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ABSTRACT: Controlling positional selectivity represents one of
the most important aspects in transition-metal-catalyzed C−H
bond functionalization. However, the conventional directing
template strategies via a covalent binding to the substrates are
always hindered by prior stoichiometric installation and removal of
the directing groups. Herein, we report a palladium-catalyzed meta-
selective C−H olefination of aromatic carbonyl compounds by
noncovalent hydrogen-bonding interaction. N,N′-Substituted ureas
were engineered to serve as a H-bonding donor for binding to the
substrates and, meanwhile, achieve site-selective control by the
integrated directing group.
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Transition-metal-catalyzed remote meta- or para-C−H
bond functionalization of arenes1,2 has attracted the

extensive interest from both chemical and medicinal
communities in recent years owing to its vast potentials for
step- and atom-economic synthesis of active pharmacophores,
as well as late-stage diversification of pharmaceuticals. To
render the catalyst proximal to the distal C−H bond efficiently,
the C−H activation process frequently requires the partic-
ipation of a deliberated σ-bonding directing group (DG) in the
formation of a metal-embedded macrocyclic transition state.
However, the stoichiometric installation and removal of a DG
consistently influence the synthetic efficacy of the C−H
functionalization strategy.3,4 Moreover, some kinds of sub-
strates such as aromatic aldehydes/ketones and esters, among
others, are incompatible with the DG’s methodology because
they lack a site for the installation of DG. In contrast, the
employment of noncovalent bonding interactions to direct
transition-metal-catalyzed C−H functionalization remarkably
solves these irreconcilable conflicts. For instance, through
various noncovalent bonding interactions,5−8 iridium-catalyzed
meta-C−H borylation of arenes has been successfully achieved
by several research groups to date.
Relative to the high reactivity of iridium catalysts, palladium-

catalyzed remote C−H activation based on noncovalent
bonding interactions still remains extremely challenging to
date. In 2017, a class of bifunctional directing templates based
on noncovalent Lewis acid/base coordination was elegantly
designed by the Yu group for Pd-catalyzed distal C−H
alkenylation of heteroarenes,9 for example, quinolines (Scheme
1a). In such a template, one palladium atom fixed in the
template central scaffold is in charge of reversibly anchoring
substrates by heteroatom coordination, and the other

regioselectively cleaves the distal C−H bonds by coordination
to the DG. Subsequently, through utilizing symmetrically
bidentate nitrile templates (Scheme 1a), the Maiti group also
realized Pd-catalyzed distal C−H alkenylation and alkylation in
the same heteroarenes based on the template designed by Yu’s
group.10 To date, the intermolecular hydrogen-bonding
approach to achieve the palladium-catalyzed remote C−H
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Scheme 1. Noncovalent Bonding Strategies for Pd-
Catalyzed Distal C−H Functionalization
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activation of arenes is yet to be exploited probably because of
the perceived lower reactivity. To address this, we sought to
investigate aromatic carbonyl compounds in palladium-
catalyzed remote meta-C−H activation, envisaging that the
carbonyl group serving as a hydrogen-bond acceptor would be
able to pair with a hydrogen-bond donor bearing a suitable
directing template. N,N′-Substituted ureas behave as the
strong double hydrogen-bond donors, shown thus far to be
capable of assembling a lot of guest acceptor molecules
including aldehydes, ketones, esters, imines, N-acyliminium
ions, and nitro compounds.11 Herein, we report that the N,N′-
substituted urea scaffold is highly proficient as a hydrogen-
bond donor to direct palladium-catalyzed C−H functionaliza-
tion to the meta position in a series of arene substrates bearing
the carbonyl group as hydrogen-bond acceptors.
Based on the Yu’s pioneering work3a on remote meta-

selective C−H functionalization directed by a covalently U-
shaped template, a range of DGs for transition-metal-catalyzed
distal C−H functionalization have been developed since then.
Over the past few years, We,12 Yu,13 Maiti,14 and others15 have
identified a substituted salicylonitrile moiety as the versatile
template to direct palladium-catalyzed meta-C−H functional-
ization in various arene derivatives. In approaching the
development of an efficient hydrogen-bonding donor template,
we began by elaborating an appropriate N,N′-substituted urea
framework for Pd-catalyzed remote C−H functionalization of
arenes, according to the experimental and computational
results established for the covalently binding template-
s.12a,13b,16 By integrating a salicylonitrile-bearing tether into
the urea backbone, a powerful double hydrogen-bonding
interaction appears plausible with an aromatic carbonyl
substrate promoting C−H activation at the meta position of
the phenyl ring. Therefore, we first synthesized a series of N-
cyclohexyl ureas, L1−L5, containing an additional directing
functional group on the other nitrogen atom (Scheme 2).
Using acetophenone as a model substrate, C−H olefination
only gave the poor reactivity with a mixture of o-, m-, and p-
products (o/m/p = 1/0.8/0.2) in the absence of a hydrogen-
bonding donor. The major o-olefinated product obtained is
probably attributed to the natively Pd-catalyzed carbonyl-
directed ortho-C−H activation.17 While an equivalent H-
bonding donor (L2−L4) bearing a meta-selective DG was
added into the reaction, the desired products were afforded
with significantly improved regioselectivity, albeit in just a
slightly higher yield. By modifying the salicylonitrile moiety in
hydrogen-bonding donors (L5), C−H olefination achieved the
m-product in up to 48% yield with a regioselectivity of o/m/p =
1.0/3.1/1.2. Pleasingly, replacing the cyclohexyl group in the
urea with a 3,5-(bis)trifluoromethyl phenyl group led to a
dramatic improvement in both reactivity and regioselectivity
(L6−L10). Hydrogen-bonding donor L9 was the most effective,
affording the olefinated products at 69% yield with a
regioselectivity of o/m/p = 1.0/4.0/1.0. A possible explanation
for the enhanced reactivity of hydrogen-bonding donors (L6−
L10) is that a very weak, not detectable by routine
spectroscopic and crystallographic methods, intramolecular
C−H--O interaction between the weakly acidic ortho-C−H
proton and the urea carbonyl group takes place,11a−c which
drastically increases the binding potential of hydrogen-bonding
donors to guest molecules. The dimethoxy substituent on the
nitrile template (L9) affords improved reactivity and
regioselectivity, probably because of the enhanced electron
density of the phenyl ring which prompts the metal binding of

the cyano group.18 The use of symmetrical N,N′-dicyclohexyl,
N,N′-diaryl ureas (L11 and L13), or unsymmetrical urea (L12)
only provided comparable yields to the blank experiment but
with slightly higher meta regioselectivities. C−H olefination in
the presence of thiourea (L14) failed to give the desired
products, which is certainly due to the poisoning deactivation
of Pd catalysts by the coordination of sulfur atoms in the
thiourea molecules. As the control experiments, removal of the
nitrile group in the hydrogen-bonding donor (L15 vs L6) led to
a significant decline in both reactivity and regioselectivity,
indicating the essential directing effect of the nitrile group.
Replacement of two hydrogen atoms on the urea N−H bonds
by two methyl groups (L16) also afforded a diminished yield
and meta selectivity. As observed in the previous reports,19 as a
solvent hexafluoroisopropanol (HFIP) shows a significant
influence on the yield and regioselectivity of C−H olefination
(for details, see Supporting Information).
It is well-established that N,N′-disubstituted ureas as

hydrogen-bond donors may associate with guest molecules,
such as triphenylphosphine oxide (TPPO), dimethyl sulfoxide
(DMSO), and benzophenone,11b to form 1:1 complexes
through double hydrogen bonds. The solution NMR and IR
analyses proved to be particularly useful for hydrogen-bonding
interaction. As compared with L9 (5.81 ppm, 7.62 ppm) in d-
chloroform solution, the chemical shifts of two urea N−H
protons move downfield to 6.62 ppm, 9.18 ppm in L9/TPPO
1:1 complex and 6.70 ppm, 9.45 ppm in d6-DMSO solution,
respectively (Figure 1), consistent with the previous

Scheme 2. Evaluation of Hydrogen-Bonding Donors for Pd-
Catalyzed meta-C−H Olefinationa

aNMR yield, and regioselectivity was determined by 1H NMR
analysis with reference to an internal standard. bC−H olefination
occurring in the template was also observed. n.d.: regioselectivity not
detected, n.r.: no reaction.
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observation by Kuninobu and Kanai.5a The 31P chemical shift
of TPPO also moves downfield by 2.32 ppm in the complex,
which is obviously resulted from deshielding by hydrogen-
bonding interactions. Carbonyl stretching frequencies for L9
are highly sensitive to hydrogen bonding, varying from 1658
cm−1 in L9 to 1712 cm−1 in both 1:1 complexes of L9 with
TPPO and benzophenone (Figure 2). The high-frequency

bands occur in both complexes where the PO or carbonyl
oxygen forms two strong hydrogen bonds to the N−H protons
of urea L9. Meanwhile, the carbonyl stretching frequency of
benzophenone varies from 1651 to 1528 cm−1 in L9/
benzophenone 1:1 complex. Similarly, urea carbonyl stretching
frequencies in 1:1 cocrystals of L9 and aromatic aldehyde, ester
and amide also vary from 1658 cm−1 in L9 to 1712 cm−1

(Figure 3). All IR and NMR data unambiguously supports the
occurrence of hydrogen-bonding interaction between L9 and
hydrogen-bond acceptors.
Next, we investigate the application of hydrogen-bond donor

L9 in Pd-catalyzed meta-C−H olefination of aromatic carbonyl
derivatives. For acetophenones and benzaldehydes (Scheme
3), the methoxyl substituents on the ortho, para positions of
the phenyl ring were well tolerated, giving similar yields and
excellent meta selectivities (3b, 3c, 3m, 4b, and 4c). Substrates

bearing electron-withdrawing fluorine, chlorine, and trifluor-
omethoxyl groups on the para position of the phenyl ring are
compatible with the protocol, affording the meta products in
yields of 52%−65% with regioselectivities of up to >20/1 (3e−
3h, 4d, and 4e). C−H olefination proceeds smoothly with the
substrates owning difluoro or dichloro groups in different
substitution patterns to provide the desired meta products in

Figure 1. Chemical shift variations of urea L9 N−H protons resulted
from intermolecular H-bonding interaction.

Figure 2. IR analyses of intermolecular H-bonding interaction.

Figure 3. IR spectra of 1:1 cocrystals of L9 and aromatic aldehyde,
ester, and amide.

Scheme 3. Pd-Catalyzed meta-C−H Olefination of Aromatic
Ketones and Aldehydesa

aIsolated yield.
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52%−66% yields (3i−3k, 4g, and 4h). Compared with 2,4-
dichloro benzophenone (3j), 2,4-difluoro benzophenone (3i)
gave rise to a decreased meta selectivity. Notably, N-methyl 2-
acetyl pyrrole (3n) is also compatible with the protocol,
providing the olefinated product in 50% yield with a
regioselectivity of C4/C3 = 3/1. In general, a meta group on
the phenyl ring led to the drastic decrease of meta selectivity in
the C−H olefination process. This phenomenon was
previously observed in template-enabled meta-C−H olefination
of 3-arylpyridines by Yu,9 probably attributed to the meta
substitution in substrates interfering with the optimal
conformational orientation because of steric repulsion. Besides
acetophenones, other aromatic ketones, such as 3f and 3m, are
also suitable substrates for the present protocol. The presence
of a bulky substituent liking the methyl (3d) and iso-butyl (3l)
group led to the obvious decline of product regioselectivity due
to the steric effect. Owing to the enhanced electron-deficient
nature, the substrates bearing an additionally electron-with-
drawing group such as NO2, CF3, and ester group only
provided a trace amount of olefinated products.
Besides ketones and aldehydes, we also examined the

generality of hydrogen-bond donor L9 in Pd-catalyzed meta-
C−H olefination of benzoate esters and benzamides (Scheme
4). Similar to ketones and aldehydes, the methoxyl group at
either ortho or para position of the phenyl ring was reactive to
provide the olefination products in more than 70% isolated
yields and excellent regioselectivities (7b, 7c, and 8b).
Substrates incorporating difluoro or dichloro groups in
different substitution patterns are compatible with the

protocol, giving rise to the desired olefinated products in
60%−67% yields with regioselectivities of 8/1 to >20/1 (7h−
7j and 8d−8g). In addition to methyl ester, other alkyl esters
are also suitable substrates in C−H olefination, albeit in
decreased meta selectivity (7l). For benzamide substrates (8a),
in the absence of L9, ortho-olefinated product was obtained as
the major product (o/m = 7.5/1) due to the proximal σ-
chelation of the amide group. In contrast, regioselectivity of
C−H olefination was improved to o/m = 1/1.2 with L9 as a
hydrogen-bond donor.
The scope of C−H olefination was further studied using

different olefin partners with acetophenone 1b (Scheme 5). To

our delight, in the presence of hydrogen-bond donor L9, meta-
selective C−H olefination was shown to be compatible with a
diverse set of olefins containing ketones (9a and 9l), esters
(9c), aldehydes (9f), amides (9g), multiple-fluoro substituted
aryl and alkyl (9e, 9h, and 9i) functional groups. The diverse
olefins derived from naturally occurring terpenes were also well
tolerated in the protocol (9j−9n).
To elucidate the roles of hydrogen-bond donors in the

reaction, we further carried out three sets of parallel
experiments (Figure 4). In the absence of hydrogen-bond
donor L9, the olefination reaction gave no more than 20% of
the olefinated products 3a after 20 h, while under the same
conditions, close to 65% of the products were obtained with
1.0 equiv of L9. Both the reactivity and meta selectivity (53%
yield, o/m/p = 1/3.3/1) declined obviously when reducing the
loadings of hydrogen-bond donor L9 to 0.5 equiv. It was found
that with a loading of 0.5 equiv L9, C−H olefination products
were provided in slightly higher yield (58% yield) when further
extending the reaction time to 48 h. In regard to meta-C−H
olefination products, kinetic isotope effect (KIE) was also
measured, and the value of kH/kD was 3.93 (Scheme 6),
indicating that C−H-bond cleavage is probably the rate-
determining step as observed in the previous reports.12,13b

Scheme 4. Pd-Catalyzed meta-C−H Olefination of Benzoate
Esters and Benzamidesa

aIsolated yield.

Scheme 5. Scope of the Olefinsa

aIsolated yield.
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Finally, hydrogen-bonding donor enabled C−H olefination
was carried out on a 3 mmol scale to provide the meta-
olefinated product 3b in 64% isolated yield, accompanied by
82% recovery of hydrogen-bond donor L9 from the reaction
(Scheme 7).

In conclusion, we have described the first example of Pd-
catalyzed meta-selective C−H functionalization of aromatic
carbonyl compounds through noncovalent hydrogen-bonding
interaction. The N,N′-substituted ureas as hydrogen-bond
donors were demonstrated to be capable of forming the double
hydrogen bonds with aromatic ketones, aldehydes, benzoate
esters, and benzamides, thereby achieving C−H functionaliza-
tion on the meta position of the phenyl ring by an embedded
nitrile directing group. We believe that the present noncovalent
hydrogen-bonding strategy for Pd-catalyzed distal C−H bond
functionalization will prove to be applicable in other types of
substrates and/or reactions.
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