Synthesis of New Sulfur-Containing Derivatives of Furanoallocolchicinoids

Yu. A. Gracheva ${ }^{a}$, H.-G. Schmalz ${ }^{b}$, E. V. Svirshchevskaya ${ }^{c}$, and A. Yu. Fedorov ${ }^{a_{*}}$
${ }^{a}$ Lobachevskii State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia *e-mail: afnn@rambler.ru
${ }^{b}$ University of Cologne, Köln, Germany
${ }^{c}$ Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia

Received May 23, 2016

Abstract

Reaction of hydroxyl-containing heterocyclic colchicinoids with S-nucleophiles led to the formation of furanoallocolchicinoid sulfides in a high yield.

DOI: 10.1134/S1070428016080078

Colchicine 1, an alkaloid isolated from Colchicum autumnale, is the first known inhibitor of polymerization of tubulin - the protein underlying the microtubules of the mitotic spindle during cell division [1]. On the molecular level colchicine prevents the selfassembly of tubulin interacting with it on the boundary between its α - and β-forms. This domain is named "colchicine site of tubulin" [2]. These interactions result in inhibition of mitosis (nonsexual cell division) and in decreased cell mobility [3]. In the clinical practice colchicine is used in the treatment of Mediterranian fever, Behcet disease, gout, chondrocalcinosis, and other types of arthritis [4-7]. Indications are mentioned for the treatment of liver cirrhosis, psoriasis, amyloidosis, diverse dermatitis, necrotizing vasculitis, Sweet's syndrome [8-11]. Colchicine may be potentially applied for the treatment of cardiovascular disorders [12], in particular, in the
therapy of pericarditis, atrial fibrillation caused by inflammation, ischemia [13].

Colchicine exhibits as well the antitumor action [14], but its large doses possess considerable inherent toxicity, mainly due to the neurotoxicity and to the accumulation in the digestive tract [15]. Although the colchicines itself cannot be used for the treatment of cancer, its structural analogs (allocolchicine 2 [16], Zstilbenes [17, 18], 4-arylcoumarins [19-22]) represent interesting objects in the search for new anticancer agents.

Introducing of pyrrole and furan fragments to the skeleton of the allocolchicinoid by coupling the sevenmembered and six-membered rings \mathbf{B} and \mathbf{C} lead to compounds $\mathbf{3}$ and $\mathbf{4}$ with the improved antitumor and antitubulin activities [23-25]. Furanoallocolchicines 4 efficiently inhibit in vivo the growth of tumors without

(-)-(aR,7S)-Colchicine 1

(-)-Allocolchicine 2

3

4, 5

$$
n=1(4), 2(5) .
$$

Scheme 1.

the neurologic symptoms, weight loss, and mortality of experimental animals [24]. The presence of hydroxyl groups in the benzyl position of ring \mathbf{B} (compound $\mathbf{3}$) or in the pseudobenzyl position of ring \mathbf{D} (compound 4) considerably increases the antitumor activity. At the same time the transition of the hydroxy group from the pseudobenzyl hydroxymethyl position (colchicinoid 4) to the hydroxyethyl one (colchicinoid 5) results in a drastic loss of the antitumor activity. The heterocyclic allocolchicinoids are a new class of organic derivatives unknown prior to our investigations [26].

To explain the high of allocolchicinoids 3 and 4 to suppress the cell growth (antiproliferation activity) we have proposed a hypothesis that these compounds are capable to form the benzylic and pseudobenzylic cations 6 stable under the physiological conditions (Scheme 1) with further covalent binding to the free cysteine fragment of the cellular protein tubulin.

In this connection we examined the model reactions of the derivatives $\mathbf{4 a}$ and $\mathbf{4 b}$ with S -nucleophiles: cyclopentyl mercaptan, protected thioglycolic acid,

Scheme 2.

4a, 4b

$R=H(4 a, 11), \operatorname{Me}(4 b, 12) ; 11,12, R^{\prime}=$

8

9

and protected cysteine (Scheme 2). Furanoallocolchicines $\mathbf{4 a}$ and $\mathbf{4 b}$ were prepared from natural colchicine in three steps. In the first stage colchicine $\mathbf{1}$ was converted in colchiceine $\mathbf{8}$ by treating with 1 M HCl [27]. Therein the tropolone ether function of colchicine 1 is removed. After extraction the yield of compound $\mathbf{8}$ was 98%.

In the second stage colchiceine $\mathbf{8}$ was transformed into iodocolchinol 9 according to the Windaus procedure [27, 28]. In these conditions the sevenmembered ring undergoes an electrophilic oxidative contraction by alkali and iodination in the presence of a mixture of iodine and sodium iodide [27].

Synthesized furanoallocolchicines $\mathbf{4 a}$ and $\mathbf{4 b}$ interacted effectively with S-nucleophiles 10a-10c in acid medium [29] which results in target sulfides 11a11c and 12a-12c in 73-97\% yields.

The antiproliferative activity of allocolchicinoids 11 and 12 was investigated against cell cultures MiaPaCa-2, A549, and HEK293. Unlike the initial derivatives $\mathbf{4 a}$ and $\mathbf{4 b}$ exhibiting the cytotoxic activity in nanomolar concentrations [24], allocolchicinoid sulfides $\mathbf{1 1}$ and $\mathbf{1 2}$ possess practically no antiproliferative activity.

Thus sulfides of furanoallocolchicinoids were synthesized by reactions of hydroxyl-containing colchicinoids with sulfanyl derivatives in high yields. The performed transformations confirm our hypothesis on the possibility of covalent bonding with the cell protein tubulin of heterocyclic allocolchicinoids containing hydroxyl fragments in benzylic and pseudobenzylic positions. The hydroxy group in the benzylic position is a fundamentally important pharmacophore of the colchicine derivatives.

EXPERIMENTAL

${ }^{1}$ H NMR spectra were registered on spectrometers Bruker AV 600, Bruker DRX 500, Bruker AV 400, Bruker ARX 400, Agilent DD2 400, or Bruker DPX 300. Chemical shifts were measured from the residual protons of the deuterated solvent $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}(\delta 2.50 \mathrm{ppm})$. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on spectrometers Bruker AV 600 (150 MHz), Bruker DRX 500 (126 MHz), Bruker AV 400 (100 MHz), Bruker ARX 400 (101 MHz), or Agilent DD2 400 (101 MHz). Chemical shifts were reported from $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ ($\left.\delta 39.52 \mathrm{ppm}\right)$. Mass spectra were measured on an instrument DSQ
with a quadrupole mass analyzer. Temperature of the ion source $230^{\circ} \mathrm{C}$, EI, 70 eV . High resolution mass spectra were taken on an instrument Finnigan MAT 900, EI, 70 eV . For column chromatography Alfa Aesar Silicagel 60 (70-230 mesh) was used. Commercially available reagents (Aldrich, Alfa Aesar, Acros) were used without additional purification. Solvents were purified by standard procedures. Petroleum ether was of bp $40-65^{\circ} \mathrm{C}$.
N-\{(7S)-10-(Hydroxymethyl)-1,2,3-trimethoxy-6,7-dihydro-5H-benzo[6',7']cyclohepta $\left[1^{\prime}, 2^{\prime}: 4,5\right]$ -benzo[1,2-b]furan-7-yl\}acetamide (4a). To a mixture of 200.0 mg (0.414 mmol) of compound $9,4.7 \mathrm{mg}$ $(0.021 \mathrm{mmol})$ of $\mathrm{Pd}(\mathrm{OAc})_{2}, 8.0 \mathrm{mg}(0.041 \mathrm{mmol})$ of $\mathrm{CuI}, 16.3 \mathrm{mg}(0.062 \mathrm{mmol})$ of PPh_{3}, and 121.7 mg (1.242 mmol) of AcOK under an argon atmosphere 4 mL of anhydrous acetonitrile was added. Then $24.8 \mu \mathrm{~L}$ (0.414 mmol) of propargyl alcohol was added dropwise. The obtained solution was stirred for 1 h at $60^{\circ} \mathrm{C}$ and 12 h at $80^{\circ} \mathrm{C}$ (TLC monitoring). After cooling to room temperature the reaction product was isolated by column chromatography on silica gel, eluent petroleum ether-ethyl acetate-ethanol, $5: 1: 1$. Yield 143.1 mg (84%), light-brown crystals, $\mathrm{mp} 110^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz), $\delta, \mathrm{ppm}: 1.85-2.16 \mathrm{~m}$ $\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.90 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 3.42 \mathrm{~s}(3 \mathrm{H}, 2-$ $\mathrm{MeO}), 3.79 \mathrm{~s}(3 \mathrm{H}, 3-\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 4.56 \mathrm{~s}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 4.64-4.68 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHNH}), 6.75 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 6.79 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 7.46 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.51 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 8.47 \mathrm{~d}(1 \mathrm{H}, \mathrm{NH}, J 8.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum (101 MHz), δ, ppm: 22.67, 30.05, 38.37, $48.40,54.91,56.22,60.45,60.59,103.21,105.52$, 108.01, 121.81, 124.73, 126.18, 128.69, 134.75, $137.42,140.59,150.37,152.23,153.73,158.42$, 168.39. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 411$ (55), 353 (23), 352 (100), 337 (43), 321 (57), 294 (17). $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NO}_{6}$. Calculated $M 411.45$.
N-\{(7S)-10-(1-Hydroxyethyl)-1,2,3-trimethoxy-6,7-dihydro-5H-benzo [$\left.6^{\prime}, 7^{\prime}\right]$ cyclohepta $\left[1^{\prime}, 2^{\prime}: 4,5\right]-$ benzo[1,2-b]furan-7-yl $\}$ acetamide (4b) was obtained similarly. Yield 163.9 mg (93%), light-brown crystals, $\mathrm{mp} 80^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz), δ, ppm: 1.47 d ($3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}, J 6.4 \mathrm{~Hz}$), 1.85 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, J\right.$ $12.2,6.6 \mathrm{~Hz}), 1.89 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.05 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}, J 12.5,6.9 \mathrm{~Hz}$), 2.16 d.d $\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, J\right.$ $12.1,6.1 \mathrm{~Hz}), 3.41 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 3.79 \mathrm{~s}(3 \mathrm{H}, 3-$ $\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 4.63-4.55 \mathrm{~m}(1 \mathrm{H}, \mathrm{C} \underline{\mathrm{HNH}})$, $5.49 \mathrm{~d}(1 \mathrm{H}, \mathrm{OH}, J 5.1 \mathrm{~Hz}), 6.70 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 6.79 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{CH}), 7.45 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.50 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 8.45 \mathrm{~d}(1 \mathrm{H}, \mathrm{NH}, J$ $8.3 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR $\operatorname{spectrum~(~} 101 \mathrm{MHz}$), δ, ppm:
18.56, 22.03, 22.68, 48.43, 55.83, 56.03, 60.46, 60.60, $62.33,101.22,105.55,108.03,121.79,124.79,126.17$, $128.65,134.77,137.24,140.61,150.39,152.24$, 153.48, 162.01, 168.43 . Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right)$: 425 (62), 367 (26), 366 (100), 351 (42), 335 (42), 321 (24). $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{NO}_{6}$. Calculated $M 425.48$.
N-\{(7S)-10-Hydroxy-1,2,3-trimethoxy-9-oxo-5,6,7,9-tetrahydrobenzo $[a]$ heptalen- 7 -yl $\}$ acetamide (8). A solution of $1.50 \mathrm{~g}(3.75 \mathrm{mmol})$ of colchicine $\mathbf{1}$ in 15 mL of acetic acid was mixed with 90 mL of 1 M HCl , the reaction mixture was stirred for 3 h at $100^{\circ} \mathrm{C}$. On cooling to room temperature solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added till no odor of acetic acid remained (pH 6). The obtained yellow solution was extracted with chloroform ($3 \times 150 \mathrm{~mL}$), the combined extracts were washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated in a vacuum. Yield 1.42 g (98%), greenish amorphous powder, $\mathrm{mp} 150^{\circ} \mathrm{C}[23] .{ }^{1} \mathrm{H}$ NMR spectrum (400 MHz), δ, ppm: $1.87 \mathrm{~s}\left[3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right], 2.35-1.89 \mathrm{~m}(4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.56 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 3.78 \mathrm{~s}(3 \mathrm{H}, 3-\mathrm{MeO})$, $3.84 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 4.43-4.27 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHNH}), 6.80 \mathrm{~s}$ $\left(1 \mathrm{H}, \mathrm{H}^{11}\right), 7.15 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}^{12}, J 11.8 \mathrm{~Hz}\right), 7.31 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{H}^{8}\right)$, $7.32 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{H}^{4}\right), 8.63 \mathrm{~d}(1 \mathrm{H}, \mathrm{NH}, J 7.3 \mathrm{~Hz})$.
N-\{(5S)-3-Hydroxy-2-iodo-9,10,11-trimethoxy-6,7-dihydro-5H-dibenzo $[a, c][7]$ annulen-5-yl\}acetamide (9). To a solution of $1.42 \mathrm{~g}(3.63 \mathrm{mmol})$ of compound 8 in 29 mL of water at $0^{\circ} \mathrm{C}$ was added in succession $1.45 \mathrm{~g}(36.30 \mathrm{mmol})$ of NaOH , dropwise $2.82 \mathrm{~g}(11.10 \mathrm{mmol})$ of iodine solution and 15.83 g $(85.10 \mathrm{mmol})$ of NaI in 143 mL of water in the course of 1 h , then the mixture was stirred for 2 h at $0-5^{\circ} \mathrm{C}$. Then the yellow-brown solution was warmed to room temperature, and equivalent amount of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ was added to neutralize the excess of iodine. After that conc. HCl was added to pH 2 , the precipitated yellowgreen crystals were filtered off, washed with water, and dried in a vacuum. The mother liquor was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$, the combined extracts were washed with brine and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. On evaporating the solution the obtained yellowish crystals were added to those previously filtered off, and the product was chromatographed on a column packed with silica gel, eluent petroleum etherethyl acetate-ethanol, $8: 1: 1$. Overall yield 1.25 g (70\%), mp $238^{\circ} \mathrm{C}[23] .{ }^{1} \mathrm{H}$ NMR spectrum (400 MHz), δ, ppm: $1.87 \mathrm{~s}\left[3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right], 2.23-1.87 \mathrm{~m}(4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.48 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 3.77 \mathrm{~s}(3 \mathrm{H}, 3-\mathrm{MeO})$, $3.82 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 4.33-4.40 \mathrm{~m}(1 \mathrm{H}, \mathrm{CHNH}), 6.76 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 6.86 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.56 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 8.38 \mathrm{~d}(1 \mathrm{H}$, $\mathrm{NH}, J 8.0 \mathrm{~Hz}), 10.28 \mathrm{~s}(1 \mathrm{H}, \mathrm{OH})$.

Compounds 11a-11c and 12a-12c. General procedure. To a solution of compound $\mathbf{4 a}$ and $\mathbf{4 b}$ and the mercaptan in dichloromethane in an argon atmosphere was added dropwise trifluoroacetic acid (TFA), and the reaction mixture was stirred for 3 h at room temperature. On the completion of the reaction (TLC monitoring) the solvent was evaporated at a reduced pressure. Pure compounds 11a-11c and 12a12c were isolated by column chromatography on silica gel.
N-\{(7S)-1,2,3-Trimethoxy-10-[(cyclopentylsul-fanyl)methyl]-6,7-dihydro-5H-benzo[6',7']cyclohepta[$1^{\prime}, 2$ ':4,5]benzo[1,2-b]furan-1-yl\}acetamide (11a) was obtained from $30.0 \mathrm{mg}(0.073 \mathrm{mmol})$ of compound $4 \mathbf{a}, 28.1 \mu \mathrm{~L}(0.263 \mathrm{mmol})$ of cyclopentyl mercaptan, 0.3 mL of (3.9 mmol) TFA. Eluent for column chromatography dichloromethane-methanol, 100 : 1. Yield $30.1 \mathrm{mg}(83 \%)$, white crystals, $\mathrm{mp} 118^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz), δ, ppm: $1.41-1.59 \mathrm{~m}$ $(5 \mathrm{H}, \mathrm{Cy}), 1.64-1.70 \mathrm{~m}(2 \mathrm{H}, \mathrm{Cy}), 1.83-1.89 \mathrm{~m}(1 \mathrm{H}$, Cy), $1.91 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.96-2.01 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$, 2.05 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, J 12.8,7.1 \mathrm{~Hz}\right), 2.13-2.20 \mathrm{~m}$ $\left(1 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{9}\right), 3.15 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, J 6.8 \mathrm{~Hz}\right), 3.43 \mathrm{~s}$ $(3 \mathrm{H}, 1-\mathrm{MeO}), 3.79 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 3-$ $\mathrm{MeO}), 3.93 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SCy}\right), 4.63-4.56 \mathrm{~m}(1 \mathrm{H}$, CHNH), $6.76 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.78 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.45 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 7.48 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 8.42 \mathrm{~d}(1 \mathrm{H}, \mathrm{NH}, J 8.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR spectrum (126 MHz), δ, ppm: 22.64, 24.31, 24.32, 27.89, 32.98, 33.00, 43.20, 43.22, 48.39, 55.81, $60.44,60.46,60.53,103.84,105.41,108.02,121.56$, 124.66, 126.27, 128.79, 134.71, 137.40, 140.57, $150.33,152.22,153.73,155.33,168.37$. Found $496.2155[M+\mathrm{H}]^{+} . \mathrm{C}_{28} \mathrm{H}_{34} \mathrm{NO}_{5}$ S. Calculated M 496.2152.

Methyl [(\{(7S)-7-(acetylamino)-1,2,3-trimethoxy-6,7-dihydro-5H-benzo[$\left.6^{\prime}, 7^{\prime}\right]$ cyclohepta $\left[1^{\prime}, 2^{\prime}: 4,5\right]$ -benzo[1,2-b]furan-10-yl\}methyl)sulfanyl]acetate (11b) was obtained from $70.0 \mathrm{mg}(0.170 \mathrm{mmol})$ of compound $4 \mathbf{a}, 54.8 \mu \mathrm{~L}(0.612 \mathrm{mmol})$ of methyl thioacetate, $0.7 \mathrm{~mL}(9.1 \mathrm{mmol})$ of TFA. Eluent petroleum ether-ethyl-acetate-ethanol, $6: 1: 1$. Yield 69.0 mg (81%), white crystals, $\mathrm{mp} 125^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (300 MHz), δ, ppm: 1.85 d.d ($1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, J$ $9.6,4.0 \mathrm{~Hz}), 1.90 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 1.95-2.27 \mathrm{~m}(3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.42 \mathrm{~s}\left(5 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OCOCH}_{2}\right), 3.59 \mathrm{~s}(3 \mathrm{H}, 2-$ $\mathrm{MeO}), 3.79 \mathrm{~s}(3 \mathrm{H}, 3-\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 4.02 \mathrm{~s}$ $\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right), 4.59$ d.t ($1 \mathrm{H}, \mathrm{C} \underline{H N H}, J 11.8,7.8 \mathrm{~Hz}$), 6.77 $\mathrm{s}(1 \mathrm{H}, \mathrm{CH}), 6.79 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.45 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.49 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 8.46 \mathrm{~d}(1 \mathrm{H}, \mathrm{NH}, J 8.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum (126 MHz), δ, ppm: 22.63, 28.31, 29.99,
32.66, $38.30, ~ 48.40, ~ 51.99, ~ 55.81, ~ 60.45, ~ 60.54$, $104.74,105.45,108.03,121.68,124.63,126.11$, 128.87, 134.71, 137.69, 140.59, 150.34, 152.25, 153.86, 153.89, 168.38, 170.18. Found 522.1558 [$M+$ $\mathrm{Na}]^{+} . \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{7} \mathrm{SNa}$. Calculated M 522.1557.

Methyl N-acetyl-S-(\{(7S)-7-(acetylamino)-1,2,3-trimethoxy-6,7-dihydro-5H-benzo[$6^{\prime}, 7$ ']cyclohepta-[1',2':4,5]benzo[1,2-b]furan-10-yl\}methyl)-L-cysteinate (11c) was obtained from $75.0 \mathrm{mg}(0.182 \mathrm{mmol})$ of compound $\mathbf{4 a}, 116.3 \mathrm{mg}(0.656 \mathrm{mmol})$ of N-acetyl-L-cysteine methyl ester, $0.75 \mathrm{~mL}(9.8 \mathrm{mmol})$ of TFA. Eluent petroleum ether-ethyl acetate-ethanol, $5: 1: 1$. Yield $101.0 \mathrm{mg}(97 \%)$, white crystals, mp $191^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum (300 MHz), δ, ppm: $1.87 \mathrm{~s}[3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right], 1.90 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{SCH}_{2} \mathrm{NH} \underline{\mathrm{Ac}}\right), 1.96-2.31 \mathrm{~m}(3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.68-2.99 m ($3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}, \mathrm{SCH}_{2} \mathrm{NHAc}$), $3.43 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OCO}\right), 3.64 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 3.79 \mathrm{~s}$ ($3 \mathrm{H}, 3-\mathrm{MeO}$), $3.84 \mathrm{~s}(3 \mathrm{H}, 1-\mathrm{MeO}), 3.96 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right)$, $4.50-4.61 \mathrm{~m}(2 \mathrm{H}, 2 \mathrm{CHNH}), 6.77 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH}), 6.79 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 7.45 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.49 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 8.45 \mathrm{t}(2 \mathrm{H}$, $2 \mathrm{NH}, J 7.8 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR spectrum (126 MHz), δ, ppm: 22.24, 22.63, 27.97, 29.99, 32.47, 38.30, 48.40, 51.73, 52.02, 55.81, 60.46, 60.53, 104.42, 105.43, 108.02, 121.66, 124.63, 126.15, 128.86, 134.70, $137.60,140.58,150.33,152.23,153.82,154.45$, 168.36, 169.36, 171.14. Found 593.1931 [$M+\mathrm{Na}]^{+}$. $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SNa}$. Calculated M 593.1928.
N-\{(7S)-1,2,3-Trimethoxy-10-[1-(cyclopentylsul-fanyl)ethyl]-6,7-dihydro-5H-benzo[6',7']-cyclohepta $\left[1^{\prime}, 2^{\prime}: 4,5\right]$ benzo $[1,2-b]$ furan-1-yl\}acetamide (12a) was obtained from $30.0 \mathrm{mg}(0.071 \mathrm{mmol})$ of com-pound $\mathbf{4 b}, 27.1 \mu \mathrm{~L}(0.254 \mathrm{mmol})$ of cyclopentyl mer-captan, $0.3 \mathrm{~mL}(3.9 \mathrm{mmol})$ TFA. Eluent dichlo-romethane-methanol, $100: 1$. Yield $26.4 \mathrm{mg}(73 \%)$, white crystals, mp $155^{\circ} \mathrm{C}$, diastereomers mixture. ${ }^{1} \mathrm{H}$ NMR spectrum (500 MHz), δ, ppm: $1.30-1.39 \mathrm{~m}(2 \mathrm{H}$, $\left.\mathrm{SC}_{5} \mathrm{H}_{9}\right), 1.47-1.55 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{SC}_{5} \mathrm{H}_{9}\right), 1.61 \mathrm{~d} . \mathrm{d}\left(3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, $J 7.1,2.8 \mathrm{~Hz}$), 1.66 d.d ($2 \mathrm{H}, \mathrm{SC}_{5} \mathrm{H}_{9}, J 9.4,4.9 \mathrm{~Hz}$), $1.85-1.89 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{SC}_{5} \mathrm{H}_{9}\right), 1.91 \mathrm{~s}\left[3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})\right], 1.97$ $-2.21 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.09$ d.d $\left(1 \mathrm{H}, \mathrm{SC}_{5} \mathrm{H}_{9}, J 14.6\right.$, $7.4 \mathrm{~Hz}), 3.43 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{1}, J 8.6 \mathrm{~Hz}\right), 3.80 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{OC}^{2}\right), 3.84 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OC}^{3}\right), 4.25 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CHCH}_{3}, J\right.$ $7.0 \mathrm{~Hz}), 4.63-4.56 \mathrm{~m}(1 \mathrm{H}, \mathrm{C} \underline{H N H}), 6.75 \mathrm{~s}(1 \mathrm{H}, \mathrm{CH})$, $6.79 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.46 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}, J 6.0 \mathrm{~Hz}\right), 7.48 \mathrm{~s}$ $\left(1 \mathrm{H}_{\text {arom }}\right), 8.41$ d.d $(1 \mathrm{H}, \mathrm{NH}, J 8.5,3.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum (500 MHz), δ, ppm: 19.71, 19.81, 22.64, 22.66, 24.27, 24.28, 24.39, 30.00, 33.06, 33.10, 33.78, 36.62, 36.65, 38.34, 42.82, 42.94, 48.38, 48.40, 55.81, $60.44,60.48,60.52,60.54,102.28,102.36,105.47$, 108.02, 121.63, 124.65, 124.68, 126.07, 128.76,
128.77, 134.70, 137.40, 137.43, 140.57, 150.32, 152.22, 153.45, 153.47, 159.16, 159.28, 168.37. Found $510.2311[M+\mathrm{H}]^{+} . \mathrm{C}_{29} \mathrm{H}_{36} \mathrm{NO}_{5} \mathrm{~S}$. Calculated M 510.2309.

Methyl [(1-\{(7S)-7-(acetylamino)-1,2,3-trimetho-xy-6,7-dihydro-5H-benzo[6',7']cyclohepta[1',2':4,5]-benzo[1,2-b]furan-10-yl\}ethyl)sulfanyl]acetate (12b) was obtained from $70.0 \mathrm{mg}(0.165 \mathrm{mmol})$ of compound $\mathbf{4 b}, 53.0 \mu \mathrm{~L}(0.592 \mathrm{mmol})$ of methyl thioacetate, $0.7 \mathrm{~mL}(9.1 \mathrm{mmol})$ of TFA. Eluent petroleum ether-ethyl acetate-ethanol, $6: 1: 1$. Yield 68.6 mg (81%), white crystals, $\mathrm{mp} 140^{\circ} \mathrm{C}$, diastereomers mixture. ${ }^{1} \mathrm{H}$ NMR spectrum (600 MHz), δ, ppm: 1.63 d.d $\left(3 \mathrm{H}, \mathrm{CHCH}_{3} J 7.1,2.4 \mathrm{~Hz}\right), 1.84-1.90 \mathrm{~m}(1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.91 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 2.01-2.07 \mathrm{~m}(1 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.12-2.21 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.51-2.53 \mathrm{~m}$ $\left(1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.35-3.42 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.43 \mathrm{~d}(3 \mathrm{H}$, $\mathrm{CH}, J 5.4 \mathrm{~Hz}), 3.53 \mathrm{~d}(3 \mathrm{H}, 1-\mathrm{MeO}, J 4.3 \mathrm{~Hz}), 3.80 \mathrm{~s}(3 \mathrm{H}$, $3-\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 2-\mathrm{MeO}), 4.36 \mathrm{q}\left(1 \mathrm{H}, \mathrm{CHCH}_{3}, J\right.$ $7.0 \mathrm{~Hz}), 4.59$ d.d ($1 \mathrm{H}, \mathrm{C} H \mathrm{H} H, J 19.3,7.6 \mathrm{~Hz}$), 6.76 s $(1 \mathrm{H}, \mathrm{CH}), 6.79 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 7.46 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }} J 6.1 \mathrm{~Hz}\right)$, $7.49 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right), 8.42$ d.d $(1 \mathrm{H}, \mathrm{NH}, J 8.3,5.6 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR spectrum (151 MHz), δ, ppm: 18.73, 22.64, 29.99, 32.28, 32.36, 48.43, 51.97, 55.81, 60.45, 60.54, 103.32, 105.51, 108.03, 121.74, 124.64, 125.88, 128.84, 134.70, 137.71, 140.59, 150.32, 152.24, 153.59, 157.59, 168.37, 170.26. Found 522.1558 [$M+$ $\mathrm{Na}]^{+} . \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{SNa}$. Calculated M 522.1557.

Methyl N-acetyl-S-(1-\{(7S)-7-(acetylamino)-1,2,3-trimethoxy-6,7-dihydro-5H-benzo $\left[6^{\prime}, 7^{\prime}\right]$ cyclohepta[$1^{\prime}, 2$ ': $\mathbf{4}, 5$]benzo $[1,2-b]$ furan-10-yl\}ethyl)-Lcysteinate (12c) was obtained from $80.0 \mathrm{mg}(0.188$ mmol) of compound $\mathbf{4 b}, 119.9 \mathrm{mg}(0.677 \mathrm{mmol})$ of N -acetyl-L-cysteine methyl ester, $0.8 \mathrm{~mL}(10.5 \mathrm{mmol})$ of TFA. Eluent petroleum ether-ethyl acetate-ethanol, $5: 1: 1$. Yield $97.0 \mathrm{mg}(88 \%)$, white crystals, $\mathrm{mp} 160^{\circ} \mathrm{C}$, diastereomers mixture. ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz), δ, ppm: 1.60 d.d ($3 \mathrm{H}, \mathrm{CHCH}_{3}, J 7.0,3.8 \mathrm{~Hz}$), 1.85 d ($3 \mathrm{H}, \mathrm{SCHNAc}, J 4.7 \mathrm{~Hz}$), 1.90 s [$3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}(\mathrm{O})$], $1.92-$ $2.33 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.70-2.93 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~S}\right.$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2}\right), 3.43 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{OCO}, J 3.1 \mathrm{~Hz}\right), 3.61 \mathrm{~d}(3 \mathrm{H}$, $2-\mathrm{MeO}, J 3.8 \mathrm{~Hz}), 3.79 \mathrm{~s}(3 \mathrm{H}, 3-\mathrm{MeO}), 3.84 \mathrm{~s}(3 \mathrm{H}, 1-$ $\mathrm{MeO}), 4.25-4.35 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.51-4.66 \mathrm{~m}(2 \mathrm{H}$, $2 \mathrm{CHNH}), 6.76 \mathrm{~d}(1 \mathrm{H}, \mathrm{CH}, J 3.6 \mathrm{~Hz}), 6.79 \mathrm{~s}\left(1 \mathrm{H}_{\text {arom }}\right)$, $7.45 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}, J 2.0 \mathrm{~Hz}\right), 7.50 \mathrm{~d}\left(1 \mathrm{H}_{\text {arom }}, J 1.2 \mathrm{~Hz}\right)$, $8.39-8.48 \mathrm{~m}(2 \mathrm{H}, \mathrm{NH}) .{ }^{13} \mathrm{C}$ NMR spectrum (126 MHz), δ, ppm: 18.50, 18.59, 21.65, 21.66, 22.08, 22.10, $25.85,25.87,29.68,31.67,31.85,48.70,52.23,52.36$, 52.39, 52.69, 56.33, 61.12, 61.14, 61.20, 104.92, $104.99,107.62,110.21,124.34,127.33,127.35$,
128.68, 131.69, 137.73, 140.76, 143.80, 153.85, 155.82, 157.18, 161.98, 162.07, 172.46, 173.39, 173.47, 175.23, 175.29. Found $[\mathrm{M}+\mathrm{Na}]^{+}$607.2090. $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{SNa}$. Calculated M 607.2085.

The study was carried out under the financial support of the Russian Science Foundation (grant no. 16-13-10248).

REFERENCES

1. Graening, T. and Schmalz, H.-G., Angew. Chem., Int. Ed., 2004, vol. 43, p. 3230.
2. Ravelli, R.B.G., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A., and Knossow, M., Nature, 2004, vol. 428, p. 198.
3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter, P., Molecular Biology of the Cell, New York: Garland Science, 2014.
4. Zemer, D., Livneh, A., Danon, Y.L., Pras, M., and Sohar, E., Arthritis Rheum., 1991, vol. 34, p. 973.
5. Ben-Chetrit, E. and Levy, M., Semin. Arthritis Rheum., 1991, vol. 20, p. 241.
6. Cerquaglia, C., Diaco, M., Nucera, G., Regina, M.L., Montalto, M., Manna, R., Curr. Drug Targets. Inflamm. Allergy, 2005, vol. 4, p. 117.
7. Masuda, K., Nakajima, A., Urayama, A., Nakae, K., Kogure, M., and Inaba, G., Lancet., 1989, vol. 1, p. 1093.
8. Kaplan, M.M., Alling, D.W., Zimmerman, H.J., Wolfe, H.J., Sepersky, R.A., Hirsch, G.S., Elta, G.H., Glick, K.A., and Eagen, K.A.N., Eng. J. Med., 1986, vol. 315, p. 1448.
9. Gong, Y. and Gluud, C., Am. J. Gastroenterol., 2005, vol. 100, p. 1876.
10. McKendry, R.J., Kraag, G., Seigel, S., and AlAwadhi, A., Ann. Rheum. Dis., 1993, vol. 52, p. 826.
11. Kyle, R.A., Gertz, M.A., Greipp, P.R., Witzig, T.E., Lust, J.A., Lacy, M.Q., and Therneau, T.M.N., Eng. J. Med., 1997, vol. 336, p. 1202.
12. Imazio, M., Brucato, A., Cemin, R., Ferrua, S., Belli, R., Maestroni, S., Trinchero, R., Spodick, D.H., and Adler, Y., Investigators C. Ann. Intern. Med., 2011, vol. 155, p. 409.
13. Imazio, M. and Gaita, F., Future Cardiol., 2016, vol. 12, p. 9.
14. Seligmann, J. and Twelves, C., Future Med. Chem., 2013, vol. 5, p. 339.
15. Finkelstein, Y., Aks, S.E., Hutson, J.R., Juurlink, D.N., Nguyen, P., Dubnov-Raz, G., Pollak, U., Koren, G., and Bentur, Y., Clin. Toxicol., 2010, vol. 48, p. 407.
16. Boyé, O. and Brossi, A., The Alkaloids: Chemistry and Pharmacology, Brossi, A. and Cordell, G.A., Eds., San Diego, CA: Academic Press, 1992, vol. 41, p. 125.
17. Pettit, G.R., Singh, S.B., Boyd, M.R., Hamel, E., Pettit, R.K., Schmidt, J.M., and Hogan, F., J. Med. Chem., 1995, vol. 38, p. 1666.
18. Malysheva, Yu.B., Combes, S., Fedorov, A.Yu., Knochel, P., and Gavrushin, A.E., Synlett., 2012, vol. 23, p. 1205.
19. Ganina, O.G., Daras, E., Bourgarel-Rey, V., Peyrot, V., Andresuk, A.N., Finet, J.-P., Fedorov, A.Yu., Beletskaya, I.P., and Combes, S., Bioorg. Med. Chem., 2008, vol. 16, p. 8806.
20. Combes, S., Barbier, P., Douillard, S., McLeer-Florin, A., Bourgarel-Rey, V., Pierson, J.-T., Fedorov, A.Yu., Finet, J.-P., Boutonnat, J., and Peyrot, V., J. Med. Chem., 2011, vol. 54, p. 3153.
21. Selikhov, A.N., Malysheva, Yu.B., Nyuchev, A.V., Sitnikov, N.S., Sharonova, E.A., Shavyrin, A.S., Combes, S., and Fedorov, A.Yu., Russ. Chem. Bull., 2012, vol. 60, p. 2003.
22. Malysheva, Yu.B., Voitovich, Yu.V., Sharonova, E.A., Combes, S., Svirshevskaya, E.V., Vodovozova, E.L., and Fedorov, A.Yu., Russ. Chem. Bull., 2013, vol. 61, p. 1103.
23. Sitnikov, N., Velder, J., Abodo, L., Cuvelier, N., Neudörfl, J., Prokop, A., Krause, G., Fedorov, A., and Schmalz, H.-G., Chem. Eur. J., 2012, vol. 18, p. 12096.
24. Voitovich, Yu.V., Shegravina, E.S., Sitnikov, N.S., Faerman, V., Fokin, V.V., Schmalz, H.-G., Combes, S., Allegro, D., Barbier, P., Beletskaya, I.P., Svirshchevskaya, E.V., and Fedorov, A.Yu., J. Med. Chem., 2015, vol. 58, p. 692.
25. Sitnikov, N.S., Sintsov, A.V., Allegro, D., Barbier, P., Combes, S., Abodo Onambele, L., Prokop, A., Schmalz, H.-G., and Fedorov, A.Yu., MedChemComm., 2015, vol. 6, p. 2158.
26. Sitnikov, N.S. and Fedorov, A.Yu., Russ. Chem. Rev., 2013, vol. 82, p. 393.
27. Nicolaus, N., Reball, J., Sitnikov, N., Velder, J., Termath, A., Fedorov, A., and Schmalz, H.-G., Heterocycles, 2011, vol. 82, p. 1585.
28. Shi, Q., Verdier-Pinard, P., Brossi, A., Hamel, E., McPhail, A.T., and Lee, K.-H., J. Med. Chem., 1997, vol. 40, p. 961.
29. Aoki, Y., Ebiike, H., Fujii, T., Kawasaki, K., Liu, P., Masubuchi, M., Ohtsuka, T., and Tsujii, Sh., WO Patent no. $0037464,2000$.
