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Conversion of hydrazones to alkyl chlorides under Swern
oxidation conditions
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Abstract—The unsubstituted hydrazones derived from aromatic ketones and aldehydes were converted in high yield to the corre-
sponding alkyl chlorides under Swern oxidation conditions. In this unusual oxidation/reduction sequence the substrate undergoes
a net reduction under the well established Swern oxidation conditions. Unsubstituted hydrazones derived from cyclohexyl ketones
returned elimination products.
� 2006 Elsevier Ltd. All rights reserved.
Unsubstituted hydrazones are versatile synthetic
intermediates used in the preparation of diazo
compounds,1–3 vinyl iodides,4,5 vinyl selenides,6 gem
dihalides,7,8 and are substrates for the Wolff–Kishner9

reduction. This letter details the previously undescribed
reactivity of N-unsubstituted hydrazones under Swern
oxidation conditions.10 Of note, hydrazones derived
from aryl ketones or aryl aldehydes are converted in
high yields to alkyl chlorides. This is an interesting oxi-
dation/reduction sequence as the substrate hydrazone
undergoes net reduction to provide an alkyl chloride
under the well established Swern oxidation conditions.

In this procedure, a dichloromethane solution of the
hydrazone and 1 M equiv of triethylamine was added
to a cooled (�78 �C) dichloromethane solution of
dimethylsulfoxide previously activated with oxalyl chlo-
ride. Upon removing the solution from the cold bath, a
gas evolution ensued. In each case the reaction was com-
plete before reaching the room temperature. A simple
extractive work-up provided high product yields typi-
cally in greater than 95% purity as determined by
NMR and GC analysis.11,12

The results for various hydrazones subjected to these
conditions are compiled in Table 1. The hydrazones de-
rived from aryl ketones and aldehydes were efficiently
converted to alkyl chlorides in uniformly high yields.
Benzophenone hydrazone was converted to chloro-
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diphenylmethane in a 93% yield and the hydrazone de-
rived from 9-anthraldehyde was converted to 9-
chloromethyl anthracene in a 98% yield. When acetoph-
enone hydrazone was subjected to these conditions 1-
chloroethyl benzene was formed in a 92% yield along
with a 6% yield of styrene as a side product. Finally,
an a-keto hydrazone, benzyl monohydrazone, also
proved to be a suitable reactant and provided desyl chlo-
ride in a 95% yield.

Hydrazones derived from cyclohexyl ketones proved
unsuitable as substrates. Subjecting 4-tert-butyl cyclo-
hexanone hydrazone to the reaction conditions provided
the expected gas evolution, but no alkyl chloride was
isolated. Instead, a mixture of 4-tert-butylcyclohex-1-
ene, 1-tert-butylcyclohex-1-ene, and 4-tert-butyl cyclo-
hexanone was recovered. The hydrazone of 4-cholester-
one also returned only elimination products and ketone.

A mechanistic hypothesis that accounts for these results
is presented in Scheme 1. Hydrazone 1 would react with
the dimethylchlorosulphonium ion (generated by the ac-
tion of oxalyl chloride on DMSO) to provide di-
azosulphonium ion 2 upon deprotonation with Et3N.13

A lone pair donation by the a-nitrogen would result in
the elimination of dimethyl sulfide to provide N-proton-
ated diazonium ion 3. The migration of a proton from
nitrogen to carbon would provide diazonium ion 4,
which the could provide alkyl chloride 6 either directly
via SN2 substitution of nitrogen by chloride, or through
an SN1 mechanism in which loss of nitrogen provides
carbenium ion 5 as an intermediate.14 Due to the high
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Table 1. Table of results

Entry Hydrazone Chloride Yield (%)

1 93

2 92b

3 98

4 95

5 0c

6 0c

a Detailed experimental conditions are provided in Ref. 11.
b Styrene (6%) was obtained as side product.
c Products derived from elimination were obtained.

Scheme 1.
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instability of secondary diazonium ions, it is not surpris-
ing that the elimination products predominate in the
reactions of 4-tert-butyl cyclohexanone hydrazone and
the hydrazone of 4-cholesterone. In fact, the acid cata-
lyzed decomposition of 1-diazo-4-tert-butylcyclohexane
and steroidal diazo compounds is known to provide
similar product mixtures to those observed here.15,16

The origin of the recovered ketone could be accounted
for by invoking a rapid elimination step that would re-
sult in the generation of a second equivalent of HCl.
This acid could then protonate the unreacted hydrazone
and thus inhibit subsequent diazo formation. The
hydrolysis of the hydrazone hydrochloride salt during
purification would return ketone.

To broaden the utility and to further test the proposed
mechanism of this transformation, the reaction was re-
peated on a sample of deuterium enriched benzophe-
none hydrazone (Scheme 2). This sample was
generated by simply dissolving benzophenone
hydrazone in a mixture of dichloromethane and deuter-
ated methanol and then removing the solvents in vacuo.



Scheme 2.
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The proton NMR spectrum of this material revealed
that 93% of the protons on nitrogen had exchanged
for deuterium. Upon subjecting this material to the
above reaction conditions, a 92:8 mixture of chloro-
deutrodiphenylmethane and chlorodiphenylmethane
was isolated in a 90% yield. This ratio is consistent with
the proposed mechanism and unambiguously shows the
origin of the transferred proton. This also highlights the
utility of this methodology as a facile means to incorpo-
rate deuterium into organic substrates.

We are currently working to develop these reaction con-
ditions into a method for the preparation and isolation
of diazo compounds.
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