}\right.$, dd, $J 14.0$ and $\left.11.0, \mathrm{CH}^{2} \mathrm{CO}_{2} \mathrm{Me}\right), 2.50(0.38 \mathrm{H}$, $\mathrm{dd}, J 14.0$ and $\left.4.9, \mathrm{CH} \mathrm{HCO}_{2} \mathrm{Me}\right), 2.66-2.72(0.25 \mathrm{H}, \mathrm{m}$, $\mathrm{CHCH}=\mathrm{CH}$), 3.04 and 3.08 (each 0.38 H , each dd, each $J 16.0$ and 7.3, $\left.=\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.57,3.62$ and $3.64[3 \mathrm{H}(1.5: 1.5: 1)$, each s, OMe], 3.66, 3.70 and 3.72 [$3 \mathrm{H}(1.5: 1.5: 1$), each s, OMe], $5.23(0.38 \mathrm{H}, \mathrm{br}, \mathrm{dd}, J 7.3$ and $7.3, \mathrm{C}=\mathrm{CH}), 5.77(0.25 \mathrm{H}$,
dd, $J 15.9$ and 1.8, $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$, $5.78(0.38 \mathrm{H}, \mathrm{d}, J$ $\left.15.3, \mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right), 6.68(0.38 \mathrm{H}$, dd, $J 15.3$ and 9.8 , $\left.\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}\right)$ and $6.99(0.25 \mathrm{H}$, dd, $J 15.9$ and 5.5 , $\mathrm{CH}=\mathrm{CHCO}_{2} \mathrm{Me}$); $\mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 268.1664. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $M, 268.1675$).
Further elution gave the trans-decalone derivative 21b (2.5 $\mathrm{mg}, 4 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1737(\mathrm{C}=\mathrm{O})$ and $1670(\mathrm{C}=\mathrm{C})$; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 0.99(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $1.91-2.00(1 \mathrm{H}, \mathrm{m}), 2.17(1 \mathrm{H}, \mathrm{dd}, J 12.8$ and $11.4,4 \mathrm{a}-\mathrm{H}), 2.28-$ $2.40(1 \mathrm{H}, \mathrm{m}, 8 \mathrm{a}-\mathrm{H}), 3.28(1 \mathrm{H}, \mathrm{d}, J 12.8,4-\mathrm{H}), 3.74(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.03(1 \mathrm{H}, \mathrm{dd}, J 9.9$ and $3.6,1-\mathrm{H})$ and 6.76 (1 H , dd, $J 9.9$ and 1.8, 2-H); $m / z 236\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 236.1414. $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{3}$ requires $M, 236.1412$).
(B) Reaction of the diester $\mathbf{1 2 b}(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ with TMSOTf $\left(0.086 \mathrm{~cm}^{3}, 0.45 \mathrm{mmol}\right)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}(0.125$ $\left.\mathrm{cm}^{3}, 0.90 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ as above, followed by the similar work-up and purification, provided a $1: 1.7$ mixture of cyclohexanes $\mathbf{1 4 b}$ and $\mathbf{2 0 b}(24 \mathrm{mg}, 80 \%)$.
(C) Reaction of the diester $\mathbf{1 2 b}(30 \mathrm{mg}, 0.11 \mathrm{mmol})$ with TIPSOTf $\left(0.12 \mathrm{~cm}^{3}, 0.45 \mathrm{mmol}\right)$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}(0.12$ $\left.\mathrm{cm}^{3}, 0.86 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ as above, followed by the similar work-up and purification, gave an 8:5 mixture of cyclohexanes $\mathbf{1 4 b}$ and $\mathbf{2 0 b}(23 \mathrm{mg}, 77 \%)$.

Methyl (2,2-Dimethyl-6-oxocyclohexyl)acetate $\mathbf{2 3}$ and Methyl (6-Formyl-2,2-dimethylcyclohexyl)acetate 24.-The mixture of the cyclohexanes $\mathbf{1 4 b}$ and $\mathbf{2 0 b}(429 \mathrm{mg}, 1.60 \mathrm{mmol})$, prepared by the method A , was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(12 \mathrm{~cm}^{3}\right)$ and an excess of O_{3} was introduced into the solution at $-78^{\circ} \mathrm{C}$ over 20 min . After the removal of O_{3} with N_{2}, to the resulting mixture was added $\mathrm{Et}_{3} \mathrm{~N}\left(1.8 \mathrm{~cm}^{3}, 12.91 \mathrm{mmol}\right)$ at $-78^{\circ} \mathrm{C}$ the whole was stirred for 6 h at room temp.; it was then poured into water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the extract was washed with brine, dried and evaporated. Chromatography of the residue on silica gel with hexane- $\operatorname{EtOAc}(95: 5 \mathrm{v} / \mathrm{v})$ as the eluent gave the ester $23(85 \mathrm{mg}, 27 \%)$ as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1735$ and $1705(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.74(3 \mathrm{H}, \mathrm{s}, \mathrm{C}-\mathrm{Me}), 1.07$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}$), $2.24\left(1 \mathrm{H}, \mathrm{dd}, J 16.7\right.$ and $3.7, \mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{Me}$), 2.35-2.41 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}$), $2.71(1 \mathrm{H}, \mathrm{dd}, J 16.5$ and 10.4 , $\left.\mathrm{CH} \mathrm{HCO}_{2} \mathrm{Me}\right), 2.85\left(1 \mathrm{H}, \mathrm{dd}, J 10.4\right.$ and $\left.3.7, \mathrm{C} H \mathrm{HCO}_{2} \mathrm{Me}\right)$ and $3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}) ; m / z 198\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 198.1260. $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $M, 198.1256$.
Further elution provided a 1.5:1 mixture of the formyl esters $24(151 \mathrm{mg}, 44 \%)$ as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1730$ and 1718 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) 0.82$ and $0.84[3 \mathrm{H}(1.5: 1)$, each s, CMe], 0.95 and 1.05 [$3 \mathrm{H}(1.5: 1)$, each s, CMe], 3.65 and 3.67 [$3 \mathrm{H}(1.5: 1)$, each s, OMe], $9.44(0.6 \mathrm{H}, \mathrm{d}, J 3.8, \mathrm{CHO})$ and 9.75 $(0.4 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z 213\left(\mathrm{M}^{+}+1\right)$ (Found: $\mathrm{M}^{+}+1,213.1469$. $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{3}$ requires m / z 213.1491).

Isomerization of Methyl (6-Formyl-2,2-dimethylcyclohexyl)acetate 24.-The 1.5:1 mixture of the above esters $24(151 \mathrm{mg}$, $0.71 \mathrm{mmol})$ was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ and then treated with DBU ($0.13 \mathrm{~cm}^{3}, 0.87 \mathrm{mmol}$) for 6 h at room temp. The resulting mixture was partitioned between 10% aq. KHSO_{4} and $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried and evaporated to give a residue, which was purified by chromatography on silica gel. Elution with hexane-EtOAc ($95: 5 \mathrm{v} / \mathrm{v}$) yielded the 7.5:1 mixture of the formyl esters 24 (118 $\mathrm{mg}, 78 \%$).

5,5-Dimethyl-4a,5,6,7,8,8a-hexahydroisochroman-3-ol 25.To a solution of the 7.5:1 mixture of the aldehydes $24(108 \mathrm{mg}$, 0.51 mmol) in $\mathrm{EtOH}\left(3 \mathrm{~cm}^{3}\right.$) was added $\mathrm{NaBH}_{4}(20 \mathrm{mg}, 0.53$ mmol) portionwise at $-8^{\circ} \mathrm{C}$ and the mixture was stirred for 10 \min at $-8^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was treated with 5% aq. oxalic acid. The aqueous layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic layers were
washed with brine, dried and evaporated. The residue was subjected to chromatography on silica gel with hexane- $\mathrm{Et}_{2} \mathrm{O}$ $(2: 1 \mathrm{v} / \mathrm{v})$ as the eluent to afford a diastereoisomeric mixture of cyclic hemiacetals $25(93 \mathrm{mg}, 99 \%)$ as an oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3420-3380(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.80$ and $0.82[3 \mathrm{H}$ ($1: 1.4$), each s, CMe], 0.87 and 0.88 [$3 \mathrm{H}(1: 1.4)$, each s, CMe], $2.48(0.42 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.98-3.03(0.58 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 3.08(0.58$ H , dd, $J 11.0$ and $\left.11.0 \mathrm{CH}_{\mathrm{ax}} \mathrm{HO}\right), 3.44(0.42 \mathrm{H}$, dd, $J 11.0$ and 4.2, $\mathrm{CH}_{\text {eq }} \mathrm{O}$), 3.59 (0.42 H , dd, $J 11.0$ and $11.0, \mathrm{CH}_{\mathrm{ax}} \mathrm{HO}$), 3.84 (0.58 H , dd, $J 11.0$ and $4.2, \mathrm{CH} H_{\mathrm{eq}} \mathrm{O}$) 4.70 and $5.37[1 \mathrm{H}$ (1.4:1), br d, $J 8.4$ and br s, respectively, CHOH$] ; m / z 184\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}-1,183.1367 . \mathrm{C}_{11} \mathrm{H}_{19} \mathrm{O}_{2}$ requires $m / z, 183.1385$).

3,3-Dimethyl-2-(1,3-dithian-2-ylmethyl)-1-hydroxymethylcyclohexane 26.-To a stirred solution of the hemiacetals 25 (27 $\mathrm{mg}, 0.15 \mathrm{mmol}$) and propane-1,3-dithiol ($0.044 \mathrm{~cm}^{3}, 0.44$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(0.09 \mathrm{~cm}^{3}\right.$, 0.73 mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 1 h at room temp. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. The residue was chromatographed on silica gel with hexane $-\mathrm{Et}_{2} \mathrm{O}$ ($2: 1 \mathrm{v} / \mathrm{v}$) as the eluent to give a 7:1 mixture of the alcohols 26 ($39 \mathrm{mg}, 97 \%$) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}) ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78$ and $0.94[3 \mathrm{H}(7: 1)$, each s, CMe$], 0.98$ and 1.03 [$3 \mathrm{H}(7: 1)$, each s, CMe], 2.77-2.96(4 H, m, $2 \times \mathrm{SCH}_{2}$), 3.52-3.73 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH} 2 \mathrm{OH}$) and 3.86 and 4.01 [1 H (1:7), each dd, each $J 9.5$ and 4.8, $\left.\mathrm{S}_{2} \mathrm{CH}\right] ; m / z 274\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 274.1417. $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OS}_{2}$ requires $M, 274.1425$).

1-tert-Butyldimethylsiloxymethyl-3,3-dimethyl-2-(1,3-dithian-2-ylmethyl)cyclohexane 27.-To a solution of the alcohols 26 ($112 \mathrm{mg}, 0.41 \mathrm{mmol}$) and 2,6 dimethylpyridine $\left(0.19 \mathrm{~cm}^{3}, 1.63\right.$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was added TBDMSOTf (0.19 $\mathrm{cm}^{3}, 0.82 \mathrm{mmol}$) at $18^{\circ} \mathrm{C}$ and the mixture was stirred for 25 min at the same temperature. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was washed with saturated aq. NaHCO_{3} and brine, dried and evaporated. Chromatography of the residue on silica gel with hexane $-\mathrm{Et}_{2} \mathrm{O}(10: 1 \mathrm{v} / \mathrm{v})$ as the eluent afforded a $7: 1$ mixture of the silyl ethers $27(159 \mathrm{mg}, 100 \%)$ as an oil; $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.01(0.12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.02$ ($\left.0.12 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}\right), 0.07$ (0.88 $\mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.08(0.88 \mathrm{H}, \mathrm{s}, \mathrm{SiMe}), 0.74$ and 0.87 [$3 \mathrm{H}(8: 1)$, each s, CMe], 0.91 and $0.94\left[9 \mathrm{H}(1: 8)\right.$, each s, $\left.\mathrm{SiBu}^{1}\right], 0.97$ and 0.99 [$3 \mathrm{H}(8: 1)$, each s, CMe], 2.71-2.93 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{SCH}_{2}$). 3.39-3.67 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{O}$), $4.05(0.12 \mathrm{H}, \mathrm{dd}, J 11.9$ and 6.5 , $\left.\mathrm{S}_{2} \mathrm{CH}\right)$ and $4.11\left(0.88 \mathrm{H}\right.$, br d, $\left.J 9.5, \mathrm{~S}_{2} \mathrm{CH}\right) ; m / z 388\left(\mathrm{M}^{+}\right)$ (Found: 388.2303. $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{OS}_{2} \mathrm{Si}$ requires $m / z, 388.2290$).

3-[2-(2-Hydroxymethyl-6,6-dimethylcyclohexyl)-1-hydroxyethyl]furan 29.-To a solution of the silyl ethers 27 (20 mg , $0.052 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(22 \mathrm{mg}, 0.26 \mathrm{mmol})$ in a mixture of $\operatorname{MeCN}\left(1 \mathrm{~cm}^{3}\right)$ and water $\left(0.13 \mathrm{~cm}^{3}\right)$ was added $\operatorname{Mel}\left(0.032 \mathrm{~cm}^{3}\right.$, $0.51 \mathrm{mmol})$ at $18^{\circ} \mathrm{C}$ and the mixture was heated at $45^{\circ} \mathrm{C}$ for 23 h . After partition of the reaction mixture between water and $\mathrm{Et}_{2} \mathrm{O}$, the organic phase was washed with brine, dried and evaporated to give a residue, which was subjected to chromatography on silica gel. Elution with hexane- $\mathrm{Et}_{2} \mathrm{O}(10: 1$ v / v) yielded the aldehyde; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1720$.

To a stirred solution of 3-bromofuran $\left(0.032 \mathrm{~cm}^{3}, 0.36 \mathrm{mmol}\right)$ in dry THF $\left(0.5 \mathrm{~cm}^{3}\right)$ was added BuLi in hexane $\left(1.56 \mathrm{~mol} \mathrm{dm}^{-3}\right.$; $0.165 \mathrm{~cm}^{3}, 0.257 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. After being stirred for 30 min at this temperature, to the resulting mixture was added at $-78^{\circ} \mathrm{C}$ a solution of the above aldehyde in dry THF $\left(0.5 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was neutralised with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ whilst being cooled with ice. The aqueous layer was thoroughly extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the combined organic extracts were washed with brine, dried and evaporated to give the alcohols 28 as a yellowish oil, $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3430$
(OH), which was subjected to the following reaction without purification.

A mixture of the above alcohols and $\mathrm{Bu}_{4} \mathrm{NF}$ in THF ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 0.1 \mathrm{~cm}^{3}, 0.1 \mathrm{mmol}$) in THF ($0.6 \mathrm{~cm}^{3}$) was stirred for 1 h at $0^{\circ} \mathrm{C}$. The mixture was partitioned between water and $\mathrm{Et}_{2} \mathrm{O}$ and the organic phase was separated, washed with brine, dried and evaporated to give a residue, which was chromatographed on silica gel. Elution with hexane-EtOAc (1:1 $\mathrm{v} / \mathrm{v})$ afforded a 1.3:1 mixture of the diols $29(8.1 \mathrm{mg}, 62 \%$ overall yield from 27) as an oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3330-3270$ $(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.79(3 \mathrm{H}, \mathrm{s}, \mathrm{CMe}), 0.89$ and 0.93 [$3 \mathrm{H}\left(1.3: 1\right.$), each s, CMe], 3.35-3.70 ($1.6 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 4.02-4.07 ($0.4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}$), 4.61-4.66 and 4.73-4.80 [1 H (1:1.3), each $\mathrm{m}, \mathrm{CHOH}), 6.41(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{CH}=\mathrm{CHO})$ and 7.39 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHOCH}$); $m / z 252\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 252.1723$. $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}$ requires $M, 252.1725$).

2-[2-(3-Furyl)-2-oxoethyl]-2,2-dimethylcyclohexanecarboxylic Acid 30 and (\pm)-Ricciocarpin A 22.-To a mixture of PDC ($300 \mathrm{mg}, 0.797 \mathrm{mmol}$) in dry DMF ($1 \mathrm{~cm}^{3}$) was added a solution of the diols $29(25 \mathrm{mg}, 0.099 \mathrm{mmol})$ at room temp. in dry DMF ($1 \mathrm{~cm}^{3}$) and the mixture was stirred for 70 h at the same temperature. After being poured into 10% aq. HCl , the mixture was thoroughly extracted with EtOAc. The extract was washed with brine, dried and evaporated. Chromatography of the residue on silica gel with hexane- $\mathrm{Et}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v})$ as the eluent provided a syrup, which was further purified by HPLC on $\mathrm{Si} 80-125-\mathrm{C} 5(4 \times 250 \mathrm{~mm})$ with hexane- $\mathrm{Et}_{2} \mathrm{O}(3: 1 \mathrm{v} / \mathrm{v}, 0.5$ $\mathrm{cm}^{3} \mathrm{~min}^{-1}$) as the eluent to afford (\pm)-ricciocarpin A $22(4 \mathrm{mg}$, 16%) as crystals (from $\operatorname{Pr}^{\mathrm{i} O H}$), m.p. $92.5-93^{\circ} \mathrm{C}$ (lit., ${ }^{15} 95-$ $96^{\circ} \mathrm{C}$), whose ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum was identical with that of the natural product.
Further elution of the above chromatography on silica gel with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(95: 5 \mathrm{v} / \mathrm{v})$ as the eluent gave the acid 30 $\left(6.1 \mathrm{mg}, 23 \%\right.$) as crystals (from MeOH), m.p. ${ }^{130-131}{ }^{\circ} \mathrm{C}$ (lit., ${ }^{15}$ $131-132{ }^{\circ} \mathrm{C}$), whose IR $\left(\mathrm{CHCl}_{3}\right)$ and ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}) spectra were consistent with the reported data.

Acknowledgements

We thank Professor H. Becker of University of Saarlandes for his generous gift of sample and spectral data of ricciocarpin A.

References

1 H. B. Mekelburger and C. S. Wilcox, in Comprehensive Organic Synthesis, ed. B. M. Trost, Pergamon, Oxford, 1991, vol. 2, p. 99.
2 E. W. Colvin, Silicon in Organic Synthesis, Butterworths, London, 1981, p. 198; W. P. Weber, Silicon Reagents for Organic Synthesis, Springer-Verlag, Berlin, 1983, p. 206.
3 H. Emde, D. Domsch, H. Feger, U. Frick, A. Götz, H. H. Hergott, K. Hofmann, W. Kober, K. Krägeloh, T. Oesterle, W. Steppan, W. West and G. Simchen, Synthesis, 1982, 1.

4 M. Ihara and K. Fukumoto, J. Synth. Org. Chem. Jpn., 1986, 44, 96; M. Ihara, M. Tsuruta, K. Fukumoto and T. Kametani, J. Chem. Soc., Chem. Commun., 1985, 1159; M. Ihara, Y. Takino, K. Fukumoto and T. Kametani, Tetrahedron Lett., 1988, 29, 4135; M. Ihara, Y. Takino, M. Tomotake and K. Fukumoto, J. Chem. Soc., Perkin Trans. I, 1990, 2287.
5 M. Ihara, S. Suzuki, N. Taniguchi, K. Fukumoto and C. Kabuto, J. Chem. Soc., Chem. Commun., 1991, 1168; J. Chem. Soc., Perkin Trans. 1, 1992, 2527.
6 M. Ihara, M. Ohnishi, M. Takano, K. Makita, N. Taniguchi and K. Fukumoto, J. Am. Chem. Soc., 1992, 114, 4408.

7 A part of this work has been published as preliminary communication: M. Ihara, S. Suzuki, N. Taniguchi and K. Fukumoto, J. Chem. Soc., Chem. Commun., 1993, 755
8 J. P. Yardley and R. W. Rees, Can. J. Chem., 1985, 63, 1013.
9 Reviews: D. A. Oare and C. H. Heathcock, in Topics in Stereochemistry, ed. E. L. Eliel and S. H. Wilen, John Wiley, New York, vol. 19, p. 227; P. Perlmutter, Conjugate Addition Reactions in Organic Synthesis, Pergamon, Oxford, 1992. Recent examples: G.

Stork and N. A. Saccomano, Tetrahedron Lett., 1987, 28, 2087; T. Terada and T. Yamazaki, J. Am. Chem. Soc., 1988, 110, 958; Y. Yokoyama and K. Tsuchikura, Tetrahedron Lett., 1992, 33, 2823.
10 M. J. Aurell, P. Gaviña, S. Gil, M. Parra, A. Tortajada and R. Mestres, Synth. Commun., 1991, 21, 1825; G. H. Posner and E. M. Shulman-Roskes, J. Org. Chem., 1989, 54, 3514.
11 M. Ihara, T. Kakahashi, N. Shimizu, Y. Ishida, I. Sudow, K. Fukumotoand T.Kemetani, J. Chem. Soc., Perkin Trans. 1, 1989, 529. 12 T. Cuvigny, J. F. DeBorgne, M. Larchevêque and H. Normant, Synthesis, 1976, 237.

13 G. Wurzel and H. Becker, Phytochemistry, 1990, 29, 2565.
14 G. Wurzel, H. Becker, T. Eicher and K. Tiefensee, Planta Med., 1990, 56, 444; H. D. Zinsmeister, H. Becker and T. Eicher, Angew. Chem., Int. Ed. Engl., 1991, 30, 130.
15 T. Eicher, K. Massonne and M. Herrmann, Synthesis, 1991, 1173.

