
s t e r o i d s 7 1 ( 2 0 0 6 ) 266–272

avai lab le at www.sc iencedi rec t .com

journa l homepage: www.e lsev ier .com/ locate /s tero ids

One-pot, high yield synthesis of �-ketols from �5-steroids
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a b s t r a c t

�-Hydroxy ketones (�-ketols) are present in many compounds with biological activity. Sev-

eral methods are available for the preparation of �-ketols but only a few of them describe

the synthesis of steroid �-ketols from olefins. In this work, a new system consisting of

KMnO4/Fe(ClO4)3·nH2O was used in order to achieve the direct conversion of �5-steroids to
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their corresponding �-ketols, in high yields. Consideration of the probable reaction mech-

anism is provided. 2D homo- and heteronuclear correlation NMR spectroscopic techniques

were used to assign 1H and 13C resonances of some synthesized compounds. This method

has potential for the preparation of �-hydroxy ketones of biological interest.

© 2005 Elsevier Inc. All rights reserved.

1. Introduction

�-Hydroxy ketones (�-ketols) occur in many biologically active
compounds [1]. The dihydroxyketone side chain is not only
common to a wide variety of corticosteroid antiinflamma-
tory drugs, but is also a structural component of adriamycin,
a potent antitumor agent [2,3]. Moreover, such functional-
ization of steroid substrates is important because polyoxy-
genated steroids have been isolated from marine organisms
and are considered a growing group of metabolites with
potential biological and pharmacological activities [4,5], and
are intermediates in the synthesis of secosterols [6,7]. Two
polyoxygenated steroids isolated from the sponge Dysidea
incrustans showed cytotoxicity against human non-small-
cell lung, renal and melanoma carcinoma cell lines [8]. A
racemic mixture of �-ketols isolated from Plexaurella grisea
collected at Punta Cana, exhibited strong and selective cyto-

∗ Corresponding author. Tel.: +351 239859950; fax: +351 239827126.
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toxicity against the HT-29 cell line with an ED50 = 0.1 �g/ml
[9]. Furthermore, 5�-hydroxy-6-ketosteroids have been used
to synthesize various structural analogs of natural ecdys-
teroids, which are the basis for the development of a new
class of ecologically safe insecticides [10]. In particular, cer-
tain simple synthetic sterol derivatives are active insecticides
against the Colorado beetle. These compounds are prepared
via chemical transformation of cholesterol or �-sitosterol
by replacing the sterol 3�-hydroxy by chlorine with subse-
quent introduction of oxygen-containing functional groups
in rings A and B of the corresponding 3�-chloro deriva-
tives. 3�-Chloro-5�-hydroxycholestan-6-one is one of the
most toxic compounds against the Colorado beetle larvae
[11].

Available methods for the preparation of �-ketols include
the oxidation of diols [12–15], oxidation of ketones via enol
ethers [16,17] or enolate anions [18], benzoin condensation

0039-128X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.steroids.2005.11.002



s t e r o i d s 7 1 ( 2 0 0 6 ) 266–272 267

[19], the oxidation of epoxides [20–26], reaction of acyl lithium
compounds with ketones and aldehydes [27], reductive cou-
pling reactions of acid halides with ketones and aldehydes
[28,29], partial reduction of 1,2-diketones [30] and those from
olefins [31–34].

There are only a few methods reported for the synthesis
of �-ketols from steroid olefins. These include RuO4 oxidation
of monoene [35], conjugated diene [6,36], and �2, �2,4, �4,6

steroids [6], RuCl3 catalyzed oxidation of olefins with perox-
yacetic acid [37] and OsO4 catalyzed oxidation of the �17,20

steroid position with Mila’s reagent (H2O2 in anhydrous t-
BuOH) [38].

Oxidations with KMnO4/CuSO4·5H2O were not effec-
tive in the conversion of steroidal olefins to the cor-
responding �-ketols [31] instead the 5�,6�-epoxides were
obtained [39]. The authors then hypothesized that traces
of water and t-butyl alcohol in the reaction medium
could be responsible for the formation of an omega
phase over the oxidant where the reaction actually took
place and therefore, the greater lipophilicity of the steroid
substrates would account for these unexpected results
[39].

Further work on the synthesis of steroid 5�,6�-epoxides
from olefins using KMnO4/metal sulphate and nitrate sys-
tems has been published [40] and two mechanistic approaches
have been proposed for this reaction. Parish and Li sug-
gested that there was coordination of the copper ion on
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2. Experimental

2.1. General methods

Steroid starting materials of high purity were available from
Sigma–Aldrich Co. Solvents were distilled before use accord-
ing to standard procedures. Kieselgel 60HF254/Kieselgel 60G
was used for TLC plates. Melting points were determined on
a BUCHI Melting Point B-540 and are uncorrected. IR spec-
tra were performed in a Jasco FT/IR 420 spectrophotometer.
1H NMR and 13C NMR spectra were recorded either on a
Bruker AMX 300 or on a Varian UNITY-500 spectrometer in
CDCl3 solution with Me4Si as internal standard. 2D homonu-
clear correlation (COSY) and 2D heteronuclear multiple quan-
tum correlation (HMQC) spectra were recorded on the Var-
ian UNITY-500 spectrometer. Mass spectral analyses were
made on a KRATOS model MS 25RF or a Fisons VG Autospec
instrument.

2.2. General procedure for the preparation of steroidal
˛-ketols

Steroid substrates (Table 1, entries 1–9) were dissolved in
dichloromethane at room temperature, in a reaction flask. A
mixture of KMnO4 and Fe(ClO4)3·nH2O was ground to a fine
powder (Caution: appropriate precautions should be under-
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he less hindered �-face of the double bond, forming a
-complex that weakened it and provided for the subse-
uent permanganate attack on the �-face [41,42]. Another
tudy, however, suggested that the mechanism involved
he kinetically controlled attack of the MnO4

− ion in the
mega phase on the alkene, in a Markovnikoff manner and

n an axial sense. The role of the metal salts would be
o co-ordinate with the MnO4

− ion to allow the decom-
osition of the complex to the corresponding epoxide

43,44].
With this work, we report a novel, one-step procedure for

he conversion of �5-steroids to their corresponding �-ketols
n high yields, using Fe(ClO4)3·nH2O as the metal salt in the
MnO4/metal salt system and further shed some light onto the
echanism by which the reaction occurs. Homo- [45] and het-

ronuclear [46] 2D NMR techniques were used in the assign-
ent of 1H and 13C resonances not directly attributable from

he 1D 1H NMR and 13C NMR spectra.

Table 1 – General procedure for the preparation of steroida

ntry Substrate (mmol) CH2Cl2
(ml)

KMnO4
(g)

Fe(ClO4)3
(g)

1 1 0.5 4.5 1.5 0.7
2 2 0.5 4.5 1.5 0.7
3 3 1 9 3 1.5
4 4 0.5 4.5 1.5 0.7
5 5 0.5 4.5 1.5 0.7
6 6 0.5 4.5 1.5 0.7
7 7 1 9 3 1.5
8 8 0.5 4.5 1.5 0.7
9 9 0.5 4.5 1.5 0.7
taken in the manipulation of iron(III) perchlorate hydrate).
Water was added and the final mixture was transferred to
the reaction flask, followed by the addition of t-butyl alcohol.
All reactions were monitored by TLC control. The final prod-
ucts were separated from the inorganic residues by addition
of diethyl ether to the reaction flask which was allowed to stay
under magnetic stirring for a few minutes. The mixture was
then filtrated through a celite pad and the solid residue thor-
oughly washed with hot ether (total volume of 150 ml). The
filtrates were washed with water (30 ml) and dried over anhy-
drous sodium sulphate. The organic phases were filtered and
the solvent was evaporated under vacuum to give the final
products.

2.2.1. 5˛-Hydroxy-6,17-dioxoandrostane-3ˇ-yl acetate
(10)
Mp (diethyl ether) 196–198 ◦C; lit. 197–198 ◦C [47]. IR (cm−1)
3470.28, 1737.73, 1705.85, 1264.11; 1H NMR (CDCl3, 300 MHz)

etols

O H2O (�l) t-BuOH
(ml)

Time (h) Isolated
yield (%)

Product

75 0.25 20 70 10
75 0.25 18 75 11

150 0.5 24 78 12
75 0.25 24 71 13
75 0.25 24 76 14
75 0.25 15 80 15

150 0.5 20 76 16
75 0.25 8 81 10
75 0.25 20 78 17
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ı = 0.80 (s, 3H, 18-H3), 0.82 (s, 3H, 19-H3), 1.98 (s, 3H, CH3CO),
2.85 (dd, J = 12.8 Hz and 11.8 Hz, 7�-H), 4.99 (m, 1H, 3�-H); 13C
NMR (CDCl3, 75 MHz) ı = 70.58 (C3), 80.06 (C5), 171.17 (CH3COO),
211.71 (C6), 220.19 (C17); MS [m/z (%)] 362 (30) M+, 302 (81), 220
(68), 205 (61), 110 (78), 95 (71), 81 (64), 43 (100).

2.2.2. 5˛-Hydroxy-6-oxoandrostane-3ˇ-yl acetate (11)
Mp (diethyl ether–petroleum ether) 220–221 ◦C; lit. 220–221 ◦C
[48] IR (cm−1) 3411.46, 1728.87, 1700.91, 1365.35, 1272.79,
1240.00; 1H NMR (CDCl3, 300 MHz) ı = 0.65 (s, 3H, 18-H3), 0.79 (s,
3H, 19-H3), 1.99 (s, 3H, CH3CO), 2.76 (dd, J = 12.5 Hz and 12.8 Hz,
7�-H), 5.01 (m, 1H, 3�-H); 13C NMR (CDCl3, 75 MHz) ı = 70.62
(C3), 80.19 (C5), 171.00 (CH3COO), 212.32 (C6); MS [m/z (%)] 348
(24) M+, 288 (92), 206 (74), 135 (89), 109 (95), 95 (100), 81 (77), 43
(94).

2.2.3. 5˛-Hydroxy-6,20-dioxopregnane-3ˇ-yl acetate (12)
Mp (diethyl ether) 220–223 ◦C; lit. 222.5–224 ◦C [47]. IR (cm−1)
3394.10, 1728.87, 1708.62, 1362.46, 1240.97; 1H NMR (CDCl3,
300 MHz) ı = 0.57 (s, 3H, 18-H3), 0.79 (s, 3H, 19-H3), 2.00 (s, 3H,
CH3CO), 2.10 (s, 3H, 21-H3), 2.75 (dd, J = 12.5 Hz and 12.8 Hz, 7�-
H), 5.01 (m, 1H, 3�-H); 13C NMR (CDCl3, 75 MHz) ı = 70.51 (C3),
80.16 (C5), 171.03 (CH3COO), 209.28 (C20), 211.76 (C6); MS [m/z
(%)] 390 (6) M+, 330 (47), 248 (24), 110 (27), 95 (23), 81 (22), 55 (18),
43 (100).

2.2.4. 3ˇ-Chloro-5˛-hydroxycholestan-6-one (13)

(CDCl3, 300 MHz) ı = 0.85 (s, 3H, 18-H3), 1.00 (s, 3H, 19-H3), 2.84
(dd, J = 12.3 Hz and 12.6 Hz, 1H, 7�-H), 2.88 (d, J = 15.9, 1H, 4�-
H); 13C NMR (CDCl3, 75 MHz) ı = 82.62 (C5), 210.15 and 210.55
(C3 and C6), 219.82 (C17); MS [m/z (%)] 318 (39) M+, 275 (82), 220
(97), 101 (56), 85 (87), 67 (65), 55 (77), 41 (100).

2.2.8. 5˛-Hydroxyandrostane-6,17-dione (17)
Mp (diethyl ether) 236–238 ◦C; lit. 236–238 ◦C [51]. IR (cm−1)
3431.71, 1737.55, 1697.05, 1247.72; 1H NMR (CDCl3, 300 MHz)
ı = 0.78 (s, 3H, 18-H3), 0.82 (s, 3H, 19-H3), 2.84 (dd, J = 12.2 Hz
and 12.4 Hz, 1H, 7�-H); 13C NMR (CDCl3, 75 MHz) ı = 79.03 (C5),
212.29 (C6), 220.27 (C17); MS [m/z (%)] 304 (22) M+, 273 (41), 233
(100), 220 (42), 205 (71), 67 (42), 57 (62), 41 (78).

3. Conversion of �5-steroids to the
corresponding 5�,6�-epoxides using the
KMnO4/Fe(ClO4)3·nH2O system, in the presence
of NaH2PO4·3H2O

20-Oxo-pregn-5-ene-3�-yl acetate 3 (358.51 mg; 1 mmol) was
dissolved in dichloromethane (9 ml) at room temperature,
in a reaction flask. A mixture of KMnO4 (2 g; 12.6 mmol),
Fe(ClO4)3·nH2O (0.5 g; 1.96 mmol) and NaH2PO4·3H2O (0.5 g,
3.20 mmol) was ground to a fine powder. Water (150 �l) was
added and the final mixture was transferred to the reaction
flask, followed by the addition of t-butyl alcohol (0.39 g; 0.5 ml).
Mp (acetone–petroleum ether) 181–183 ◦C; lit. 180–186 ◦C [11].
IR (cm−1) 3455.81, 1706.69, 1465.63, 1377.89; 1H NMR (CDCl3,
300 MHz) ı = 0.64 (s, 3H, 18-H3), 0.84 (s, 3H, 19-H3), 0.86 (d,
J = 6.5 Hz, 6H, 26-H3 and 27-H3), 0.91 (d, J = 6.5 Hz, 3H, 21-H3),
2.69 (dd, J = 12.0 Hz and J = 13.0 Hz, 1H, 7�-H), 4.21 (m, 1H, 3�-
H); 13C NMR (CDCl3, 75 MHz) ı = 41.83 (C7), 69.80 (C3), 80.74 (C5),
211.48 (C6).

2.2.5. 5˛-Hydroxy-6-oxocholestane-3ˇ-yl benzoate (14)
Mp (dibutyl ether) 228–230 ◦C; lit. 230–231 ◦C [49]. IR (cm−1)
3414.35, 1711.51, 1275.68; 1H NMR (CDCl3, 300 MHz) ı = 0.65 (s,
3H, 18-H3), 0.87 (d, J = 6.1 Hz, 6H, 26-H3 and 27-H3), 0.88 (s, 3H,
19-H3), 0.92 (d, J = 6.3 Hz, 3H, 21-H3), 2.77 (dd, J = 12.6 Hz and
12.7 Hz, 1H, 7�-H), 5.31 (m, 1H, 3�-H), 7.42 (t, J = 7.3 Hz, 2H, 3′-H
and 5′-H), 7.55 (t, J = 7.2 Hz, 1H, 4′-H), 8.01 (d, J = 7.1 Hz, 2H, 2′-
H and 6′-H); 13C NMR (CDCl3, 75 MHz) ı = 41.76 (C7), 71.23 (C3),
80.53 (C5), 128.30 (C3′ and C5′ ), 129.57 (C2′ and C6′ ), 130.47 (C1′ ),
132.91 (C4′ ), 166.31 (C6H5CO), 212.20 (C6); MS [m/z (%)] 522 (2)
M+, 400 (72), 318 (16), 122 (28), 105 (100), 77 (41), 57 (32), 43 (37).

2.2.6. 5˛-Hydroxy-6-oxocholestane-3ˇ-yl acetate (15)
Mp (methanol) 222–225 ◦C; lit. 226.5–228 ◦C [47]. IR (cm−1)
3394.10, 1733.69, 1713.44, 1365.35, 1280.50, 1243.86; 1H NMR
(CDCl3, 300 MHz) ı = 0.62 (s, 3H, 18-H3), 0.79 (s, 3H, 19-H3), 0.84
(d, J = 6.2 Hz, 6H, 26-H3 and 27-H3), 0.88 (d, J = 6.5 Hz, 3H, 21-H3),
1.99 (s, 3H, CH3CO), 2.71 (dd, J = 12.5 Hz and 12.6 Hz, 1H, 7�-H),
4.99 (m, 1H, 3�-H); 13C NMR (CDCl3, 75 MHz) ı = 70.66 (C3), 80.25
(C5), 171.02 (CH3CO), 212.40 (C6); MS [m/z (%)] 460 (6) M+, 400
(100), 318 (21), 110 (42), 93 (25), 81 (26), 55 (22), 43 (54).

2.2.7. 5˛-Hydroxyandrostane-3,6,17-trione (16)
Mp (ethyl acetate–hexane) 253–255 ◦C; lit. 254–256 ◦C [50]. IR
(cm−1) 3435.99, 1737.55, 1715.37, 1703.80, 1243.86; 1H NMR
After 1 h at room temperature, TLC control showed that the
reaction was complete and the final product was separated
from the inorganic residue by addition of diethyl ether to the
reaction flask which was allowed to stay under magnetic stir-
ring for a few minutes. The mixture was then filtrated through
a celite pad and the solid residue thoroughly washed with
hot ether (total volume of 150 ml). The filtrate was washed
with water (30 ml) and dried over anhydrous sodium sulphate.
Evaporation of the solvent under vacuum afforded 18 (320 mg,
ratio �/� 78:22 as calculated by integration of the 6-H signals
in crude samples).

3.1. 5ˇ,6ˇ-Epoxy-20-oxopregnane-3ˇ-yl acetate (18)

Mp (methanol) 129–132 ◦C; lit. 129–131 ◦C [52]. Spectroscopic
data according to literature [40].

4. Results and discussion

By using the KMnO4/Fe(ClO4)3·nH2O system on our �5-steroids
(Scheme 1), we were able to achieve direct synthesis of the
corresponding �-ketols in high yields (Table 1, entries 1–7).
The protecting groups for the 3�-hydroxy group (acetate, ben-
zoate) were resistant to these reaction conditions. However,
the tetrahydropyranyl group was unstable and the 3-keto
derivative was obtained (Table 1, entry 7; Scheme 1). The 3�-
chloro group also resisted to these reaction conditions.

On the reaction with substrate 6, a mixture of the 5,6-
epoxide (ratio �/� 80:20), the corresponding trans-diol and
the �-ketol was identified by 1H NMR, after 2 h. When the
KMnO4/Fe(ClO4)3·nH2O system was applied to the steroidal
5�,6�-epoxide 8 (Table 1, entry 8; Scheme 2), the corresponding
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Scheme 1

�-ketol was again obtained. Furthermore, the �-ketol 17 was
also obtained from the 5�,6�-epoxide 9 (Table 1, entry 9).
However, when the reaction was carried out in the pres-
ence of NaH2PO4·3H2O, the 5,6-epoxide (ratio �/� 78:22) was

obtained from the �5-steroid instead of the �-ketol (Scheme 3).
Therefore, we assume that the reaction proceeds via an epox-
ide intermediate that later decomposes to give the trans-diol
which is then oxidized to the final �-ketol (Scheme 4, route 1),
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Scheme 3

and not directly via the trans-diol (Scheme 4, route 2). It is our
belief that because iron(III) perchlorate is a strong Lewis acid,
it is capable of not only opening the epoxide but also further
promote its decomposition to the �-ketol, aided by the metal
hydroxide content generated in the reaction medium. The use
of NaH2PO4·3H2O may account for a stabilization of the pH of
the reaction medium closer to neutrality mainly due to the
H2PO4

−/HPO4
2− buffer system that is generated in situ. This

stabilization can be responsible for the fact that no �-ketols
are obtained in this way. Alternatively, highly insoluble FePO4

generated in situ could also be responsible for the fact that no
�-ketols are obtained in the presence of NaH2PO4·3H2O.

The assignment of some of the 1H and 13C resonances for
compounds 3�-chloro-5�-hydroxycholestan-6-one 13 and 5�-
hydroxy-6-oxocholestane-3�-yl benzoate 14 was made using
2D COSY and HMQC spectra, in order to provide detailed struc-
tural information.

The COSY spectrum of compound 14 helped to assign the
aromatic region that consisted of three sets of 1H peaks: 7.42 (t,

J = 7.3 Hz, 2H, 3′-H and 5′-H), 7.55 (t, J = 7.2 Hz, 1H, 4′-H), 8.01 (d,
J = 7.1 Hz, 2H, 2′-H and 6′-H). Using these 1H assignments and
the HMQC spectrum we assigned the aromatic carbons: 128.30
(C3′ and C5′ ), 129.57 (C2′ and C6′ ), 132.91 (C4′ ). By exclusion, the
fourth resonance in the aromatic region at 130.47 must refer to
C1′ . The combination of COSY and HMQC spectra of compound
14 also allowed us to identify the proton 7� at 2.77 ppm which
has a geminal coupling of 12.6 Hz with proton 7� at 2.14 ppm.
Carbon 7 (C7) appears at 41.76 ppm.

For compound 13 the combination of COSY and HMQC
spectra allowed us to identify the proton 3� at 4.21 ppm
and the proton 7� at 2.69 which has a geminal coupling of
13.0 Hz with proton 7� at 2.16 ppm. Carbon 7 (C7) appears at
41.83 ppm.

In conclusion, we have achieved a novel, one-step proce-
dure for the conversion of �5-steroids to their corresponding
�-ketols in high yields, by using a KMnO4/Fe(ClO4)3·nH2O sys-
tem. We also have provided detailed structural elucidation of
some of the compounds prepared. This method has proven
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to be potentially important for the preparation of �-hydroxy
ketones with biological interest.
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thanks Fundação para a Ciência e a Tecnologia for a grant
(BD12508/2003). We are grateful to Prof. A. Campos Neves
for the helpful discussions with which he kindly privileged
us.

r e f e r e n c e s

[1] Murahashi S-I, Naota T, Hanaoka H. Osmium-catalyzed
oxidative transformation of alkenes to �-ketols with
peracetic acid. Chem Lett 1993:1767–70.

[2] VanRheenen V, Shephard KP. New synthesis of cortico
steroids from 17-keto steroids: application and
stereochemical study of the unsaturated
sulfoxide–sulfenate rearrangement. J Org Chem
1979;44:1582–4.

[3] Tamura Y, Yakura T, Haruta J-I. An efficient conversion of
keto groups into dihydroxyacetone groups: oxidation of
ethynylcarbinol intermediates by using hypervalent iodine
reagent. Tetrahedron Lett 1985;26:3837–40.

[4] D’Auria MV, Minale L, Riccio R. Polyoxygenated steroids of

[15] Plietker B. Alkenes as ketol surrogates—a new approach
toward enantiopure acyloins. Org Lett 2004;6:289–
91.

[16] Rubottom GM, Vazquez MA, Pelegrina DR. Peracid
oxidation of trimethylsilyl enol ethers: a facile
�-hydroxylation procedure. Tetrahedron Lett
1974;15:4319–22.

[17] Yamamoto H, Tsuda M, Sakaguchi S, Ishii Y. Selective
oxidation of vinyl ethers and silyl ethers with hydrogen
peroxide catalyzed by peroxotungstophosphate. J Org
Chem 1997;62:7174–7.

[18] Betancor C, Francisco CG, Freire R, Suaréz E. The reaction
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