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Diazirines are prime precursors of carbenes.1 For example,
archetypal electrophilic (CF2),2 ambiphilic (MeOCCl),3 and nucleo-
philic (MeOCOMe)4 can be generated from appropriate diazirines
for spectroscopic and reactivity studies. Halodiazirines1 are
obtained from the hypohalite oxidation of amidines or isouronium
salts (Graham oxidation).5 Here, R can be alkyl, aryl, vinyl, or
alkoxy (aryloxy), while X is Cl or Br.5

This extraordinary reaction can be coupled with subsequent
nucleophilic exchange of X by, for example, fluoride6 or alkoxide7

to afford many additional diazirines,1 including fluoromethoxy-
diazirine8 and dimethoxydiazirine.4

Given the centrality of dihalocarbenes in carbene chemistry,9

dihalodiazirines are particularly desirable precursors. Difluoro-
diazirine (2) is available by the reductive defluorination cycliza-
tion of perfluoroformamidine2d or bis(difluoroamino)difluoro-
methane,10a,band by the CsF-catalyzed, gas-phase isomerization of
difluorocyanamide.10cChlorofluorodiazirine (3) can also be obtained
by reductive defluorination cyclization.11 However, these prepara-
tions all require direct fluorination via intermediates that can be
“shatteringly explosive”.12 Moreover, despite the utility of the two-
step Graham oxidation-nucleophilic exchange sequence,5-8 di-
halodiazirines have not yet been prepared by this method. Here,
we demonstrate how this can be done with a novel preparation of
3, and we describe a remarkable accompanying reaction that, for
the first time, generates diazirinone, the diaza analogue of cyclo-
propenone.

To obtain a dihalodiazirine from1, “R” must be converted into
a leaving group. Thus, phenoxychlorodiazirine (4)13 was nitrated
with nitronium tetrafluoroborate14 (0 °C, MeNO2) to give p-
nitrophenoxychlorodiazirine (5) in 40% yield.15 Diazirine 5 was
characterized spectroscopically: IR, 1530 cm-1 (NdN); UV, λmax

337, 353 nm (pentane),1H NMR (δ, CDCl3), 7.47, 8.33 (A2B2

multiplets). Next, diazirine5 in CD3CN or CDCl3 was reacted with
“molten” tetrabutylammonium fluoride (TBAF)6 at 0-25 °C for
10 h. The product mixture contained three principal components:
p-nitrophenoxyfluorodiazirine (6), p-nitrophenol (7), andp-nitro-
fluorobenzene (8) in the approximate ratio 28:17:55, respectively.

Products7 and 8 were identified by NMR comparisons to
authentic samples, as well as NMR spiking experiments. Fluoro-

diazirine6, the expected6 halide exchange product of chlorodiazirine
5, was purified by chromatography and characterized spectroscopi-
cally: IR, 1525 cm-1 (NdN), UV, λmax 336, 352 nm (pentane);
19F NMR (δ, CFCl3, CDCl3), -119.0;1H NMR (δ, CDCl3), 7.38,
8.26 (A2B2 multiplets).15

Products6-8 imply that reaction of diazirine5 with F- follows
three competitive pathways, where the first two channels involve
alternative double SN2′ mechanisms for the diazirine halide
exchange reaction;5,16,17 cf., Scheme 1. SN2′ fluoride attack on5
displaces eitherp-nitrophenoxide (later protonated to7, path a),
affording isodiazirine intermediateA, or it displaces chloride (path
b), yielding isodiazirine intermediateB. Subsequent SN2′ attacks
of fluoride then convertA to chlorofluorodiazirine (3) and B to
diazirine6.

When the reaction of5 and TBAF was continuously swept with
a nitrogen stream, diazirine3 could be trapped in 0.5 mL of CDCl3

at 77 K15 and characterized spectroscopically:19F NMR (δ, CFCl3,
CDCl3), -105.6; IR, 1562 cm-1 (NdN) [lit., 11 6.50µ, 1538 cm-1);
UV, λmax324, 340, 356 nm (CDCl3) [lit., 11 310-360 nm, gas phase).
Photolyis of3 in CDCl3 and isobutene (350 nm, sealed tube) gave
1-chloro-1-fluoro-2,2-dimethylcyclopropane15,18(the adduct of ClCF),
identified spectroscopically and by comparison to an authentic
sample.15,19

The third (and dominant) channel from the reaction of5 and
TBAF is the most unusual; cf., Scheme 2. Reaction of∼0.2 g of
molten TBAF with 50 mg of5 in 0.2 mL of CDCl3 or 1,2-
dichloroethane (DCE) in an IR cell at-10 to-15 °C afforded CO
(2117 and 2168 cm-1).20 Immediately after reagent mixing, a strong
absorption appeared at 2150 cm-1 and gradually decayed over 3-5
min as the reaction temperature rose toward ambient; simulta-
neously, CO appeared at 2115 and 2173 cm-1; cf., Figure 1. We
attribute the transient IR feature at 2150 cm-1 to diazirinone
(diazacyclopropenone),9, which subsequently fragments to CO (and
N2).21

Scheme 1
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Formation ofp-nitrofluorobenzene8 from diazirine5 and TBAF
(see above) requires that Cl- and a N2CO fragment be liberated.
Computational studies in which we attempted to optimize a
Meisenheimer complex formed by fluoride addition at the ipso
carbon of5 (see Scheme 2) led to Cl-, 8, and diazirinone9 (i.e.,
N2CO).15 The computations of Korkin et al. find9 to be the most
stable of various N2CO isomers; for example, it is about 11 kcal/
mol more stable than its known linear isomer nitrosyl cyanide
(OdN-CN).22 The decomposition of9 to CO+ N2 is exothermic
by >90 kcal/mol,22,23 but requires an activation energy of 2424-
2722,23 kcal/mol, so that9 should be observable, if metastable.

The (unscaled) computed22 IR CdO frequency for9 is 2064 cm-1

(B3LYP) or 2079 cm-1 (MP 2), reasonable fits to our observed
2150 cm-1. A better fit is OdN-CN, with a reported CN absorption
at 2170 cm-1 (gas phase),25 although it is difficult to envision its
direct generation from diazirine5 and F-. We prepared OdN-
CN from nitrosyl chloride26 and AgCN.27 Reaction of cold (-20
°C) OdN-CN in DCE with TBAF in the IR cell led toimmediate
disappearance of OdN-CN at 2164 cm-1, coupled with the
appearance of CO (2116 and 2169 cm-1). OdN-CN is known28

to (gradually) afford CO and N2 (presumably via prior dissociation
to NO and CN radicals),28 but how fluoride catalyzes this conversion
is unclear.

Importantly, the reaction of OdN-CN with TBAF (immediate
decomposition) differs from that of the product from5 and TBAF
(decomposition over 5-9 min). We conclude that the carrier of
the 2150 cm-1 IR band from the reaction of5 and TBAF is
diazirinone9, which decays to CO and N2 with a lifetime of 5-9
min at-20 to 25°C (in the presence of TBAF). The formation of
9 in this reaction, and its properties, are in reasonable accord with
computational studies.15,22-24

In summary, the reaction ofp-nitrophenoxychlorodiazirine5 with
TBAF follows three channels: (1)∼17% of p-nitrophenoxide/F-

exchange to chlorofluorodiazirine3 andp-nitrophenol7, (2) ∼28%
of Cl/F exchange top-nitrophenoxyfluorodiazirine6, and (3)∼55%
of ipso fluoride attack, affordingp-nitrofluorobenzene8 and the
previously unknown diazirinone9.29
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Figure 1. Infrared spectra following reaction of diazirine5 with TBAF.
Diazirinone (9) at 2150 cm-1 decreases as CO at 2115 and 2173 cm-1

increases. Including∼2 min of preparation time, the lifetime of9 in this
experiment is∼5 min.
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