ISSN 1070-3632, Russian Journal of General Chemistry, 2014, Vol. 84, No. 3, pp. 457–464. © Pleiades Publishing, Ltd., 2014. Original Russian Text © H.A. Gharibyan, G.M. Makaryan, M.R. Hovhannisyan, F.S. Kinoyan, Zh.A. Chobanyan, 2014, published in Zhurnal Obshchei Khimii, 2014, Vol. 84, No. 3, pp. 399–406.

## Some Special Features of Hydroalumination-Iodination of Alkyne-1,4-diols

H. A. Gharibyan, G. M. Makaryan, M. R. Hovhannisyan, F. S. Kinoyan, and Zh. A. Chobanyan

Scientific and Technological Center of Organic and Pharmaceutical Chemistry, National Academy of Sciences of Armenia, Institute of Organic Chemistry, pr. Azatutyan 26, Yerevan, 0014 Armenia e-mail: hgaribyan@mail.ru

Received March 7, 2013

**Abstract**—Hydroalumination-iodination of alkyne-1,4-diols of different structure showed that with increasing number of substituents at the C–OH group the amount of  $\beta$ -iodo-substituted products with respect to this group increased. In the case of symmetric secondary 1,4-diols the reaction results in a 1 : 1 mixture of stereoisomeric iodoalkenediols, and in the case of phenyl substituents the reaction proceeds regio- and stereoselectively to give an alkenediol iodine atom in the  $\beta$ -position to phenyl group.

DOI: 10.1134/S1070363214030086

Hydroalumination of propargylic alcohols with lithium aluminum hydride followed by iodination of the resulting organometallic complex is a convenient method for the synthesis of 1-iodo- and 2-iodoallyl alcohols [1]. The hydride ion attack can be directed on the C<sup>2</sup> or C<sup>3</sup> atoms of propargyl alcohol by adding Lewis acids (AlCl<sub>3</sub>) or bases (CH<sub>3</sub>ONa) to the reaction mixture [2]. This method has been successfully applied to the synthesis of some natural isoprenoid compounds [1, 3–6].

In this work we studied stereo- and regioselectivity of hydroalumination-iodination of alkyne-1,4-diols Ia-Ij. For this purpose, various  $\alpha$ -substituted (with respect to the triple bond) acetylenic diols were used (Table 1). Hydroalumination of diols Ia-Ij was performed at room temperature in a THF-diethyl ether mixture at the ratio substrate-lithium aluminum hydride of 1 : 4 [in the case of Ia a ratio was 1 : 3] (Table 2). Intermediate aluminates were quenched with powdered iodine at -5to  $-10^{\circ}$ C. As expected, the reaction afforded a mixture of regioisomeric iodoalkenediols IIa-IIIj, IIIa-IIIj. The IR and <sup>1</sup>H NMR spectra indicated the formation of regioisomeric iodoalkenediols of Z-configuration [7]. The configuration of the double bonds was confirmed by NOESY method. For example, in the spectrum of **IId** cross peaks were observed between the protons  $H^2$ and  $H^4$ , and in the spectrum of **IIId**, between the  $H^1$ and H<sup>3</sup> protons. This shows the spatial proximity of the

protons  $H^2$ ,  $H^4$  and  $H^3$ ,  $H^1$  in compounds **IId** and **IIId**, respectively. This arrangement of the protons can occur only if the double bond CH=CI is of the *Z*-configuration (see Scheme 1).

The composition and the ratio of the products of hydroalumination-iodination of alkyne-1,4-diols **Ia–Ij** are shown in Table 1. Regioisomers ratio was determined using <sup>1</sup>H NMR by integrating the signals of vinyl protons (see Table 3).

The results allowed to derive the following rule of thumb: the more substituents at the C–OH groups in the starting diol, the more formed a compound in which the iodine atom is located at the  $\beta$ -carbon atom with respect to the specified group.

For accurate assignment of the signals in the spectra of isomeric iodoalkenediols, we performed NOESY experiment by an example of **Id**. The proton signals of hydroxy groups were established after adding trifluoroacetic acid to the sample. In the NOESY spectrum there were cross peaks between the vinyl proton signal at 5.91 ppm and the signals of CH<sub>2</sub>OH and CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub> groups at 4.02 and 1.30 ppm, respectively. There was also a coupling between the protons of iodovinyl fragment (6.09 ppm) and the protons of CH<sub>2</sub>OH (3.62 ppm) and CHOH (3.98 ppm). These data allow assigning the signals at 5.91, 1.30, and 4.02 ppm to one isomer, and the signals at 6.09, 3.62, and 3.98 ppm to another.

| 45 | 8 |
|----|---|
|----|---|

 Table 1. Composition and ratio (%) of the products II, III
 of hydroalumination-iodination of alkyne-1,4-diols Ia–Ij

| Alkynediols | Iodoalkenediols |     |  |  |
|-------------|-----------------|-----|--|--|
|             | II              | III |  |  |
| Ia          | 100             | -   |  |  |
| Ib          | 33              | 67  |  |  |
| Ic          | 28              | 72  |  |  |
| Id          | 35              | 65  |  |  |
| Ie          | 100             | -   |  |  |
| If          | 100             | -   |  |  |
| Ig          | 31              | 69  |  |  |
| Ih          | 30              | 70  |  |  |
| Ii          | 100             | -   |  |  |
| Ij          | 100             | _   |  |  |

When the starting alkyne-1,4-diol contained a tertiary hydroxy group adjacent to the triple bond (**Ig**, **Ih**), then hydroalumination-iodination resulted in allenic alcohols **IVg** and **IVh** along with appropriate alkenediols **IIg**, **IIh** and **IIIg**, **IIIh** (Table 4). This agrees well with the literature data on hydroalumination of alkyne-1,4-diols [8].



 
 Table 2. Conditions of hydroalumination-iodination of alkyne-1,4-diols Ia–Ij

| Comp.<br>no. | Solvent        | Temperature,<br>°C | Time,<br>h | [I] : [LiAlH4] |
|--------------|----------------|--------------------|------------|----------------|
| Ia           | THF            | 39–40              | 7          | 1:3            |
| Ib           | EtO–THF, 1 : 2 | 21–24              | 2          | 1:4            |
| Ic           | EtO–THF, 1 : 2 | 22–23              | 2.5        | 1:4            |
| Id           | EtO            | 22–25              | 4          | 1:4            |
| Ie           | EtO–THF, 1 : 2 | 22–25              | 2          | 1:4            |
| If           | EtO            | 23–25              | 2          | 1:4            |
| Ig           | EtO–THF, 1 : 2 | 23–25              | 2          | 1:4            |
| Ih           | EtO–THF, 1 : 5 | 33–35              | 2.5        | 1:4            |
| Ii           | EtO–THF, 1 : 2 | 22–24              | 2          | 1:4            |
| Ij           | EtO–THF, 1 : 2 | 22–24              | 2          | 1:4            |

In the case of hydroalumination-iodination of symmetric secondary alkyne-1,4-diols **If**, **Ij** the formation of diols **IIf**, **IIj** with only *Z*-configuration can be expected. However, the obtained data showed that *E*-isomer also formed. According to the <sup>1</sup>H NMR data, stereoisomers ratio was ~ 1 : 1. Value of the constant (<sup>4</sup>*J*) of spin-spin coupling between the vinyl proton and the proton in the  $\alpha$ -position with respect to the iodine atom was a criterion for assigning the signals to geometric isomers. For *Z*-isomer it equals 1.0 Hz, and for *E*-isomer, 0.8 Hz. Furthermore, the signal of vinyl proton of *E*-isomer appears downfield with respect to that of *Z*-isomer [5.97 and 5.92 ppm]





**a**,  $R^1 = R^2 = R^3 = R^4 = H$ ; **b**,  $R^1 = R^3 = R^4 = H$ ,  $R^2 = CH_3$ ; **c**,  $R^1 = R^3 = R^4 = H$ ,  $R^2 = C_2H_5$ ; **d**,  $R^1 = R^3 = R^4 = H$ ,  $R^2 = C_3H_7$ ; **e**,  $R^1 = R^3 = R^4 = H$ ,  $R^2 = C_6H_5$ ; **f**,  $R^1 = R^3 = H$ ,  $R^2 = R^4 = C_2H_5$ ; **g**,  $R^1 = R^2 = CH_3$ ,  $R^3 = H$ ,  $R^4 = C_3H_7$ ; **h**,  $R^1 = CH_3$ ,  $R^2 = C_2H_5$ ,  $R^3 = R^4 = H$ ; **i**,  $R^1 = R^3 = H$ ,  $R^2 = R^4 = C_2H_5$ ; **g**,  $R^1 = R^2 = CH_3$ ,  $R^3 = H$ ,  $R^4 = C_3H_7$ ; **h**,  $R^1 = CH_3$ ,  $R^2 = C_2H_5$ ,  $R^3 = R^4 = H$ ; **i**,  $R^1 = R^3 = H$ ,  $R^2 = R^4 = C_3H_7$ ; **j**,  $R^1 = R^3 = H$ ,  $R^2 = C_6H_5$ .

## SOME SPECIAL FEATURES OF HYDROALUMINATION-IODINATION

| Comp. no.               | IR spectrum                                                                        | <sup>1</sup> H NMR spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|-------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| IIa + IIIa              | 3300-3500 (OH), 1630 (HC=CI), 1050                                                 | (CDCl <sub>3</sub> ): 2.6 br.s (2H, C <sup>1</sup> OH, C <sup>4</sup> OH), 4.26 d (2H, H <sup>1</sup> , J 1.2), 4.28 d.d (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                         | (C–O), 600 (C–I)                                                                   | $H^4$ , $J_1$ 4.0, $J_2$ 1.2), 6.28 d.t (1H, $H^3$ , $J_1$ 4.0, $J_2$ 1.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| IIb + IIIb              | 3350–3500 (OH), 1625 (HC=CI), 1100,                                                | $(DMSO-d_6-CCl_4, 1:3): 1.27 d (3H, H^3, J 6.5), 2.93 br.s (2H, C1OH, C4OH), 2.52 b following the second seco$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         | 1050 (C–O), 960 (CH=), 600 (C–I)                                                   | 3.52 d [2H, H <sup>+</sup> , $J$ /, ( <b>IIb</b> )], 3.78 q [1H, H <sup>+</sup> , $J$ 6.5, ( <b>IIIb</b> )], 3.90 s [2H, H <sup>+</sup> , ( <b>IIIb</b> )] 4.20 4.35 m [1H H <sup>4</sup> $J$ 6.5 ( <b>IIb</b> )] 5.95 d t [1H H <sup>2</sup> $J$ 7 $J$ 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         |                                                                                    | (IIIb)], 4.20–4.35 III [III, II, 5 0.3, $(IIb)$ ], 5.95 u.t [III, II, 5 17, 52 1.2, (IIIb)] 6 13 t [III H <sup>3</sup> .165 (IIb)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| IIc + IIIc              | 3350-3400 (OH), 1625 (HC=CI), 1100,                                                | $(CDCl_3): 1.22 t (3H, H^6, J 6.0), 1.40-1.80 m (2H, H^5), 4.15 d [2H, H^1, J 8.3]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                         | 1050 (C–O), 960 (CH=), 600 (C–I)                                                   | ( <b>IIc</b> )], 4.22 s [2H, H <sup>1</sup> , ( <b>IIIc</b> )], 4.18–4.28 m (1H, H <sup>4</sup> ), 4.42 br.s (2H, C <sup>1</sup> OH,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                         |                                                                                    | C <sup>4</sup> OH), 5.98 d.t [1H, H <sup>3</sup> , $J_1$ 7.5, $J_2$ 1.5, ( <b>IIIc</b> )], 6.22 t.d [1H, H <sup>2</sup> , $J_1$ 6.0, $J_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         |                                                                                    | 1.0, ( <b>IIc</b> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| IId + IIId              | 3300–3500 (OH), 1630 (HC=CI), 1100,                                                | $(DMSO-d_6): 0.90 \text{ t} (3\text{H}, \text{H}', J 6.8), 1.20-1.52 \text{ m} (4\text{H}, \text{H}^\circ, \text{H}^\circ), 3.62 \text{ t} (2\text{H}, \text{H}^\circ), 3.62 \text{ t} (2$ |  |  |  |  |
|                         | 1020 (C–O), 900 (CH–), 000 (C–I)                                                   | J = J = J = -4.00  III [2  III, III, (110)], 4.02  S [2  III, III, (110)], 4.50  d [1  III, (110)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                         |                                                                                    | J 7.2, ( <b>IId</b> )], 5.22 t [1H, C <sup>1</sup> OH, J 7.1, ( <b>IIId</b> )], 5.91 d [1H, H <sup>3</sup> , J 7.2, ( <b>IIId</b> )],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                         |                                                                                    | 6.09 t [1H, H <sup>2</sup> , <i>J</i> 7.1, ( <b>IId</b> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| IIe                     | 3300–3500 (OH), 3040, 1560, 1510, 740,                                             | (DMSO- <i>d</i> <sub>6</sub> -CCl <sub>4</sub> , 1 : 3): 4.15 d (2H, H <sup>4</sup> , <i>J</i> 7.0), 4.89 t (1H, H <sup>2</sup> , <i>J</i> 7.0), 5.09 t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                         | 690 (monosubstituted benzene ring), 1630                                           | (1H, C <sup>4</sup> OH, <i>J</i> 7.0), 5.33 d (1H, H <sup>1</sup> , <i>J</i> 7.0), 5.66 d (1H, C <sup>1</sup> OH, <i>J</i> 7.0), 7.20–                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|                         | (HC=CI), 1100 (C=O), 860 (CH=), 600                                                | $7.35 \text{ m} (5\text{H}, \text{C}_6\text{H}_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Шf                      | 3300–3500 (OH), 1640 (Z-HC=CI), 1630                                               | (CDCl <sub>3</sub> ): 0.90 t (6H, H <sup>1</sup> , H <sup>8</sup> , J 7.0), 1.40–1.60 m (4H, H <sup>2</sup> , H <sup>7</sup> ), 3.56 br.s (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                         | ( <i>E</i> -HC=CI), 1080, 1050 (C–O), 960                                          | C <sup>3</sup> OH, C <sup>6</sup> OH), 3.63 q (1H, H <sup>6</sup> , <i>J</i> 7.0), 4.28 t (1H, H <sup>3</sup> , <i>J</i> 7.0), 5.92 d.d (1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|                         | (Z-CH=), 850 (E-CH=), 600 (C-I)                                                    | H <sup>5</sup> , J <sub>1</sub> 7.5, J <sub>2</sub> 1.0, Z-isomer), 5.97 d.d (1H, H <sup>5</sup> , J <sub>1</sub> 7.5, J <sub>2</sub> 0.8, E-isomer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                         | 2200 2500 (OID 1/25 (HC OD 1150                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| ng + mg                 | 3300-3500 (OH), 1625 (HC=C1), 1150                                                 | $(DMSO-a_6): 0.92 \text{ f} (6\text{H}, \text{H}^2, \text{C}^2\text{CH}_3, J^{-7}, 0), 1.15-1.60 \text{ m} (4\text{H}, \text{H}^2, \text{H}^2), 1.37 \text{ s}$<br>(3H H <sup>8</sup> ) 1.55-1.63 m [1H H <sup>5</sup> ( <b>II</b> g)] 4.14-4.20 m [1H H <sup>5</sup> ( <b>III</b> g)] 4.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         |                                                                                    | br.s (2H, C <sup>2</sup> OH, C <sup>5</sup> OH), 5.82 d [1H, H <sup>4</sup> , J 7.0, ( <b>IIg</b> )], 6.18 s [1H, H <sup>3</sup> , ( <b>IIIg</b> )]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| <b>IVg</b> <sup>a</sup> | 3300-3500 (OH), 1950 (C=C=C), 1020-                                                | (DMSO- <i>d</i> <sub>6</sub> ): 0.88 t (3H, H <sup>1</sup> , <i>J</i> 6.9), 1.32–1.62 m (4H, H <sup>2</sup> , H <sup>3</sup> ), 1.57–1.65 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                         | 1000 (C–O), 840 (C=C=CH)                                                           | (6H, H <sup>8</sup> , C <sup>7</sup> CH <sub>3</sub> ), 3.10 br.s (1H, OH), 4.45–4.53 m (1H, H <sup>4</sup> ), 5.58–5.65 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| *** 3                   | 2200 2500 (OH) 1/25 (HG Ch) 1150                                                   | $(1H, H^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| IIh"                    | 3300-3500 (OH), 1625 (HC=CI), 1150, 1020 (C=O) 960 (CH=) 600 (C=D)                 | $(CDCl_3): 0.88 t (3H, H^{\circ}, J^{-}, 0), 1.22 s (3H, C^{\circ}CH_3), 1.55 and 1.78 q (2H, H^{\circ}, 1.70) 4.96 d (2H, H^{-}, 1.70) 5 10 br s (2H, C^{1}OH, C^{4}OH) 5 24 t (1H, H^{2}, J^{-}, 1.70) + 1.27 c (2H, C^{1}OH, C^{4}OH) 5 24 t (1H, H^{2}, J^{-}, 1.70)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                         | 1020 (C=0), 500 (C11-), 000 (C=1)                                                  | 7.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| IIIh <sup>a</sup>       | 3300-3500 (OH), 1620 (HC=CI), 1100,                                                | (DMSO- <i>d</i> <sub>6</sub> ): 0.88 t (3H, H <sup>6</sup> , <i>J</i> 7.0), 1.30 s (3H, C <sup>4</sup> CH <sub>3</sub> ), 1.55 and 1.78 q (2H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                         | 1020, 1000 (C–O), 960 (CH=), 600 (C–I)                                             | $H^{5}$ , J 7.0), 4.0 br.s (1H, C <sup>4</sup> OH), 4.03 s (2H, H <sup>4</sup> ), 5.28 t (1H, C <sup>1</sup> OH, J 7.0),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                         |                                                                                    | 6.33 s (1H, H <sup>3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| IVh"                    | 3300-3500 (OH), 1950 (C=C=C), 1200-                                                | $(DMSO-d_6): 0.88 \text{ t} (3\text{H}, \text{H}^\circ, J^{-7}, 0), 1.48-1.54 \text{ m} (3\text{H}, \text{C}_4\text{CH}_3), 1.97-2.06 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| IIi                     | 3300-3500 (OH) 1640 (Z-HC=CI) 1630                                                 | $(2\pi, \pi, j, 5.75)$ or $(1\pi, 0\pi)$ , $4.50$ d $(2\pi, \pi, j, 7.1)$ , $5.75-5.80$ ll $(1\pi, \pi)$<br>(DMSO- $d_4$ ): 0.92 t (6H H <sup>1</sup> H <sup>10</sup> J 7.0) 1.20–1.44 m (8H H <sup>2</sup> H <sup>3</sup> H <sup>8</sup> H <sup>9</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|                         | ( <i>E</i> -HC=CI), 1080, 1050 ( <i>C</i> -O), 960                                 | $3.40-3.55 \text{ m} (1\text{H}, \text{H}^7), 4.08-4.20 \text{ m} (1\text{H}, \text{H}^4), 4.41 \text{ d} (1\text{H}, \text{C}^7\text{OH}, J 6.0, J 6.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                         | (Z-CH=), 850 (E-CH=), 600 (C-I)                                                    | Z-isomer), 4.46 d (1H, C <sup>7</sup> OH, J 6.0, E-isomer), 4.82 d (1H, C <sup>4</sup> OH, J 5.0, Z-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                         |                                                                                    | isomer), 4.93 d (1H, C <sup>4</sup> OH, $J$ 5.0, $E$ -isomer), 5.82 d.d (1H, H <sup>6</sup> , $J_1$ 7.5, $J_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                         | 2200 2500 (011) 2040 2020 1500 1510                                                | 1.0, Z-isomer), 5.88 d.d (1H, H <sup>6</sup> , $J_1$ 7.5, $J_2$ 0.8, E-isomer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 11j                     | 5500–5500 (OH), 5040, 5020, 1590, 1510,<br>740, 700 (monosubstituted benzene ring) | $(CDCI_3)$ : 0.98 t (3H, H <sup>-</sup> , J /.0), 1.50–1./4 m (2H, H <sup>-</sup> ), 2.20 br.s (2H, C <sup>+</sup> OH, C <sup>4</sup> OH) 4.36 d t (1H H <sup>4</sup> J. 7.6 J. 6.4) 5.12 d (1H H <sup>1</sup> J.0.8) 6.21 d d (1H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                         | 1625 (HC=CI), 1100. 1050 (C–O). 960                                                | $H^{3}$ , $J_{1}$ 7.7, $J_{2}$ 1.0), 7.15–7.45 m (5H, C <sub>6</sub> H <sub>5</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|                         | (CH=), 600 (C–I)                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |

Table 3. IR and <sup>1</sup>H NMR spectra of iodoalkenediols IIa–IIIj, IIIa–IIId, IIIg and allene alcohols IVg, IVh

<sup>a</sup> Compounds were isolated by column chromatography.

| Comp. no.                                               | Viold %    | R <sub>f</sub><br>(Et <sub>2</sub> O–hexane) | Found, % |       |       | Formula                                       | Calculated, % |       |       |
|---------------------------------------------------------|------------|----------------------------------------------|----------|-------|-------|-----------------------------------------------|---------------|-------|-------|
|                                                         | 1 leiu, 70 |                                              | С        | Н     | Ι     | Foffilula                                     | С             | Н     | Ι     |
| IIa                                                     | 46.70      | 0.41 (Et <sub>2</sub> O)                     | 21.80    | 3.20  | 59.08 | C <sub>4</sub> H <sub>7</sub> IO <sub>2</sub> | 22.43         | 3.27  | 59.35 |
| IIb + IIIb                                              | 41.20      | 0.50 (3 : 1)                                 | 26.78    | 3.57  | 56.69 | $C_5H_9IO_2$                                  | 26.31         | 3.97  | 55.70 |
| IIc + IIIc                                              | 50.00      | 0.58 (5 : 1)                                 | 29.68    | 4.80  | 53.20 | $C_6H_{11}IO_2$                               | 29.75         | 4.54  | 52.48 |
| IId +IIId                                               | 49.70      | 0.58 (8 : 1)                                 | 33.08    | 5.30  | 50.20 | $C_7H_{13}IO_2$                               | 32.80         | 5.08  | 49.60 |
| IIe                                                     | 57.20      | 0.50; 0.41 (5 : 1)                           | 40.80    | 4.00  | 44.00 | $C_{10}H_{11}IO_2$                            | 41.38         | 3.79  | 43.79 |
| IIf                                                     | 53.10      | 0.72; 0.58 (5 : 1)                           | 36.08    | 6.10  | 48.08 | $C_8H_{15}IO_2$                               | 35.55         | 5.55  | 47.03 |
| $\mathbf{H}\mathbf{g} + \mathbf{H}\mathbf{I}\mathbf{g}$ | 51.02      | 0.41; 0.30 (5 : 2)                           | 37.98    | 5.93  | 44.69 | $C_9H_{17}IO_2$                               | 38.03         | 5.98  | 44.72 |
| <b>IVg</b> <sup>a</sup>                                 | 19.50      | 0.51 (1 : 1)                                 | 77.10    | 11.37 | -     | $C_9H_{16}O$                                  | 77.14         | 11.43 | -     |
| IIh <sup>a</sup>                                        | 27.50      | 0.24 (4 : 1)                                 | 33.00    | 4.80  | 50.28 | $C_7H_{13}IO_2$                               | 32.81         | 5.08  | 49.61 |
| IIIh <sup>a</sup>                                       | 45.30      | 0.30 (4 : 1)                                 | 32.79    | 4.91  | 49.89 | $C_7H_{13}IO_2$                               | 32.81         | 5.08  | 49.61 |
| IVh <sup>a</sup>                                        | 20.10      | 0.48 (1 : 1)                                 | 74.92    | 10.66 | -     | $C_7H_{12}O$                                  | 75.00         | 10.71 | -     |
| IIi                                                     | 51.02      | 0.40 (4 : 1)                                 | 40.21    | 6.30  | 42.58 | $C_{10}H_{19}IO_2$                            | 40.26         | 6.37  | 42.62 |
| IIj                                                     | 40.00      | 0.52 (5 : 1)                                 | 45.22    | 4.56  | 40.59 | $C_{12}H_{15}IO_2$                            | 45.30         | 4.75  | 39.89 |

Table 4. Yields,  $R_f$  values, and elemental analysis data of iodoalkenediols IIa–IIj, IIIa–IIId, IIIg and allene alcohols IVg, IVh

<sup>a</sup> Compounds were isolated by column chromatography.

(IIf), 5.88 and 5.82 ppm (IIj)]. The IR spectrum contains the characteristic absorption bands of E- and Z-isomeric iodo-substituted alkenediols at 1630, 850 and 1640, 960 cm<sup>-1</sup>, respectively.

All these facts concern alkyne-1,4-diols containing alkyl groups as substituents (**Ia–Id**, **If–Ii**). Hydroalumination-iodination of alkyne-1,4-diols containing a phenyl group (**Ie**, **Ij**) proceeded regio- and stereoselectively to give Z-alkenediols **IIe** and **IIj**, i.e., a iodine atom attached to the *sp*-hybridized carbon atom in the  $\beta$ -position relative to the phenyl group. According to the <sup>1</sup>H NMR data, the purity of the obtained iodo-substituted alkenediols **IIe**, **Ij** was ~97%. The same result we observed in hydroalumination-halogenation of phenylacetylene  $\alpha$ -alcohols [9, 10]. This hydrogenation regioselectivity was due to the easy attack of the hydride ion on the *sp*-hybridized carbon atom of the triple bond in the  $\gamma$ -position of the phenylpropynyl group.

The starting 1,4-diols were synthesized from prop-2-yn-1-ol V, 2-methylbut-3-yn-2-ol VI, and 2-(prop-2yn-1-yloxy)tetrahydro-2H-pyran VII. 4-Methylhex-2yne-1,4-diol Ih was obtained directly from prop-2-yn-1-ol V. The oxidation of the latter resulted in propiolic aldehyde X used further in the synthesis of diols If, Ij. 2-Methylbut-3-yn-2-ol VI was used in the synthesis of diols Ig, Ii. Diols Ib, Ic, Ie were prepared from compound VII (see Schemes 2–4).

## EXPERIMENTAL

<sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a Varian Mercury-VX 300 spectrometer operating at 300.077 and 75.462 MHz, respectively.  $CDCl_3$ ,  $CCl_4$ ,  $CDCl_3$ – $CCl_4$  (1 : 1), DMSO- $d_6$  were used as solvents. Chemical shifts were reported relative to internal reference TMS. IR spectra were registered on a Specord 75IR instrument from a thin layer. The reaction progress was monitored by TLC using Silufol UV-254 plates, eluting with hexane–diethyl ether mixture and detecting with iodine vapor or KMnO<sub>4</sub> solution.

But-2-yne-1,4-diol **Ia** was purchased from Sigma-Aldrich. Hept-2-yn-1,4-diol **Id** was synthesized by the known procedure [11].

Hydroalumination-iodination of alkyne-1,4-diols (I). A solution of alkyne-1,4-diol I in anhydrous diethyl ether or THF was added dropwise to a mixture of lithium aluminum hydride in anhydrous diethyl ether and (or) THF at 0°C under nitrogen. After stirring, ethyl acetate (LiAlH<sub>4</sub>–ethyl acetate ratio was 1 : 1) was added to the mixture at 0°C. The reaction mixture was maintained for 1 h and cooled to  $-10^{\circ}$ C.



 $R = CH_3 (a), C_2H_5 (b), C_6H_5 (c).$ 

Then crushed iodine was added by portions to the mixture (substrate:iodine = 1 : 3) within 0.5 h. After stirring at -10 to 0°C for 1 h, the mixture was treated with a saturated solution of sodium thiosulfate. The

precipitate was filtered off. The filtrate was extracted with diethyl ether. Then the extract was washed with saturated sodium thiosulfate solution, with brine, and dried over magnesium sulfate. After removing the

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 84 No. 3 2014

solvents, a mixture of iodoalkenediols II and III was isolated (Tables 1, 3, 4). In the case of an alkyne-1,4diols Ig, Ih, Ij a mixture of isomers was separated by column chromatography [eluent hexane–diethyl ether (19:1)–(9:1)]. In the case of alkyne-1,4-diols Ig, Ih, allene alcohols IVg and IVh were isolated by chromatography along with the corresponding alkenediols II and III.

Alkynols IXa-IXc. A solution of 38 mmol of an appropriate aldehyde VIIIa-VIIIc in 50 mL of anhydrous diethyl ether was added dropwise to the Grignard reagent, prepared from 0.50 g-atom of magnesium, 38 mmol of ethyl bromide and 50 mmol of 2-(prop-2-yn-1-yloxy)tetrahydro-2H-pyran VII [12], in 50 mL of anhydrous ether at -5 to  $-10^{\circ}$ C. The reaction mixture was stirred for 30 min and then refluxed for 4-5 h. The reaction mixture was hydrolyzed with saturated ammonium chloride solution and 10% aqueous hydrochloric acid solution at -15 to -10°C. The reaction product was extracted with diethyl ether. The ether extract was salted out, washed with saturated sodium carbonate solution and dried over magnesium sulfate. After removing the solvent, the residue was distilled in a vacuum.

**5-(Tetrahydro-2***H***-pyran-2-yloxy)pent-3-yn-2-ol (IXa).** Yield 40.0%, bp 130–134°C (1 mm Hg),  $R_f$  0.44 (diethyl ether–hexane, 3 : 1). IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1240, 1160, 1100, 1060, 1040 (C–O, C–O–C). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>–CCl<sub>4</sub>, 1 : 1),  $\delta$ , ppm (*J*, Hz): 1.40 d (3H, H<sup>5</sup>, *J* 6.5), 1.52–1.70 m (6H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, tetrahydropyran), 3.55 t and 3.83 t (2H, OCH<sub>2</sub>, tetrahydropyran, *J* 6.5), 4.27 and 4.30 d (2H, H<sup>1</sup>, *J* 1.2), 4.33 q (1H, H<sup>4</sup>, *J* 6.5), 4.81 t (1H, OCH, tetrahydropyran, *J* 6.4). Found, %: C 65.18; H 8.61. C<sub>10</sub>H<sub>16</sub>O<sub>3</sub>. Calculated, %: C 65.22; H 8.69.

**6-(Tetrahydro-2***H***-pyran-2-yloxy)hex-4-yn-3-ol (IXb).** Yield 45.0%, bp 127–130°C (2 mm Hg),  $R_{\rm f}$  0.48 (diethyl ether–hexane, 3 : 1). IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1240, 1160, 1100, 1060, 1040 (C–O, C–O–C). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>–CCl<sub>4</sub>, 1 : 1), δ, ppm (*J*, Hz): 1.02 t (2H, H<sup>6</sup>, *J* 6.5), 1.52–1.70 m (6H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, tetrahydropyran), 1.72–1.78 m (2H, H<sup>5</sup>), 3.55 and 3.83 t (2H, OCH<sub>2</sub>, tetrahydropyran, *J* 6.5), 4.27 d and 4.30 d (2H, H<sup>1</sup>, *J* 1.2), 4.36 t (1H, H<sup>4</sup>, *J* 6.5), 4.81 t (1H, OCH, tetrahydropyran, *J* 6.4). <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>), δ, ppm: 9.580 (C<sup>6</sup>), 19.117 (CH<sub>2</sub>, tetrahydropyran), 25.540 (CH<sub>2</sub>, tetrahydropyran), 30.369 (CH<sub>2</sub>, tetrahydropyran), 30.927 (C<sup>5</sup>), 54.313 (C<sup>1</sup>), 61.925 (CH<sub>2</sub>,

tetrahydropyran), 63.793 (C<sup>4</sup>), 80.967 (C<sup>2</sup>), 87.074 (C<sup>3</sup>). Found, %: C 66.66; H 9.09.  $C_{11}H_{18}O_3$ . Calculated, %: C 66.39; H 8.96.

**4-(Tetrahydro-2***H***-pyran-2-yloxy)1phenylbut-2yn-1-ol (IXc).** Yield 35.0%, bp 108–112°C (3 mm Hg),  $R_f$  0.47 (diethyl ether–hexane, 3 : 1). IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1570, 1550, 720, 680 (monosubstituted benzene ring), 1240, 1160, 1100, 1060, 1040, 1000 (C–O, C–O–C). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 1.40–2.00 m (6H, CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>, tetrahydropyran), 2.42 br.s (1H, C<sup>1</sup>–OH), 3.48 t and 3.92 t (2H, OCH<sub>2</sub>, tetrahydropyran, *J* 6.5), 4.50 d and 4.78 d (2H, H<sup>4</sup>, *J* 12.0), 4.68 s (1H, H<sup>1</sup>), 4.72 t (1H, OCH, tetrahydropyran, *J* 6.5), 7.20–7.40 m (5H, C<sub>6</sub>H<sub>5</sub>). Found, %: C 73.27; H 7.21. C<sub>15</sub>H<sub>18</sub>O<sub>3</sub>. Calculated, %: C 73.17; H 7.31.

**Diols Ib, Ic, Ie.** A mixture of 10.0 mmol of the corresponding compound **IXa**, **IXb**, **IXc**, 31 mL of methanol, 37 mL of diethyl ether, 3.1 mL of water, and 130 mg of *p*-toluenesulfonic acid was heated with stirring for 2–3 h. Then methanol was distilled off, and the residue was treated with a saturated potassium carbonate solution. The reaction product was extracted with diethyl ether, and the extract was dried over magnesium sulfate.

**Pent-2-yne-1,4-diol (Ib)** [13]. Yield 45.0%, bp 113–114°C (2 mm Hg). IR spectrum, v, cm<sup>-1</sup>: 3300– 3500 (OH), 2200 (C=C), 1130, 1060, 1020 (C–O). <sup>1</sup>H NMR (DMSO- $d_6$ ),  $\delta$ , ppm (*J*, Hz): 1.31 t (3H, H<sup>5</sup>, *J* 6.6), 3.39 br.s (2H, C<sup>1</sup>OH, C<sup>4</sup>OH), 4.05 s (2H, H<sup>1</sup>), 4.33 q (1H, H<sup>4</sup>, *J* 6.6). <sup>13</sup>C NMR (DMSO- $d_6$ ),  $\delta_C$ , ppm: 24.183 (C<sup>5</sup>), 48.964 (C<sup>1</sup>), 56.172 (C<sup>4</sup>), 81.870 (C<sup>2</sup>), 87.096 (C<sup>3</sup>).

**Hex-2-yn-1,4-diol (Ic).** Yield 41.0%, bp 109–112°C (1 mm Hg) [14]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1130, 1060, 1020 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 0.98 t (3H, H<sup>6</sup>, *J* 6.5), 1.70 q (2H, H<sup>5</sup>, *J* 6.5), 2.45 br.s (2H, C<sup>1</sup>OH, C<sup>4</sup>OH), 4.26 s (2H, H<sup>1</sup>), 4.32 t (1H, H<sup>4</sup>, *J* 6.5).

**1-Phenylbut-2-yne-1,4-diol (Ie).** Yield 40.8%, mp 86°C (hexane) [15]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 3040, 3020, 1580, 1560, 720, 680 (mono-substituted benzene ring), 2200 (C=C), 1100, 1050, 1000 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 3.18 br.s (2H, C<sup>1</sup>OH, C<sup>4</sup>OH), 4.13 s (2H, H<sup>4</sup>), 5.40 s (1H, H<sup>1</sup>), 7.30–7.50 m (5H, C<sub>6</sub>H<sub>5</sub>).

4-Methylhex-2-yne-1,4-diol (Ih) was prepared analogously from the Grignard reagent prepared from

0.2 g-atom of magnesium, 200 mmol of propyl bromide, 100 mmol prop-2-yn-1-ol V, 50 mL of anhydrous ether and 100 mmol of methyl ethyl ketone in 45 mL of anhydrous benzene. Yield 5.17 g (40.4%), bp 120–124°C (1 mm Hg) [16]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1080, 1060 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 1.36 t (3H, H<sup>6</sup>, *J* 6.5), 1.41 s (3H, C<sup>4</sup>CH<sub>3</sub>), 1.42–1.72 m (2H, H<sup>5</sup>), 2.84 br.s (2H, C<sup>1</sup>OH, C<sup>4</sup>OH), 4.35 s (2H, H<sup>1</sup>).

Alkynols XIIa, XIIb were prepared analogously from the Grignard reagent obtained from 0.118 g-atom of magnesium and 118 mmol of ethyl bromide XIa or bromobenzene XIb, respectively, in 70 mL of anhydrous diethyl ether and 59.2 mmol of propiolic aldehyde [17] in 15 mL of anhydrous THF.

**Pent-1-yn-3-ol (XIIa).** Yield 42.5%, bp 68–70°C (98 mm Hg) [18]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 3280 ( $\equiv$ CH), 2100 (C $\equiv$ C), 1150 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 1.02 t (3H, H<sup>5</sup>, *J* 6.6), 1.50–1.80 m (2H, H<sup>4</sup>), 2.15 br.s (1H, OH), 2.38 s (1H, H<sup>1</sup>), 4.30–4.38 m (2H, H<sup>3</sup>).

**1-Phenyl-2-yn-1-ol (XIIb).** Yield 58.1%, bp 78– 80°C (1 mm Hg) [18]. IR spectrum, v, cm<sup>-1</sup>: 3300– 3500 (OH), 3280 ( $\equiv$ CH), 3030, 1580, 1520, 720, 680 (monosubstituted benzene ring), 2100 (C $\equiv$ C), 1150 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 2.16 s (1H, H<sup>3</sup>), 3.55–3.70 m (1H, H<sup>1</sup>), 4.12 br.s (1H, OH), 7.09–7.22 m (5H, C<sub>6</sub>H<sub>5</sub>).

**Diols If, Ij** were prepared analogously from the Grignard reagent obtained from 0.04 g-atom of magnesium and 40.4 mmol of ethyl bromide, 2.20 mmol pent-1-yn-3-ol **XIIa** or 1-phenylprop-2-yn-1-ol **XIIb** in 90 mL of anhydrous diethyl ether and 2.20 mmol of propionic aldehyde.

**Oct-4-yne-3,6-diol (Ie).** Yield 30.0%, bp 111–114°C (3 mm Hg) [19]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1080, 1050 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 1.02 t (6H, H<sup>1</sup>, H<sup>8</sup>, *J* 6.5), 1.60–1.80 m (4H, H<sup>2</sup>, H<sup>7</sup>), 2.24 br.s (2H, C<sup>3</sup>OH, C<sup>6</sup>OH), 4.37 t (2H, H<sup>3</sup>, H<sup>6</sup>, *J* 6.5). <sup>13</sup>C NMR spectrum (CDCl<sub>3</sub>),  $\delta_{C}$ , ppm: 9.580 (C<sup>1</sup>, C<sup>8</sup>), 31.033 (C<sup>2</sup>, C<sup>7</sup>), 63.785 (C<sup>3</sup>, C<sup>6</sup>), 86.652 (C<sup>4</sup>, C<sup>5</sup>).

**1-Phenylhex-2-yne-1,4-diol (Ik).** Yield 29.0%, bp 158–160°C (1 mm Hg) [20]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 3040, 3020, 1580, 1510, 730, 680 (monosubstituted benzene ring), 2200 (C=C), 1080, 1050 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 1.02 t (3H, H<sup>6</sup>, *J* 6.5), 1.68–1.79 m (2H, H<sup>5</sup>), 2.64 br.s (2H, C<sup>1</sup>OH, C<sup>4</sup>OH), 4.28 t (1H, H<sup>4</sup>, *J* 6.5), 5.42 s (1H, H<sup>1</sup>), 7.30–7.56 m (5H, C<sub>6</sub>H<sub>5</sub>).

**2-Methylhept-3-yne-2,5-diol (Ig)** was prepared analogously from the Grignard reagent obtained from 0.150 g-atom of magnesium, 150 mmol of propyl bromide, 75 mmol of 3-methylbut-1-yn-3-ol **VI** in 30 mL of anhydrous diethyl ether and 75 mmol of butyraldehyde. Yield 5.6 g (47.86%), bp 123–125°C (1 mm Hg). IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1080, 1050 (C–O). <sup>1</sup>H NMR spectrum (DMSO-*d*<sub>6</sub>),  $\delta$ , ppm (*J*, Hz): 0.93 t (3H, H<sup>8</sup>, *J* 6.5), 1.39 s (6H, H<sup>1</sup>, C<sup>2</sup>CH<sub>3</sub>), 1.44–1.72 m (4H, H<sup>6</sup>, H<sup>7</sup>), 3.01 br.s (2H, C<sup>2</sup>OH, C<sup>5</sup>OH), 3.90 t (1H, H<sup>5</sup>, *J* 6.5), 4.90 br.s (1H, C<sup>5</sup>OH). Found, %: C 69.12; H 10.11. C<sub>9</sub>H<sub>16</sub>O<sub>2</sub>. Calculated, %: C 69.23; H 10.25.

**Hex-1-yn-3-ol (XIII).** A Claisen flask charged with a mixture of 7.7 g (75 mmol) of 2-methylhept-3-yne-2,5-diol **Ig** and 1.5 g (10.8 mmol) of dry potassium carbonate was placed in a preheated (150°C) bath of Wood's metal. The released acetone was slowly distilled off at normal pressure, and then the fraction with bp 107–122°C (45–50 mm Hg) was isolated. This fraction was redistilled to yield 2.6 g (53.06%) of hex-1-yn-3-ol **XIII**, bp 66–67°C (38 mm Hg) [18]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 3280 ( $\equiv$ CH), 2100 (C $\equiv$ C), 1150 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 0.88 t (3H, H<sup>6</sup>, *J* 6.7), 1.15–1.30 m (2H, H<sup>5</sup>), 1.32–1.52 m (2H, H<sup>4</sup>), 1.90 s (1H, H<sup>1</sup>), 3.58 t (1H, H<sup>3</sup>, *J* 6.8), 4.02 br.s (1H, OH).

**Dec-5-yne-4,7-diol (Ii)** was prepared similarly from the Grignard reagent obtained from 1.44 g (0.060 g-atom) of magnesium, 7.38 g (60 mmol) of propyl bromide, 2.60 g (26 mmol) of hex-1-yn-3-ol **XIII** and 2.16 g (30 mmol) of butyraldehyde in 55 mL of anhydrous diethyl ether. Yield 2.2 g (49.80%), bp 143–148°C (1 mm Hg) [21]. IR spectrum, v, cm<sup>-1</sup>: 3300–3500 (OH), 2200 (C=C), 1050, 1080 (C–O). <sup>1</sup>H NMR spectrum (CDCl<sub>3</sub>),  $\delta$ , ppm (*J*, Hz): 0.88 t (6H, H<sup>1</sup>, H<sup>10</sup>, *J* 6.5), 1.35–1.75 m (8H, H<sup>2</sup>, H<sup>3</sup>, H<sup>8</sup>, H<sup>9</sup>), 2.46 br.s (2H, C<sup>4</sup>-OH, C<sup>7</sup>OH), 4.45–4.55 m (2H, H<sup>4</sup>, H<sup>7</sup>).

## REFERENCES

- 1. Corey, E.J., Katzenellenbogen, J.A., and Posner, G.H., *J. Am. Chem. Soc.*, 1967, vol. 89, no. 16, p. 4245.
- 2. Zakharkin, L.I., Vinnikova, M.I., and Gavrilenko, V.V., *Russ. Chem. Bull.*, 1987, no. 3, p. 582.
- Corey, E.J., Katzenellenbogen, J.A., Gilman, N.W., Roman, S.A., and Erickson, B.W., J. Am. Chem. Soc., 1968, vol. 90, p. 5618.

- 4. Corey, E.J. and Yamamoto, H., J. Am. Chem. Soc., 1970, vol. 92, p. 6636.
- Corey, E.J. and Yamamoto, H., J. Am. Chem. Soc., 1970, vol. 92, p. 6637.
- Khrimyan, A.P., Gharibian, O.A., Streinz, L., Wimmer, Z., Romanuk, M., and Badanyan, S.O., *Collect. Czech. Chem. Commun.*, 1989, vol. 54, no. 11, p. 3284.
- Khrimyan, A.P., Gharibyan, O.A., Panosyan, G.A., Mailyan, N.Sh., Kinoyan, F.S., Makaryan, G.M., and Badanyan, Sh.O., *Zh. Org. Khim.*, 1993, vol. 29, no. 12, p. 2351.
- Day, A.C. and Witing, W.C., J. Chem. Soc. (B), 1967, p. 991.
- Gharibyan, O.A., Makaryan, G.M., Kinoyan, F.S., Chobanyan, Zh.A., *Khim. Zh. Arm.*, 2009, vol. 62, nos. 3–4, p. 369.
- Gharibyan, O.A., Makaryan, G.M., Marandyan, A.A., Sarkisova, O.V., Kazaryan, N.S., Ogannisyan, M.R., and Chobanyan, Zh.A., *Khim. Zh. Arm.*, 2011, vol. 64, no. 1, p. 91.
- 11. Vlasov, V.M., Vasil'eva, A.A., and Semenova, U.F., Zh.

Org. Khim., 1965, vol. 2, no. 4, p. 595.

- 12. Henbest, H.B., Jones, E.R.H., and Walls, I.M.S., *J. Chem. Soc.*, 1950, p. 3646.
- 13. Yasunobu, T. and Takesi, M., J. Chem. Soc. Japan. Pure Chem. Sect., 1963, vol. 84, no. 2, p. 145.
- 14. France Patent no. 2108342, 1971.
- 15. Fiesselmann, H. and Sasse, K., *Chem. Ber.*, 1956, vol. 90, no. 7, p. 1775.
- 16. Vlasov, V.M., Kuznetsova, T.S., and Derigladov, N.M., *Zh. Org. Khim.*, 1967, vol. 3, no. 2, p. 277.
- 17. Veliev, M.G. and Guseinov, M.M., *Synthesis*, 1980, no. 6, p. 461.
- 18. Zil'kind, Yu.S. and Gverdtsiteli, I.M., *Zh. Obshch. Khim.*, 1939, vol. 9, no. 11, p. 971.
- 19. Levina, R.Ya. and Sharabarov, Yu.S., *Dokl. Akad. Nauk* SSSR, 1952, vol .84, p. 709.
- Zil'kind, Yu.S. and Ivanov, R.P., Zh. Obshch. Khim., 1941, vol. 11, no. 10, p. 803.
- 21. Malenok, N.M. and Sologub, I.V., Zh. Obshch. Khim., 1955, vol. 25, no. 10, p. 2223.