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The molecule (S)-4,5-dihydroxy-2,3-pentanedione (DPD)
is produced by many different species of bacteria and is the
precursor of the signal molecule autoinducer-2 (AI-2). AI-2
mediates interspecies communication and facilitates regula-
tion of bacterial behaviors such as biofilm formation and vir-
ulence. A variety of bacterial species have the ability to
sequester and process the AI-2 present in their environment,
thereby interfering with the cell-cell communication of other
bacteria. This process involves the AI-2-regulated lsr operon,
comprised of the Lsr transport system that facilitates uptake
of the signal, a kinase that phosphorylates the signal to phos-
pho-DPD (P-DPD), and enzymes (like LsrG) that are respon-
sible for processing the phosphorylated signal. Because
P-DPD is the intracellular inducer of the lsr operon, enzymes
involved in P-DPD processing impact the levels of Lsr expres-
sion. Here we show that LsrG catalyzes isomerization of P-DPD
into 3,4,4-trihydroxy-2-pentanone-5-phosphate. We present
the crystal structure of LsrG, identify potential catalytic resi-
dues, and determine which of these residues affects P-DPD
processing in vivo and in vitro. We also show that an lsrG dele-
tion mutant accumulates at least 10 times more P-DPD than
wild type cells. Consistent with this result, we find that the lsrG
mutant has increased expression of the lsroperon and an altered
profile of AI-2 accumulation and removal. Understanding of the
biochemical mechanisms employed by bacteria to quench sig-
naling of other species can be of great utility in the development
of therapies to control bacterial behavior.

Many bacteria regulate gene expression as a function of the
density of the population. This process, called quorum sensing,
enables these organisms to coordinate behaviors that are most
beneficial when cells are working in unison (1, 2). Quorum
sensing is mediated by signal molecules called autoinducers.
One autoinducer (Autoinducer-2 (AI-2)3) is produced bymany
species of bacteria and can facilitate interspecies cell-cell sig-
naling (3–5). AI-2 is produced by the enzyme LuxS, which syn-
thesizes (S)-4,5-dihydroxy-2,3-pentanedione (DPD; Fig. 1A, 1),
the linear form of a set of interconverting molecules with AI-2
activity (6–8). AI-2 (or its synthase LuxS) has been shown to
regulate important bacterial behaviors such as biofilm forma-
tion and the production of virulence factors (4, 5, 9, 10). Thus,
one strategy for controlling these behaviors is to control the
concentration (or availability) of AI-2. We have previously
shown that certain bacteria can employ this strategy by pro-
cessing AI-2 and thus quenching interspecies signaling (11).
These bacteria include most members from the Enterobacteri-
aceae family (like the commensal Escherichia coli K12 and the
pathogens E. coli O157 and Salmonella typhimurium) but also
more distantly related bacteria such as the plant symbiont
Sinorhizobium meliloti and the pathogen Bacillus anthracis
(12).
In these bacteria, AI-2 controls the expression of a system

(named Lsr for luxS-regulated) capable of processing both
endogenous and exogenousAI-2 (13–16).Using the Lsr system,
these bacteria remove AI-2 from the environment and, thus,
eliminate the ability of others to utilize AI-2 to regulate their
behaviors (11). Upon internalization by the Lsr transporter,
AI-2 is phosphorylated to phospho-DPD (P-DPD, Fig. 1A, 2) by
the kinase LsrK (17, 18). P-DPD is the inducer of the Lsr system
and acts by binding to and inactivating the transcriptional
repressor LsrR (18, 19). Thus, P-DPD triggers the induction of
the Lsr system, causing a fast uptake of extracellular AI-2 and
processing of internalized AI-2. Therefore, it is expected that
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every enzyme acting on P-DPDhas a significant impact onAI-2
internalization and, hence, on AI-2-dependent interspecies
cell-cell signaling. We have previously shown that LsrG is one
of the enzymes involved in processing of P-DPD (18). We
showed that under aerobic conditions, in vitro incubation of
LsrGwith P-DPD results in the production of phosphoglycolate
as well as multiple other compounds that accumulate to low
levels. Neither the catalytic mechanism of LsrG nor the other
compounds produced in the LsrG reaction were identified.
Here, we characterize the enzymatic reaction catalyzed by

LsrG.We show that LsrG catalyzes the conversion of P-DPD to
the isomer 3,4,4-trihydroxy-2-pentanone-5-phosphate (P-TPO,
Fig. 1A, 3) and propose the reaction that leads to the formation
of this compound (Fig. 1A). Under reducing conditions (i.e. the
conditions typically found in the cytoplasm) P-TPO and the
non-hydrated form of this compound (3-hydroxy-2,4-pentadi-
one-5-phosphate (P-HPD, Fig. 1A, 4) are stable and do not
degrade readily. However, under oxidizing conditions, P-TPO
and P-HPD are oxidized to a compound we identify as 3,3,4,4-
tetrahydroxy-2-pentanone-5-phosphate (P-TetraPO, Fig, 1B,
5), which in turn degrades into phosphoglycolate and other
smaller molecules produced in minor concentrations.
We also present the crystal structure of LsrG. LsrG shares a

fold with proteins belonging to the cofactor-independent
monooxygenase family (20, 21). Interestingly, although the
location of the LsrG active site is the same as in monooxyge-
nases, the identity of the residues in the active site is not highly
conserved. The LsrG structure has allowed us to identify poten-
tial catalytic residues, identifications thatwere then validated in
vitro and in vivo. Finally, to determine the role of LsrG in the
process of interference with AI-2 mediated signaling, we mea-
sured the impact of LsrGmutants on the intracellular accumu-

lation of P-DPD, on the expression of the lsr operon, and on
extracellular AI-2 accumulation/removal. Characterization of
LsrG and the role it plays in AI-2 processing is essential for
understanding how organisms that possess the Lsr system act
to quenchAI-2 signaling. This knowledge opens the door to the
potential exploitation of these mechanisms as a means for con-
trolling quorum sensing.

EXPERIMENTAL PROCEDURES

Overexpression and Purification of LsrG

E. coli LsrG was cloned into the pProEXHTb plasmid for
overexpression as an N-terminal His6-tagged fusion protein.
After transformation of the plasmid into E. coli strain BL21,
cultures were grown in Luria-Bertani medium (Sigma) with
shaking at 37 °C to anA595 of 0.3. The temperature was lowered
to 22 °C, and growth continued until anA595 of 0.9 was reached.
Protein expression was induced by the addition of 0.1 mM iso-
propyl-�-D-thiogalactopyranoside. After 15 h of growth at
22 °C with shaking post-induction, bacteria were harvested by
centrifugation. Cells were resuspended in 50mMNaH2PO4, pH
8.0, 300 mM NaCl, 10 mM imidazole, 1.4 mM �-mercaptoetha-
nol, 2.5�gml�1DNase, 2.5�gml�1 leupeptin, and 2.5�gml�1

aprotinin. Cells were lysed using a M-110Y Microfluidizer
(Microfluidics). Lysates were clarified via centrifugation.
The His6-LsrG fusion protein was purified by affinity chro-

matography using nickel-nitrilotriacetic acid-agarose (Qiagen).
After application of the lysate, the columns were washed with
50 mM NaH2PO4, pH 8.0, 300 mM NaCl, 20 mM imidazole, and
1.4mM �-mercaptoethanol. The fusion proteinwas eluted from
the columns using 50mMNaH2PO4, pH 8.0, 300mMNaCl, 250
mM imidazole, and 1.4 mM �-mercaptoethanol. Protein-con-

FIGURE 1. Model of the proposed reaction pathway for P-DPD isomerization by LsrG. A, in the presence of ATP and reducing agent DPD (1) is phosphorylated
by LsrK, producing phospho-DPD (P-DPD, 2). The hydrated form of P-DPD is also shown because this is the major form of P-DPD detected under our reaction
conditions. LsrG converts P-DPD into 3,3,4-trihydroxy-2-pentanone-5-phosphate (P-TPO, 3) by catalyzing the tautomerization of P-DPD into 3-hydroxy-2,4-
pentadione-5-phosphate (P-HPD, 4) via a transient 3,4-enediol intermediate and subsequent hydration of the carbon 4-ketone group. It is likely that the
hydrated (3) and non-hydrated (4) forms exist in equilibrium. B, in the presence of oxygen P-TPO is oxidized non-enzymatically to 3,3,4,4-tetrahydroxy-2-
pentanone-5-phosphate (P-TetraPO, 5). For clarity and easy description of structural differences, the numbering of the carbons of all the compounds is based
on the numbering of DPD.
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taining fractions were pooled. The pooled protein was buffer
swapped into 25mMTris, pH8.0, 50mMNaCl, and 1mMdithio-
threitol by size exclusion chromatography using a G25 column
(GEHealthcare). The proteinwas thenpurified by ion exchange
chromatography in the new buffer using a SourceQ column
(GE Healthcare) with a gradient of 0 to 1 M NaCl.

Fusion protein with the His6 tag to be left on was then sub-
jected to size exclusion chromatography on a Superdex 75 col-
umn (GEHealthcare) and eluted in 25mMTris, pH 8.0, 150mM

NaCl, and 1mMdithiothreitol. The proteinwas concentrated to
3.0 mg ml�1.
For the LsrG protein, where the His6 tag was removed, 1 mg

of His6-tobacco etch virus protease per 30 mg of His6-LsrG
fusion protein was added to the post-ion exchange His6-LsrG.
The solution was incubated overnight at 22 °C. The tag and
protease were removed by passing the solution over nickel-
nitrilotriacetic acid resin. LsrG was eluted with 50 mM

NaH2PO4, pH 8.0, 300 mMNaCl, 20 mM imidazole, and 1.4 mM

�-mercaptoethanol, and protein-containing fractions were
pooled. LsrGwas then buffer-swapped into 25mMTris, pH 8.0,
150 mM NaCl, and 1 mM dithiothreitol by size exclusion chro-
matography using a Superdex 75 column (GEHealthcare). The
purified protein was concentrated to 3.1 mg ml�1.
Four LsrG point mutants (E54A, H65A, N25A, and H70A)

were created using the QuikChange Lightning kit (Agilent) per
the manufacturer’s instructions using primers designed using
the QuikChange Primer Design tool. Mutations were con-
firmed by sequencing, and mutant plasmids were transformed
intoE. coli strain BL21.Mutant proteinwas expressed andpuri-
fied, leaving the His6-tag on, as described above.

DPD Synthesis and Preparation

DPD protected with a cyclohexylidene group was chemically
synthesized by the recently developed method as reported in
Ascenso et al. (22) and dissolved in water to 10 mM. The cyclo-
hexylidene-protecting group was removed with acidic Dowex
50WX8 resin (100 mg ml�1 of sample) also as reported previ-
ously (22). Deprotected DPD was then neutralized with a final
concentration of 30 mM potassium phosphate buffer, pH 7.2.
The released cyclohexanone was removed by liquid-liquid
extraction with an equal volume of deuterated chloroform.
Removal of cyclohexanone is essential to facilitate assignment
of the resonances in the methyl region of the NMR spectra. To
determine the final concentration of DPD, quantification was
performed by 1HNMR using formate as an internal concentra-
tion standard.

NMR Spectroscopy

Unless otherwise stated, all spectra were acquired on a
Bruker AVANCE III 800 spectrometer (Bruker, Rheinstetten,
Germany) working at a proton operating frequency of 800.33
MHz, equipped with a four-channel 5-mm inverse detection
probe head with pulse-field gradients along the Z axis. Spectra
were run at 4 °C (to avoid compound degradation) using stan-
dard Bruker pulse programs. 1H and 13C chemical shifts were
referenced to 3-(trimethylsilyl)propane sulfonic acid. 31P
chemical shifts were referenced to external 85% phosphoric
acid. Standard Bruker pulse programs were used to acquire the

heteronuclear 13C,1H two-dimensional correlation spectra. In
the 13C,1H heteronuclear single quantum coherence (HSQC)
spectrum, a delay of 3.45 ms was used for evolution of 1JCH,
whereas a delay of 62.5 ms was used for the 1H,31P correlation
spectra. In the heteronuclear multiple bond connectivity
(HMBC) spectrum a delay of 73.5 ms was used for evolution of
long range couplings. In the HSQC type spectra, proton decou-
pling was achieved using the GARP4 sequence (23). For the
enzyme kinetics determinations, spectra were acquired on a
Bruker AVANCE II 500 spectrometer (Bruker) equippedwith a
5-mm broadband inverse detection probe head, working at
30 °C with a proton operating frequency of 500.43 MHz. Typi-
cally, 1H NMR spectra were acquired with water presaturation
using a 60° flip angle and a repetition delay of 5.23 s. The same
conditions were used to analyze the cell extracts, but spectra
were collected at 4 °C. For quantification purposes formate was
added as an internal concentration standard, and an extra
relaxation delay of 30 s was used. All samples contained a mix-
ture of D2O/H2O with 5% D2O. For the identification of
P-HPD, the correlation spectra were performed in 100% D2O;
in this case, the LsrG reaction was performed with P-DPD that
had been lyophilized and was suspended in D2O before the
addition of LsrG.

In Vitro Enzyme Assays

LsrK Reaction and Preparation of P-DPD—P-DPD was pro-
duced enzymatically by the phosphorylation of DPDwith puri-
fied LsrK and ATP. LsrK was purified as described previously
(18). The reactionmixture contained 30�gml�1 LsrK, 2–3mM

DPD, 6 mM ATP, 24 mM MgCl2, 100 mM potassium phosphate
buffer pH 7.2, and 5% D2O. Reaction mixtures were incubated
at 30 °C for 10min and terminated by placing the samples in ice.
Typically, these conditions ensured a complete conversion of
DPD to P-DPD, and this was always confirmed by 1H NMR or
31P NMR spectra (at 4 °C to avoid degradation).
LsrGAssays—To analyze the products of the LsrG reaction, 3

�g ml�1 final concentration of purified enzyme was added
to the reaction mixture containing enzymatically prepared
P-DPD. To ensure reducing conditions, samples were degassed
with argon for 5 min, and freshly prepared DTTwas added to a
final concentration of 10 mM (unless mentioned otherwise)
before the addition of LsrG. Incubation of these mixtures for 2
min at 30 °C was sufficient to ensure complete consumption of
P-DPD. In cases where the LsrG reaction was performed in
anaerobiosis, the LsrK reaction products were degassed by
three cycles of vacuumand argon, and the LsrG enzyme and the
diethylpyrocarbonate solution were left in an inert atmosphere
glove box for 20 min. Mixtures were created in anaerobic con-
ditions. To inhibit LsrG, diethylpyrocarbonate was used at a
final concentration of 50 mM. The enzymatic activity of LsrG
and its mutants was determined by monitoring the kinetics of
P-DPDdecrease at 30 °C by acquiring sequential 1HNMRspec-
tra (1.5 min each). For these experiments a batch of P-PDP was
prepared as detailed above and quantified by 1H NMR using
formate as an internal reference. This mixture was kept in ice
until use. Before each reaction an aliquot of 650�l of the P-DPD
sample was incubated for 5 min at 30 °C in a 5-mmNMR tube,
and the reaction was started by adding the LsrG or its mutants
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and placed in the spectrometer. The first spectra were started
1.5 min after enzyme addition. Controls with no enzyme or no
substrate were performed for all conditions. To determine the
specific enzyme activity, the concentration of protein added
was adjusted to ensure that the rate of substrate consumption
was linear at least in the first 10–12 min. For wild type (WT)
LsrG, 1 �gml�1 of protein was used, but for the point mutants,
concentrations up to 20 �g ml�1 were tested.

Crystallization and Structure Determination

Crystals of WT LsrG with the His6 tag removed were grown
via the sitting drop method with a well solution of 1.65 M

sodium citrate, pH 6.5. Crystals were cryoprotected in paratone
and flash-frozen in the diffractometer cryostream. Data were
collected at National Synchrotron Light Source beamline X25.
The crystals (P21, a � 44.64 Å, b � 83.39 Å, c � 63.59Å, � �
89.52°) diffracted to 1.8 Å resolution. Data were processed
using Denzo, Scalepack, and CCP4 (24, 25).
The structure of LsrG was determined using molecular

replacement with PHENIX (26) using LsrG fromYersinia pestis
(Protein Data Bank ID 2GFF) as the search model. The model
was rebuilt using Coot (27) and refined with PHENIX (26) and

REFMAC (28). The model exhibits good geometry (Table 1),
with no residues outside the allowed region of the Ramachan-
dran plot. The final model includes 288 water molecules and
has a final Rcryst of 0.204 and Rfree of 0.240. Coordinates and
structure factors for LsrG were deposited in the Protein Data
Bank with accession number 3QMQ.
Structural alignments were calculated in Coot (27), and

sequence alignments were calculated by ClustalW2 (29). All
molecular images were generated using PyMOL (30).

Bacterial Strains, Plasmids, and Growth Conditions

All strains and plasmids used are listed in Table 2. These
strains are all E. coliMG1655 derivatives of KX1123 (�lacZYA,
lsr-lacZ (14)). The strain JCM16�lsrG::Cmwas constructed by
replacing the lsrG gene in KX1123 by a chloramphenicol (Cm)
resistance cassette as described previously (31) using primers
with 50 bp of homology to the flanking regions of lsrG and was
introduced in KX1123 by generalized transduction with bacte-
riophage P1 (32). To construct JCM23, Cm was removed from
strain JCM16 with pcp20 as described (31). To obtain JCM62
(�lsrK::Kan) a P1 lysate from the strain JW1504 �lsrK::Kan
(obtained from National BioResource Project (Japan):E. coli)
was used to introduce this deletion into KX1123 by generalized
P1 transduction. All plasmids were transformed by electropo-
ration according to standard protocols (33). Except where oth-
erwise stated, strainswere grown in Luria-Bertanimedium sup-
plemented with 100 mM MOPS, pH 7, at 37 °C with shaking.
Growth was monitored by optical density at 595 nm (A595).

In Vivo Expression of Transcription of the lsr Operon

Expression of lsr transcription in E. coli was measured by
determining the �-galactosidase activity of the lsr-lacZ pro-
moter fusion as described before (14). To test the effect of the
expression of LsrG and its mutants, the strains containing the
pProExHTb plasmid and its derivatives were cultured in Luria-
Bertani medium supplemented with 100 mM MOPS, pH 7.0,
ampicillin (100mg liter�1) and isopropyl 1-thio-�-D-galactopy-
ranoside (1 �g liter�1). Isopropyl 1-thio-�-D-galactopyrano-
side was added 2.5 h after inoculation tomimic the start of lsrG
induction in the WT strain. To assay �-galactosidase activity,

TABLE 1
Chrystallographic data and refinement statistics

Data collectiona
Resolution (Å) 1.80 (1.86-1.80)
Unique reflections 42,865 (4,284)
Rmerge 0.127 (0.420)
Mean I/�I 7.42 (1.99)
Completeness (%) 99.70 (99.80)
Multiplicity 3.6 (3.6)

Refinement
Rcryst/Rfree 0.204/0.243
r.m.s.d. bond length (Å) 0.023
r.m.s.d. bond angle (°) 1.97

No. of atoms per asymmetric unit 3,508
Average B factor (Å2)
Protein 19.68
Water 24.87

Ramachandran plot
Most favored (%) 95.5
Allowed (%) 4.5
Disallowed (%) 0.0

a The highest resolution shell is shown in parenthesis.

TABLE 2
E. coli strains and plasmids used in this study

Strains and plasmids Relevant genotype Source

E coli strains
KX1123 lsr-lacZ, �lacZYA Xavier and Bassler (14)
KX1186 lsr-lacZ, �lsrK::Tn10Cm Xavier and Bassler (14)
JCM16 lsr-lacZ, �lsrG::Cm This study
JCM23 lsr-lacZ, �lsrG This study
JCM43 lsr-lacZ, �lsrG::Cm, plsrG-WT This study
JCM44 lsr-lacZ, �lsrG::Cm, plsrG-E54A This study
JCM45 lsr-lacZ, �lsrG::Cm, plsrG-H65A This study
JCM46 lsr-lacZ, �lsrG::Cm, plsrG-N25A This study
JCM47 lsr-lacZ, �lsrG::Cm, pProExHtb This study
JCM48 lsr-lacZ, �lsrG::Cm, plsrG-H70A This study
JCM53 lsr-lacZ, pProExHtb This study
JCM62 lsr-lacZ, �lsrK::Kan, pProExHtb This study

Plasmids
pProExHTb Expression vector with hexahistidine tag (AmpR)
plsrG-WT pProExHTb containing lsrG-WT
plsrG-E54A pProExHTb containing lsrG-E54A
plsrG-H65A pProExHTb containing lsrG-H65A
plsrG-N25A pProExHTb containing lsrG-N25A
plsrG-H70A pProExHTb containing lsrG-H70A

Isomerization of P-DPD by LsrG

18334 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 286 • NUMBER 20 • MAY 20, 2011



cells were collected and harvested when cultures reached
A595 � 3. Tomeasure lsr-lacZ expression in cell cultures during
growth, extracts were created from 1 ml of culture aliquots
collected in triplicate at the indicated times. All assays were
performed in triplicate.

Time Course of AI-2 Production in Bacterial Cultures

Tomonitor extracellular AI-2 activity in cell cultures during
growth, aliquots were collected at the indicated times and cell-
free culture fluids were prepared by the filtration of liquid cul-
tures (34, 35) and then analyzed for AI-2 activity. Quantifica-
tion of AI-2 was performed using the in vitro assay based on the
LuxP-FRET method established by Rajamani et al. (36) and
optimized for 96-well plate reading using a multilabel counter
(1420 Victor 3, PerkinElmer Life Sciences). Specifically, serial
dilutions of sample were added to 12.5�gml�1 CFP-LuxP-YFP
chimeric protein in 25 mM sodium phosphate buffer, pH 8, 35
mM NaCl, and 1 mM borate. Samples (2.5 �l) were added to a
280-�l reaction volume, and AI-2 concentrations of the sam-
ples were calculated from the FRET ratio (527/485 nm). Bind-
ing of AI-2 to the CFP-LuxP-YFP protein causes a dose-depen-
dent decrease in the FRET signal, and concentration can be
determined by comparing the FRET ratios of each sample with
a calibration curve performedwithAI-2 samples of known con-
centration produced and quantified as described in Schauder et
al. (6). Concentrations between 1 and 60�MAI-2 were used for
the calibration curve, corresponding to the linear range of this
assay. All assays were performed in triplicate.

Identification and Quantification of P-PDP in Cell Extracts

Each strain was cultured to A595 � 3 (conditions at which
expression of lsr expression is high) and harvested by centrifu-
gation at 7000 � g for 10 min at 4 °C. Cells were washed twice

with 100 mM potassium phosphate buffer, pH 7.2, containing 1
mMMgCl2; the cell pellets were resuspended in the same buffer
and incubated with 2 mM DPD. After the addition of DPD, the
cell suspension had a final volume of 3 ml and a calculatedA595
of 70–80. This mixture was incubated at 30 °C with aeration.
Efficient mixing and supply of oxygen to the cell suspension
were achieved by bubbling oxygen and using an airlift system
(37). After 15 min of incubation, ice-cold perchloric acid and
DTT (0.6 M and 10 mM final concentrations, respectively) were
added. Themixturewas incubated for 20minwith stirring in an
ice bath. 5 M KOHwas then added to achieve pH 5. This extract
was centrifuged for 15 min at 9000 � g at 4 °C. 5% D2O, 5 mM

EDTA, and 400 mM formate were added to the extracts for 1H
NMR analysis at 4 °C as described above.

RESULTS

LsrG Catalyzes Conversion of P-DPD to the Isomer P-TPO—
When LsrG is incubatedwith P-DPDunder reducing (i.e. in the
presence of DTT) or anaerobic conditions, P-DPD is com-
pletely converted to two phosphorylated compounds as shown
by 31P NMR spectra (Fig. 2). The resonance at 4.75 ppm was
assigned to the P-DPD isomer, P-TPO (Fig. 1, 3), and the reso-
nance with smaller intensity at 3.73 ppm was assigned to
P-HPD (Fig. 1, 4), the non-hydrated form of P-TPO. These
compounds were identified by NMR spectroscopy, and the
chemical shifts of the assigned resonances are summarized on
Table 3. The 31P resonances of the LsrG products are typical of
phosphomonoester compounds, and their proton coupling
patterns are triplets with coupling constants of 8.5 and 6.4 Hz
for P-TPO and P-HPD, respectively. This pattern revealed that
these two phosphate groups are linked to methylene groups.
1H,31P correlation experiments provided the chemical shifts of
the resonances of the protons from themethylene groups asso-

FIGURE 2. 31P NMR spectra of P-DPD and the products of the LsrG reaction. The upper trace shows the phosphorous resonance of P-DPD resulting from
incubation of DPD with purified kinase (LsrK) and ATP. The bottom trace shows the phosphorous resonances of the products (P-TPO and P-HPD) after the
addition of purified LsrG to the same reaction mixture in the presence of 10 mM DTT.
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ciated with these phosphorous groups (Table 3, and supple-
mental Fig. S1, lower panel). Next we acquired a set of 13C,1H
HMBC and 13C,1H HSQC NMR spectra to identify the other
groups of these two compounds. In the assignment of P-TPO,
the 13C,1HHMBC experiment (which correlates proton signals
with neighboring carbon resonances two or three bonds apart)
revealed that the protons from the phosphorylated carbon 5 of
P-TPO, identified in the 1H,31P correlation experiments and
labeled as 3H5a and 3H5b (Fig. 3) correlated with two carbon
signals. Specifically, the chemical shift of the most intense cor-
relation (at 98.6 ppm), assigned to carbon 4 (Fig. 3, 3H5a/b/3C4),
is consistent with a gem-diol, whereas the weaker correlation
(at 81.0 ppm), assigned to carbon 3 (Fig. 3, 3H5a/b/3C3), is typical
of an alcohol group. We then used the 13C,1H HSQC spectrum
(supplemental Fig. S2), which determines direct correlation
between carbons and attached protons to determine the proton
signal of carbon 3 fromP-TPO (4.37 ppm). Again, in the 13C,1H
HMBC spectrum, the proton bound to carbon 3 (Fig. 3, 3H3)
revealed a correlation with carbon 4 (identified above) and
another at 216 ppm, identified as a carbonyl group assigned as
carbon 2 (Fig. 3, 3H3/3C2). This resonance from carbon 2 in turn
is correlated with a proton resonance at 2.38 ppm in themethyl
region (Fig. 3, 3H1/3C2), which in theHSQC spectrum showed a
correlation with a carbon at 31.4 pm assigned as carbon 1 (sup-
plemental Fig. S2, Table 3). Overall, these data lead us to pro-
pose that the main product of the LsrG reaction (Fig. 1) is the
compound P-TPO.

1H NMR spectra of the reaction mixture, resulting from
incubation of P-DPD with LsrG under reducing conditions,
show two resonances in the methyl region: one at 2.38 ppm

assigned to P-TPO and a second one at 2.35 ppm with lower
intensity (supplemental Fig. S3, middle trace). This result is
consistent with the phosphorous spectrum mentioned above
(Fig. 2). Given that the proton resonance at 2.35 ppm is present
only when the weaker phosphorous resonance labeled as
P-HPD in Fig. 2 is also present, we conclude that this methyl
group and the phosphate group belong to the same compound,
a conclusion supported by the relative intensities of the signals
in the phosphorous and proton spectra (Fig. 2 and supplemen-
tal Fig. S3). Using a combination of 13C,1H HMBC (Fig. 3 and
supplemental Fig. S1) and 13C,1HHSQC (supplemental Fig. S2)
correlation spectra and following the strategy used for the
assignment of P-TPO,we determined all the carbon resonances
of this second compound (Table 3), allowing us to propose that
this second compound is P-HPD (Fig. 1A, 4). Although all the
assignments are consistentwith the proposed identification, we
could not detect the correlation between carbon-4 or carbon-2
and proton-3 (supplemental Fig. S1), preventing us from firmly
linking both ends of this compound. Importantly, all the carbon
resonances assigned to P-HPD are very similar to P-TPO dif-
fering only in carbon 4, which is a ketone group (with a carbon
resonance at 208.4 ppm) in P-HPD and a gem-diol (carbon
resonance at 98.6 ppm) in P-TPO. Thus, P-TPO is the hydrated
form of P-HPD position C4.
Production of P-TPO, 3, from P-DPD, 2, can be easily

explained by the interconversion of the ketone at position C3
and the hydroxide at C4 from P-DPD, 2, via the formation of
3,4-enediol intermediate to give the isomeric hydroxyketone,
P-HPD, 4, and then hydration at position C4 (Fig. 1A). The
proposed keto-enol tautomerization is common inwell charac-

TABLE 3
NMR parameters of P-DPD, P-TPO, P-HPD, P-TetraPO, and PG

a This chemical shift shows that the P-DPD detected is hydrated at position 3.
b PG, phosphoglycolate.
c Multiplicities and coupling constants (Hz) are given in parentheses.
d ND, Not detected.

Isomerization of P-DPD by LsrG

18336 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 286 • NUMBER 20 • MAY 20, 2011

http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1
http://www.jbc.org/cgi/content/full/M111.230227/DC1


terized biochemical pathways, and such interconversion can
occur spontaneously with any general �-hydroxyketone but is
usually slow in the absence of a suitable catalyst (38). Further-
more, such ketone groups are often in equilibrium with their
hydrated forms (39). This is also consistent with our NMR data
and strengthens the conclusion that the minor product of the
LsrG reaction is P-HPD, the non-hydrated form of P-TPO in
Fig. 1A. In this particular case the hydrated molecule is the
predominant form. Thus, based on the proposed reaction for
formation of P-TPO (summarized in Fig. 1A), we conclude that
LsrG catalyzes the isomerization of P-DPD.
P-TPO Is Highly Susceptible to Spontaneous Oxidation—

When the LsrG/P-DPD reaction is performed in aerobic con-
ditions and the absence of reducing agents, the products
observed are P-TPO, P-HPD, P-TetraPO, phosphoglycolate,
and otherminor compounds (proton and phosphorous spectra,
supplemental Fig. S3 and S4, respectively). The product P-Tet-
raPO was assigned using a combination of proton, carbon, and
phosphorous correlation NMR techniques as explained above
(resonances are listed in Table 3). Phosphoglycolate had been
previously assigned (18). The low concentrations of the other
compounds precluded reliable identification by NMR.

Our results further showed that P-TetraPO and the other
compounds mentioned above are produced from oxidation of
P-TPO and P-HPD (supplemental Fig. S3, panel B). To deter-
minewhether this reaction is catalyzed by LsrG,we took advan-
tage of the fact that diethylpyrocarbonate completely inhibits
LsrG activity (data not shown).Wemeasured the conversion of
P-TPO and P-HPD into P-TetraPO in the presence of diethyl-
pyrocarbonate or in its absence after bubbling oxygen through
these samples. The decrease of P-TPO and P-HPD and the
increase of P-TetraPO was very similar in both cases (supple-
mental Fig. S5), and thus we concluded that production of
P-TetraPOdoes not require LsrG activity. It is also important to
note that phosphoglycolate production was increased in the
presence of oxygen; this could be due to the breakdown of
P-TetraPO or the breakdown of P-TPO and P-HPD, but we
have not pursued this issue. Additionally, as reported before
(18) phosphoglycolate is also formed from P-DPD in the
absence of LsrG, presumably as a result spontaneous degrada-
tion of P-DPD. We never observed the formation of P-TPO or
P-HPD in the absence of LsrG. These data corroborate the con-
clusion that LsrG catalyzes the isomerization of P-DPD to
P-TPO, which is in equilibrium with its non-hydrated form,

FIGURE 3. 31,1H HMBC correlation spectrum of the products of the LsrG reaction. The upper trace shows the 1H NMR spectrum. The cross-peaks correspond
to connectivities between proton and carbon atoms two or three bonds apart. Dotted lines highlight the most relevant correlations of the two products, P-TPO
and P-HPD. The assignments are indicated next to each signal. Each relevant cross peak is labeled with 3 (for P-TPO) or 4 (for P-HPD) and subscript with the letters
H or C for proton or carbon resonances, and the subsequent numerals represent the carbon group where 1 is the position of the methyl groups. Correlation of
ATP/ADP, DTT, and phosphoglycolate (PG) is also labeled.
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P-HPD, and that in the presence of oxygen these compounds
are oxidized non-enzymatically to produce P-TetraPO, phos-
phoglycolate, and other minor compounds.
Crystal Structure of LsrG and Implications for Catalysis—To

investigate the catalyticmechanismof LsrG, we determined the
crystal structure of E. coli LsrG to 1.8 Å resolution. The crystal
structure revealed that LsrG is a dimeric ��� barrel (Fig. 4A).
After building the protein structure, it became apparent that a
large mass of non-protein electron density was present in a
groove between the �-helices and �-strands of each subunit.
We were unable to interpret this density either manually or
using the ligand identificationmodule in Phenix (26). Nonethe-
less, the location of this non-protein electron density suggests a
possible location for the LsrG active site (Fig. 4B). Examination
of this putative active site reveals several potential catalytic res-
idues with side chains adjacent to the non-protein density,
including Asn-25, Glu-54, and His-65 (Fig. 4C). His-70 might
also be significant, acting to position His-65 properly.
A DALI search of the Protein Data Bank identified several

close structural homologues includingYgiN (1.7Å r.m.s.d., 16%
ID), SnoaB (1.8 Å r.m.s.d., 18% ID), ActVA-Orf6 (2.3 Å r.m.s.d.,
17% ID), and IsdG (2.5 Å r.m.s.d., 16% ID) as well as a variety of
hypothetical or uncharacterized proteins (40). All of these
homologues have monooxygenase activity, but they act on a
variety of substrates and in a range of pathways from antibiotic
synthesis to heme degradation (for review, see Ref. 20). Inter-
estingly, when LsrG is structurally aligned with these proteins,
the observed non-protein density closely aligns with the active
sites of each, further supporting the assignment of this region as
the active site in LsrG.

Examination of the active sites shows very little conservation
of catalytic residues between LsrG and its structural homo-
logues. Most notably, a tryptophan residue (Trp-66 in ActVA-
Orf6) that is conserved in the other homologues is replaced by
a tyrosine (Tyr-56) in LsrG. In the monooxygenases this con-
served tryptophan has been implicated in substrate specificity
(ActVA-Orf6 (21), YgiN (41), SnoaB (42)) andmay play a role in
catalysis; the fact it is not conserved in LsrG suggests a signifi-
cantly different substrate or, potentially, a different functional-
ity for this enzyme. Other active site residues from these pro-
teins are not generally conserved in LsrG, although there is
modest conservationwith YgiN, the closest homologue (41). Of
the residues that Adams and Jia (41) suggest could play a cata-
lytic role in YgiN, only His-75 is structurally conserved (His-65
in LsrG). His-65 is one of the residues we identified as poten-
tially catalytic in LsrG (above); one of the others, Glu-54, is also
conserved in YgiN (Glu-64).
Sequence Comparison with LsrG from Other Organisms—In

earlier work (12) we used bioinformatics analysis to identify
bacterial species that have a functional lsr operon. Using the
sequences for LsrG from these species, we created a multiple
sequence alignment via ClustalW2 (29). Only nine residues are
completely conserved across all species (in addition to the start
Met), and of these, only two residues (Gly-34 and Asp-39) are
not positioned near the putative active site. These residues are
likely conserved for structural reasons; Asp-39, in particular, is
positioned near the dimer interface and forms hydrogen bonds
with Arg-37 in the other chain.
Of the other seven residues, two (Glu-54 and His-65) are

directly adjacent to the putative ligand density as shown in Fig.

FIGURE 4. Structure and predicted binding site of LsrG. A, shown is a schematic representation of the LsrG dimer. B, a schematic representation of a LsrG
monomer shows the location of non-protein density in the putative active site. Density is 4-fold NCS averaged, contoured at 4.0 �, and truncated at 5.0 Å from
the putative active site residues Glu-54 and Leu78. C, shown is a stereoview of key residues near the non-protein density. Density was prepared as in B.
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4C and mentioned above. The position of these residues cou-
pled with the fact that they are conserved across species sug-
gests that they are likely to play catalytic roles. The remaining
residues are in or around the active site and may play roles in
determining the geometry of the active site. His-70 is posi-
tioned to form a hydrogen bond with Glu-32, which in turn
forms a hydrogen bond with His-65. Val-75 is directly adjacent
to the putative ligand density but, given its hydrophobic nature,
is unlikely to be directly catalytic. Phe-18 may be involved in a
stacking interaction with two other Phe residues, one of which
(Phe-22) is directly adjacent to the active site. Asn-35 is adja-
cent to Tyr-56, a residue notable for occupying the position of
the tryptophan residue widely conserved in the monooxyge-
nases. Thus, the complete conservation of putative catalytic
residues and the positioning of the other conserved residues
support our identification of the LsrG active site.
Site-directed Mutagenesis of the LsrG and Impact on Enzyme

Activity andActivation of lsr Transcription—Based on the loca-
tion of the putative active site in the crystal structure and the
analysis of sequence alignments (above), we identified four res-
idues (Glu-54, His-65, Asn-25, and His-70) most likely to play a
major role in catalysis. To test these four residues for a catalytic
role, we generated individual alanine substitution mutants and
tested thesemutants (E54A, H65A, N25A, andH70A) for enzy-
matic activity in vitro using purified protein and in vivo via lsrG
expressed frommulticopy plasmids in an lsrG deletionmutant.
As shown inTable 4,mutants E54A,H65A, andH70Ahadnoor
very low activity in vitro, and theN25Amutant had a significant
reduced activity (about 3-fold less activity thanWT). For the in
vivo assays, we used a strain with a lsr-lacZ transcriptional
reporter fusion because transcription of the lsr operon is acti-
vated by P-DPD (14, 17). The WT strain has lower lsr-lacZ
activity than the lsrG deletion mutant (two first bars, Fig. 5)
presumably because the absence of lsrG results in P-DPD accu-
mulation. Accordingly, complementing themutantwith an iso-
propyl 1-thio-�-D-galactopyranoside-inducible multicopy
plasmid expressing the lsrG-WT gene caused a reduction in
lsr-lacZ activity (third bar, Fig. 5). We compared the ability of
the plasmids expressing lsrG-WT to induce lsr transcription
with that of plasmids expressing the single point mutants. In
agreement with the in vitro results, ectopic expression from the
plasmids containing E54A, H65A, or H70A lsrG did not com-
plement the effect of the lsrG deletion on lsr transcription.
However, complementation with plasmid carrying the N25A
mutant was as effective as with plasmid containing lsrG-WT
(Fig. 5). This correlates with in vitro result where N25A shows
detectable activity. Although the activity in vitro is still lower

than in WT, this difference is not observed in our in vivo sys-
tem. These data show that the N25A mutant is slightly catalyt-
ically impaired, suggesting that Asn-25 plays a role in catalysis
but that the catalytic defect can be overcome by expression
from a multi-copy isopropyl 1-thio-�-D-galactopyranoside-in-
ducible plasmid with the resulting higher concentration of pro-
tein in the cell.
Impact of LsrG on Intracellular AI-2-P Accumulation—Pre-

vious work showed that the lsr operon is mainly induced by
P-DPD, and thus the fact that expression of the lsr operon in an
lsrG mutant is higher than in the WT leads to the suggestion
that the mutant accumulates more P-DPD than theWT (17). If
this is the case, overexpression of plasmid-borne lsrG in this
mutant would prevent this accumulation. To test this hypoth-
esis, wemeasured the accumulation of P-DPD in cell extracts of
the following E. coli strains: WT, the lsrG deletion mutant, and
the mutant complemented with plsrG-WT. The levels of free
P-DPD were determined by proton NMR of extracts from cell
suspensions actively metabolizing DPD. P-DPD was easily
detected in the lsrG deletion mutant (P-DPD � 0.16 mM) but
not in the other extracts (Fig. 6). Apparently, the rate of turn-
over of P-DPD in the strain overexpressing plsrG-WT and even
in the WT strain is sufficiently high that the P-DPD level was
below our detection limits (i.e. lower than 0.01 mM). As a neg-
ative control we assayed cell extracts from the lsrG mutant
when no DPD was added to the cell suspension, and as
expected, no resonance with the P-DPD chemical shift was
detected (Fig. 6, lower trace). A mutant in the kinase that phos-
phorylates DPD (lsrK) was used as an additional negative con-
trol, and again, no P-DPD was detected (Fig. 6). This direct
measurement of P-DPD levels supports the earlier prediction
that the increase in lsr transcription observed in lsrGmutants is
a result of P-DPD accumulation.

FIGURE 5. The effect of lsrG and its mutants on the lsr expression in E. coli.
�-Galactosidase activity of the lsr-lacZ transcription reporter fusion was
measured in WT and �lsrG strains expressing pProExHTb (empty vector).
Activity was also measured in �lsrG strains carrying the pProExHTb with wild
type lsrG (lsrG-WT) or the lsrG single amino acid alanine substations lsrG
mutants E54A, H65A, N25A, and H70A. The error bars indicate S.D.

TABLE 4
Specific enzyme activities of LsrG-WT and single amino acid mutants:
E54A, H65A, N25A, and H70A

Protein Activities

Units/mg of proteina

LsrG-WT 61.0 � 2.2
LsrG-E54A � 0.1
LsrG-H65A � 0.1
LsrG-N25A 20.4 � 0.8
LsrG-H70A 0.8 � 0.1

a One unit of enzyme activity is defined as 1 �mol of P-DPD consumed/min at
30 °C.
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Impact of LsrG Mutation on Accumulation of Extracellular
AI-2 in Vivo—In cultures of WT E. coli in Luria-Bertani
medium, extracellular AI-2 concentration typically increases
over time up to 30–40 �M and then begins to decline to unde-
tectable levels (Fig. 7A, circles). This profile correlates with the
timing of activation of lsr transcription (Fig. 7B, circles) and,
presumably, the Lsr-mediated transport of AI-2 into the cells.
In contrast, in an lsrKmutant, AI-2 is not phosphorylated; thus,
transcription of the lsr operon is not induced, and extracellular
AI-2 levels remain high (Fig. 7, squares). In the lsrGmutant (Fig.
7, triangles), AI-2 internalization starts at lower concentration
of extracellular AI-2 (15–20 �M) and, accordingly, induction of
lsr transcription starts earlier and reaches levels higher than the
WT. This is in agreement with our conclusion that lsrG
mutants accumulate higher levels of the lsr inducer P-DPD (Fig.
6). Nonetheless, we were surprised that the extracellular levels
of AI-2 in this mutant stop decreasing after a fast initial
decrease. We hypothesize that accumulation of P-DPD causes
feedback inhibition of the LsrK kinase, and as a consequence,
non-phosphorylated AI-2 can exit the cell and accumulate in
the medium.

DISCUSSION

P-DPD is the intracellular inducer of the lsr operon, the gene
products of which form a system capable of terminating AI-2-
mediated bacterial behaviors (11, 43). Using NMR, x-ray crys-
tallography, and a combination of in vitro and in vivo assays, we
showed that LsrG catalyzes the isomerization of P-DPD to
P-TPO (and its non-hydrated form, P-HPD). Our finding was
surprising given our previous report (18), but it is not inconsis-
tent. We had suggested that LsrG catalyzes the cleavage of
P-DPD to phosphoglycolate and other unknown products. The
experiments reported here show that the increased formation
of phosphoglycolate observed in the presence of LsrG occurs
only when the products of P-DPD isomerization are exposed to
oxidative conditions. In the presence of oxygen, P-TPO and
P-HPD are oxidized to P-TetraPO, phosphoglycolate, and
other minor compounds, but this oxidation does not require
active LsrG. Under anaerobic conditions we never observed
formation of P-TetraPO or phosphoglycolate. Additionally, we
also never observe these two compounds when the reaction is
preformed in the presence of the reducing agents DTT or glu-
tathione (supplemental Figs. S6 and S7). Overall, our results
indicate that the physiological function of LsrG is to catalyze
P-DPD isomerization. Whether or not the products of this
reaction are oxidized to phosphoglycolate in vivo will depend
on the local oxidizing/reducing conditions and, potentially, the
efficiency of other enzymes that act on the P-DPD isomers, and
this is a question we are pursuing through ongoing experi-
ments. To completely reveal the metabolic fate of DPD, it is
necessary to identify and characterize the next steps of this
pathway. The answer will provide clues to other benefits the
bacteria may derive from the processing of DPD, metabolic or
otherwise.
Using NMR to measure the accumulation of P-DPD in

extracts of cells actively metabolizing DPD, we showed that the
lsrG deletion mutant accumulates at least 10 times more
P-DPD thanWT. This assay provides a novel and direct way to
measure intracellular P-DPD and can be applied to the study of
other enzymes involved in P-DPD processing or regulators of
this process. In this particular case, this observation provided
direct evidence on the impact of lsrG in vivo and explains the
high levels of Lsr expression observed in this mutant. Our
results also showed that the lsrG deletion mutant has an aber-
rant profile of AI-2 internalization. Thus, LsrG is essential for
the proper functioning of the Lsr system in interfering with
AI-2-mediated signaling.
The crystal structure of P-DPD showed that LsrG has the

same fold as enzymes belonging to the cofactor-independent
monooxygenase family such as ActVA-Orf6, YgiN, and SnoaB
(21, 41, 42). However, our data indicate that, unlike the other
enzymes from this family, LsrG does not catalyze the incorpo-
ration of oxygen into the substrate; thus, LsrG plays a different
catalytic role than othermembers of the family characterized so
far. It is notable, however, that the keto-enol tautomerization
step we propose for the LsrG reaction is also a step in the path-
way of ActVA-Orf. Thus, the isomerization catalyzed by LsrG
could be setting the stage for the oxidation reaction that leads to
the observed production of P-TetraPO and phosphoglycolate.

FIGURE 6. P-DPD accumulation in E. coli cell suspensions metabolizing
DPD. The methyl region of the 1H NMR spectra of cell extracts from different
E. coli strains is shown. Each trace shows the spectrum of the extract obtained
from strains: JCM53 (WT � pProExHTb), JCM47 (�lsrG � pProExHTb), JCM43
(�lsrG � plsrG-WT), and JCM62 (�lsrK � pProExHTb) from top to bottom.
Extracts were obtained from cell suspensions incubated at 30 °C for 15 min
with 2 mM DPD (except for the lower trace (strain JCM47) to which no DPD was
added). Cell extracts were performed as described under “Experimental Pro-
cedures.” The relevant genotype of the strains used in each case is indicated
next to the trace. The resonances of the methyl groups from P-DPD and the
three forms of DPD are highlighted.
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Whether this oxidation occurs in vivo remains an open
question.
Identification of the crystal structure led us to identify poten-

tial catalytic residues, and we assayed mutants of these sites.
Our results showed that the residues Glu-54, His-65, and
His-70 are essential for catalysis in vitro and that alanine sub-
stitutions of these residues are impaired in complementing the
lsrGdeletionmutant in vivo. These catalytic residues fromLsrG
are not structurally conserved in other proteins from the
monooxygenase family studied so far. The same is largely true
between the catalytic residues of other members of this family
and can be explained by divergent adaptation to a variety of
substrates (20, 42). One exception is the residue His-65, which

is structurally conserved in YgiN (His-75), the closest structural
homologue to LsrG, and demonstrated to be important for
catalysis in both LsrG and YgiN (41).
Although the conservation of catalytic residues among the

proteins from this family is low, this is not the case among
the previously identified LsrG orthologs (12). In this group
there was 100% conservation of 7 residues in and around the
active site (which include the residues Glu-54 and His-65 and
His-70) out of a total of only 9 completely conserved residues
(in addition to the start Met). Asn-25, which is close to the
potential active site, is only conserved in 17% of these proteins,
suggesting that it plays a non-essential role in support of LsrG
catalysis. This is in line with experimental results showing

FIGURE 7. Profile of extracellular AI-2 accumulation and expression of lsr during growth. Extracellular AI-2 (A) and �-galactosidase activity of the lsr-lacZ
transcription reporter fusion (B) were measured in WT (MG1655, circles), �lsrK (KX1186, squares), and �lsrG (JCM23, triangles) E. coli strains. Measurements were
performed on aliquots collected at indicated times. The error bars indicate S.D.
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reduced activity for the N25A mutant in vitro (though not in
vivo, see above). The conservation of other active site residues,
including those shown here to be essential for function, sup-
ports the prediction that the function of LsrG in the regulation
of the Lsr system is conserved in the range of species with LsrG
homologues. The lsr operon and lsrG homologues are present
in bacteria including important human pathogens such as
S. typhimurium, B. anthracis, and Y. pestis (12) and thus can
impact communications inmultispecies bacterial communities
that include pathogens such as these.
The belief in the field is that quorum sensing can be exploited

tomanipulate bacterial behavior and thus lead to an alternative
to traditional antibiotics. This is mainly because therapies that
interfere with quorum sensing are predicted to create lower
selective pressure toward resistance than traditional anti-mi-
crobial treatments (44, 45). A variety of approaches are being
developed that interfere at different steps on the quorum-sens-
ing pathways. One of these strategies, referred to as quorum
quenching, involves altering or destroying the autoinducer sig-
nal (46). Most reports on quorum-quenching approaches have
employed naturally occurring enzymes that degrade species-
specific signals. Enzymes that degrade acylhomoserine lactones
(AHLs) include AHL lactonases (47), AHL acylases (48), and
paraoxonases (49). Fewer studies have investigated interference
with autoinducer peptides, but examples of quorum-sensing
inhibition in Staphylococcus aureus are reviewed in Lyon and
Novick (50). In contrast, the Lsr system and LsrG in particular
targets the interspecies signal AI-2. This is the only natural
system known so far to degrade AI-2 signal, and there are
already multiple studies showing that the Lsr system can func-
tion as anAI-2 quenching system (11, 43). Our work shows that
interference with LsrG alters the function of Lsr, suggesting
that it could be a useful target for AI-2-based quorum-quench-
ing therapies. Interference with interspecies cell-cell signaling
can be particularly important when treating infections caused
by multispecies biofilms that might rely on interspecies signals
for persistence. For these cases, we predict that targeting inter-
species signaling is likely to be more effective than targeting
species-specific signals.
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