

Synthetic Communications: An International J ournal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http:// www. tandfonline.com/loi/ Isyc20

CONDENSATION OF O-PHENYLENEDIAMINE WITH CINNAMIC ACIDS

P. K. Dubey ${ }^{\text {a }}$, Ramesh Kumar ${ }^{\text {a }}$, C. Ravi Kumar ${ }^{\text {a }}$, J. S. Grossert ${ }^{\text {b }}$ \& D. L. Hooper ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, College of Engineering, J. N. T. University, Kukatpally, Hyderabad, 500 072, India
${ }^{\text {b }}$ Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H4J 3, Canada Published online: 22 Aug 2006.

To cite this article: P. K. Dubey , Ramesh Kumar , C. Ravi Kumar , J. S. Grossert \& D. L. Hooper (2001) CONDENSATION OF O-PHENYLENEDIAMINE WITH CINNAMIC ACIDS, Synthetic Communications: An International J ournal for Rapid Communication of Synthetic Organic Chemistry, 31:22, 3439-3446, DOI: 10.1081/ SCC-100106202

To link to this article: http:// dx.doi.org/10.1081/ SCC-100106202

PLEASE SCROLL DOWN FOR ARTICLE

Taylor \& Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor \& Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor \& Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms \& Conditions of access and use can be found at http:// www.tandfonline.com/page/terms-and-conditions

CONDENSATION OF o-PHENYLENEDIAMINE WITH CINNAMIC ACIDS

P. K. Dubey, ${ }^{1, *}$ Ramesh Kumar, ${ }^{1}$
C. Ravi Kumar, ${ }^{1}$ J. S. Grossert, ${ }^{2}$ and D. L. Hooper ${ }^{2}$
${ }^{1}$ Department of Chemistry, College of Engineering,
J. N. T. University, Kukatpally,
Hyderabad - 500072 , India
${ }^{2}$ Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H4J3, Canada

Abstract

Condensation of o-phenylenediamine sulfate with cinnamic acids in refluxing ethylene glycol yielded the corresponding 2-styrylbenzimidazoles in excellent yields.

INTRODUCTION

In an earlier communication, ${ }^{1}$ we have reported the preparation of 2-styrylbenzimidazoles by condensation of 2-methyl/ethylbenzimidazoles with aromatic aldehydes. Literature survey revealed that o-phenylenediamine condenses with aliphatic acids in aq. HCl (Phillips conditions) ${ }^{2}$ and

[^0]with aromatic acids in PPA^{3} or PPE^{4} at $180-200^{\circ} \mathrm{C}$, and it appears that there is no standard method for the condensation of unsaturated acids with o-phenylenediamine. Hence, it was considered worthwhile to develop a simple and efficient method for the condensation of o-phenylenediamine with unsaturated acids, which forms the subject matter of this paper.

RESULTS AND DISCUSSION

Attempted condensation of o-phenylenediamine (1) with cinnamic acid in refluxing methanol containing a trace of sulfuric acid or in refluxing benzene with a trace of p-toluenesulphonic acid, and removal of water by the Dean-Stark apparatus led to the recovery of starting materials. However, condensation of $\mathbf{1}$ with cinnamic acid in PPA at $200^{\circ} \mathrm{C}$, yielded 2-styrylbenzimidazole (2a) in 30\% yield.

Nagarajan has reported the synthesis of $\mathbf{2 a}$ in 57% yield by condensation of o-phenylenediamine dihydrochloride with cinnamic acid at $200^{\circ} \mathrm{C}$, for $2 \mathrm{~h} .{ }^{5}$ Treatment of $\mathbf{1}$ with cinnamic acid under Phillips' conditions led to the recovery of starting materials.

In the present work, condensation of o-phenylenediamine sulfate $\left(\mathbf{1 . H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}\right)$ with cinnamic acid in refluxing ethylene glycol for 3 h followed by simple processing yielded $\mathbf{2 a}$ in 95% yield. This condensation of 1. $\mathbf{H}_{2} \mathbf{S O}_{4}$, with cinnamic acid has been extended to fourteen more cinnamic acids to obtain the corresponding 2 -styrylbenzimidazoles in excellent yields. The results are shown in the Table. The authenticity of $\mathbf{2 a}-\mathbf{2 f}$ and $\mathbf{3 a - 3 f}$ was confirmed by comparison of $\mathrm{mp}, \mathrm{mmp}$, tlc and IR spectra with those of the products obtained by condensation of 2-methyl/ethylbenzimidazoles with aromatic aldehydes as reported earlier. ${ }^{1}$ The structures 4,5 and 6 are assigned based on their spectral and analytical data.

This appears to be a general method and may be applied for the preparation of other benzimidazole derivatives with unsaturated moiety in 2-position, which are difficult to obtain by other known methods. Thus, compounds $\mathbf{5}$ and $\mathbf{6}$, which cannot be prepared by the condensation of

Table. Condensation of $1 . \mathrm{H}_{2} \mathrm{SO}_{4}$ with Cinnamic Acids to Obtain 2,3,4,5 and 6

Cinnamic acid used		Product obtained			Yield (\%)	Rexn. solvent	M.P. $\left({ }^{\circ} \mathrm{C}\right)$
		R	R^{\prime}	$\mathrm{R}^{\prime \prime}$			
Cinnamic acid	2 a	H	H	H	95	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	$\begin{aligned} & 203-05 \\ & \left(\mathrm{Lit}^{11} \mathrm{~m} . \mathrm{p} .\right. \\ & =201-02) \end{aligned}$
p-Methylcinnamic acid	2b	H	$4-\mathrm{CH}_{3}$	H	92	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	214-16
o-Chlorocinnamic acid	2c	H	$2-\mathrm{Cl}$	H	99	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	176-78
p-Chlorocinnamic acid	2d	H	$4-\mathrm{Cl}$	H	96	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	$\begin{aligned} & 221-23 \\ & \left(\mathrm{Lit}^{12} \mathrm{~m} . \mathrm{p} .=\right. \\ & 223-224) \end{aligned}$
m-Nitrocinnamic acid	2 e	H	$3-\mathrm{NO}_{2}$	H	97	$\mathrm{EtOH}+$ Hexane	219-20
p-Nitrocinnamic acid	2 f	H	$4-\mathrm{NO}_{2}$	H	96	AcOH	260-62
α-Methylcinnamic acid	3a	H	H	CH_{3}	91	$\mathrm{CH}_{3} \mathrm{OH}$	$\begin{aligned} & 242-44 \\ & \left(\mathrm{Lit}^{13} \mathrm{~m} \cdot \mathrm{p} \cdot=\right. \\ & 245) \end{aligned}$
p-Methyl- α methylcinnamic acid	3b	H	$4-\mathrm{CH}_{3}$	CH_{3}	94	EtOAc	178-80
o-Chloro- α methylcinnamic acid	3c	H	$2-\mathrm{Cl}$	CH_{3}	95	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	264-65
p-Chloro- α methylcinnamic acid	3d	H	4-Cl	CH_{3}	97	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	223-25
m-Nitro- α methylcinnamic acid	3 e	H	$3-\mathrm{NO}_{2}$	CH_{3}	93	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	231-33
p-Nitro- α methylcinnamic acid	3 f	H	$4-\mathrm{NO}_{2}$	CH_{3}	98	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	294-95
α-Phenylcinnamic acid	4	H	H	$\mathrm{C}_{6} \mathrm{H}_{5}$	92	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	281-83
β-Methylcinnamic acid	5	CH_{3}	H	H	90	Aq. $\mathrm{CH}_{3} \mathrm{OH}$	195-96
β-Phenylcinnamic acid	6	$\mathrm{C}_{6} \mathrm{H}_{5}$	H	H	94	$\mathrm{EtOAc}+$ Hexane	102-04

2-methylbenzimidazole with acetophenone and benzophenone respectively can be prepared by this method.

EXPERIMENTAL

All melting points are uncorrected and were obtained using open capillary tubes in sulfuric acid bath. TLC analysis was carried out on glass plates coated with silica gel-G, and spots were visualized using iodine or a UV Lamp. IR spectra were recorded using Perkin-Elmer Model 46 instrument in KBr discs. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Bruker instrument operating at 250 MHz and 62.9 MHz
respectively. Mass spectra were recorded on a CEC-21-110 mass spectrometer under electron impact conditions.

Preparation of $\mathbf{1 .} \mathbf{H}_{\mathbf{2}} \mathbf{S O}_{\mathbf{4}}$

To a solution of $\mathbf{1}(5.4 \mathrm{gms}, 50 \mathrm{mM})$ in methanol (50 ml), conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ $(4 \mathrm{ml})$ was added, drop wise under ice-cold conditions over a period of 30 min . After the completion of addition, the separated product was filtered, washed with methanol and dried. Yield $=7.21 \mathrm{gms}(70 \%)($ Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}: \% \mathrm{C}, 30.762$; $\% \mathrm{H}, 4.301$; $\% \mathrm{~N}, 13.561$; Found: $\% \mathrm{C}, 30.760$; \%H, 4.299; \%N, 13.560).

Condensation of $\mathbf{1 . \mathbf { H } _ { 2 }} \mathbf{S O}_{\mathbf{4}}$ with Cinnamic Acids ${ }^{6-10}$ to Obtain 2,3,4,5 and 6

A mixture of $1 . \mathrm{H}_{2} \mathrm{SO}_{4}(2.06 \mathrm{~g}, 10 \mathrm{mM})$ and substituted cinnamic acid $(10 \mathrm{mM})$ in ethylene glycol $(10 \mathrm{ml})$ was refluxed for 3 h . Then, the reaction mixture was cooled to RT and poured into water (100 ml). The pH of the solution was adjusted to >7 with NaHCO_{3}. The product was filtered, washed, dried and recrystallized to obtain $\mathbf{2 , 3 , 4 , 5}$ and 6 .

Spectral Data of Compounds 2a-6

2a ${ }^{1} \mathbf{H}-\mathrm{NMR}$ ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.2-7.8$ (complex $\mathrm{m}, 11 \mathrm{H}$, five phenyl protons, four aryl protons and two vinylic protons, ${ }^{3} \mathbf{J}_{\mathrm{H}-\mathrm{H}}$ for vinylic system $=16.5 \mathrm{~Hz}), 12.04(1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathbf{T M S}\right): \delta 114.93,117.10$, 122.61, 126.93, 128.76, 128.82, 135.36, 135.79, 139.23, 151.65 (for all carbons of 2 -styrylbenzimidazole); MS: $\boldsymbol{m} / \boldsymbol{z}$ ($\% \mathbf{I} \mathbf{I}: 221$ ($6, \mathrm{M}+1$), 220 ($40, \mathrm{M}^{+}$), 219 ($100, \mathrm{M}-1$), 218 (12, M-2), 110 (8), 109 (12), 108 (4), 92 (4), 91 (6), 77 (3), 51 (2) etc. (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2}: \% \mathrm{C}, 81.791$; \%H, 5.490; \%N, 12.717; Found: \%C, 81.789; \%H, 5.488; \%N, 12.71).

2b ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 2.31$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.12-7.66 (complex $\mathrm{m}, 10 \mathrm{H}$, four p-methyl phenyl protons, four aryl protons and two vinylic protons, $\left.{ }^{3} \mathbf{J}_{\mathrm{H}-\mathrm{H}}=16.63 \mathrm{~Hz}\right) .{ }^{13} \mathbf{C}$-NMR $\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 20.97\left(\mathrm{CH}_{3}\right)$, $116.68,122.02,126.99,129.60,133.02,134.32,138.53,151.12$ (six p-methylphenyl carbons, one imidazole quaternary carbon and two vinylic carbons); MS: $\boldsymbol{m} / \boldsymbol{z}(\% \mathbf{I}): 235(6.6, \mathrm{M}+1), 234\left(41.7, \mathrm{M}^{+}\right), 233(100, \mathrm{M}-1), 232(10.2)$, 116 (12), 103 (3.7), 92 (1.2), 91 (1.9), 90 (1.2), 78 (2.7), 77 (2.3), 65 (2.3) etc.
(Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2}$: $\% \mathrm{C}, 82.020 ; \% \mathrm{H}, 6.022 ; \% \mathrm{~N}, 11.952$; Found: $\% \mathrm{C}, 82.019 ; \% \mathrm{H}, 6.020 ; \% \mathrm{~N}, 11.950)$.

2c ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.2-7.7$ Complex $\mathrm{m}, 9 \mathrm{H}$, four o-chlorophenyl protons, four aryl protons and one vinylic proton α-to heteryl ring), 7.88 (d, 1H, vinylic proton β-to heteryl ring); MS: $\boldsymbol{m} / \boldsymbol{z}$ (\%I): 254 and 256 (13.4 and $1.5, \mathrm{M}^{+}$corresponding to ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$), 253 and 255 (14.9 and 4.47, M-1), 220 (13.4), 219 (100, M-Cl), 218 (20.9), 129 (5.2), 77 (7.5), 65 (8.95), 64 (16.4) etc. (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2 \mathrm{Cl}}$: $\% \mathrm{C}, 70.731 ; \% \mathrm{H}, 4.352$; \%N, 10.997; Found: \%C, 70.730; \%H, 4.351; \%N, 10.995).

2d ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.14-7.72$ (Complex m, 10 H , four p-chlorophenyl protons, four aryl protons and two vinylic protons), 12.7 (bs, $1 \mathrm{H},-\mathrm{NH}$); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 111.19,118.55,122.16,128.72$, $128.98,132.92,133.20,134.74,151.56$, (six p-chlorophenyl carbons, six aryl carbons, one imidazole quaternary carbon and two vinylic carbons) etc; MS: $\boldsymbol{m} / \boldsymbol{z}$ (\%I): 256, 254 (14.3, 42.9; $\mathbf{M}+2, \mathbf{M}^{+}$) 255, 253 (39.3, 100; $[(M+2)-1, \quad M-1]), 219$ (6), 218 (8), 109 (8.6). (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{Cl}: \% \mathrm{C}, 70.731 ; \% \mathrm{H}, 4.352 ; \% \mathrm{~N}, 10.997$; Found: $\% \mathrm{C}, 70.730$; \%H, 4.351; \%N, 10.995).

2e ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.1-8.2$ (Complex m, 10 H , four m-nitrophenyl protons, four aryl protons and two vinylic protons); MS: $\boldsymbol{m} / \boldsymbol{z}(\mathbf{(} \mathbf{I} \mathbf{I}):$ 266 ($6.63, \mathrm{M}+1$), $265\left(55, \mathrm{M}^{+}\right), 264$ (100, $\left.\mathrm{M}-1\right), 236$ (6.73), 235 (20.78), 234 (34.54), 219 (10.73), 218 (30.8), 217 (16.25), 43 (10.16), 42 (9.74); HRMS: calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}=265.085 \mathrm{amu}$; found $=265.0859+/$ -0.0008 amu . (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}$: \%C, 67.917; \% $\mathrm{H}, 4.179$; $\%$ N, 15.840; Found: $\% \mathrm{C}, 67.916 ; \% \mathrm{H}, 4.178 ; \% \mathrm{~N}, 15.839$).

2f ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.21$ and 7.50 (complex m, 4H, aryl protons), $7.40,7.56,7.72$ and 7.78 (AB quartet, 2 H , vinylic protons, ${ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}$ $=16.55 \mathrm{~Hz}), 7.89,7.93,8.22$ and $8.25\left(\mathrm{~A}_{2} \mathrm{~B}_{2}\right.$ quartet, 4 H , p-nitrophenyl protons, $\left.\quad \mathbf{J}_{\text {ortho }}=8.2 \mathrm{~Hz}\right) ;{ }^{13} \mathbf{C}-\mathbf{N M R} \quad\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): ~ \delta 115.13,122.06$, 122.57, 124.16, 128.00, 131.90, 142.46, 146.92 and 150.60 (six p-nitrophenyl carbons, six aryl carbons, one imidazole quaternary carbon and two vinylic carbons); MS: $\boldsymbol{m} / \boldsymbol{z}$ (\%I): 266 ($10, \mathrm{M}+1$), $265\left(55, \mathrm{M}^{+}\right), 264$ ($100, \mathrm{M}-1$), 234 (10), 219 (21), 218 (67), 217 (30), 206 (8). (Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$: \%C, 67.917; \%H, 4.179; \%N, 15.840; Found: \%C, 67.916; \%H, 4.178; $\%$ N, 15.839).

3a ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.12-7.49$ (complex m, 9H, four aryl and five phenyl protons), 7.57 (s, 1 H , vinylic proton), $12.58(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH})$; ${ }^{13} \mathbf{C}$-NMR (CDCl $\left.{ }_{3} / \mathbf{T M S}\right): \delta 15.30\left(\mathrm{CH}_{3}\right), 122.00,127.51,127.59,128.55$, $129.32,130.26,136.52$ and 154.00 (six phenyl carbons, six aryl carbons, one imidazole quaternary carbon and two vinylic carbons); MS: $\boldsymbol{m} / \boldsymbol{z}$ (\%I): $236(0.14, \mathrm{M}+2), 235(2.30, \mathrm{M}+1), 234\left(56.9, \mathrm{M}^{+}\right), 233$ (100, $\mathrm{M}-1), 232$ (10.2), 219 (8.44), 157 (44.32), 155 (8.36), 141 (5.34), 129
(12.7), 127 (10.42) and 117 (2.85); HRMS: found $=233.1079 \mathrm{amu}$; calculated for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2}{ }^{+}(\mathrm{M}-1)$ is 233.1079 amu . (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2}$: $\% \mathrm{C}$, 82.020; \%H, 6.022; \%N, 11.956; Found: \%C, 82.019; \%H, 6.021; $\%$ N, 11.954).

3b ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{\mathbf{3}} / \mathbf{T M S}$): $\delta 2.35-2.45$ (two singlets, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$), 7.1-7.8 (complex, 9 H , four p-methylphenyl protons, four aryl protons and one vinylic protons), $12.6(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta$ 20.27 (Phenyl CH_{3}), 15.30 (allylic CH_{3}), 111.01, 118.73, 121.08, 121.37, 122.48, 126.76, 129.16, 129.31, 130.25, 133.68, 134.96, 136.98, 143.60, 154.17 (six p-methylphenyl carbons, six aryl carbons, one quaternary imidazole carbon and two vinylic cabons); MS: $\boldsymbol{m} / \boldsymbol{z}(\mathbf{\%} \mathbf{I}): 249(2, M+1), 248$ ($19, \mathrm{M}^{+}$), 247 ($100, \mathrm{M}-1$), 246 (3), 245 (1), 234 (2), 233 (3), 232 (2), 128 (0.7), 116 (07); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2}^{+}(\mathrm{M}-1)=247.1235 \mathrm{amu}$; found $=247.1236 \mathrm{amu}$. (Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2}$: $\% \mathrm{C}, 82.222 ; \% \mathrm{H}$, 6.494; $\% \mathrm{~N}, 11.280$; Found: $\% \mathrm{C}, 82.221 ; \% \mathrm{H}, 4.493 ; \% \mathrm{~N}, 11.278$).

3c ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} / \mathbf{T M S}\right): \delta 2.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 7.16-7.62 (complex $\mathrm{m}, 9 \mathrm{H}$, four o-chlorophenyl protons, four aryl protons and one vinylic proton); MS: $\boldsymbol{m} / \boldsymbol{z}(\mathbf{\%} \mathbf{I}): 268$ and $270\left(2.23\right.$ and $3, \mathrm{M}^{+}$corresponding to ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$), 267 and 269 (18.6 and 4.47, M-1), 234 (14.18), 233 (100, $\mathrm{M}-\mathrm{C} 1), 232$ (10.45), 116 (6.95), 115 (14.92), 66 (10.44), 65 (9.7), 64 (14.92) etc. (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}: \% \mathrm{C}, 71.508 ; \% \mathrm{H}, 4.875 ; \% \mathrm{~N}, 10.423$; Found: \%C, 71.506; \%H, 4.873; \%N, 10.421).

3d ${ }^{1} \mathbf{H}-$ NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $7.1-7.8$ (complex m, 9 H , four p-chlorophenyl protons, four aryl protons and one vinylic proton), 12.7 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$) ${ }^{13} \mathbf{C}$ C-NMR ($\left.\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 15.25\left(\mathrm{CH}_{3}\right), 111.11,118.85$, $121.51,122.67,128.37,128.57,128.93,131.05,132.03,134.94,135.37$, 143.56, 153.75 (six p-chlorophenyl carbons, six aryl carbons, one imidazole quaternary carbon and two vinylic carbons); MS: $\boldsymbol{m} / \boldsymbol{z}(\mathbf{\%} \mathbf{I}): 268$ and 270 (insignificant intensity, twin peaks, M^{+}corresponding to ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$), 267 and 269 ($\mathrm{M}-1$ corresponding to ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$). (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{Cl}: \% \mathrm{C}, 71.508 ; \% \mathrm{H}, 4.875 ; \% \mathrm{~N}, 10.423$; Found: \%C, 71.506; $\% \mathrm{H}, 4.873$; $\% \mathrm{~N}, 10.421$).

3e ${ }^{1} \mathbf{H}-\mathrm{NMR}$ ($\mathrm{CDCl}_{3} / \mathbf{T M S}$): $\delta 2.51$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $7.27-8.22$ (complex $\mathrm{m}, 8 \mathrm{H}$, four m-nitrophenyl protons and four aryl protons), 8.3 ($\mathrm{s}, 1 \mathrm{H}$, vinylic proton); MS: $\boldsymbol{m} / \boldsymbol{z}(\% \mathbf{I}): 279\left(23.9\right.$, M $\left.^{+}\right), 278(100, \mathrm{M}-1), 248(26.86), 233$ (17.9), 232 (67.1), 231 (35.8), 218 (17.9), 140 (7.46), 115 (20.9), 103 (10.44), 102 (9.7), 78 (24.6), 76 (12.7), 66 (32), 65 (19.4), 64 (32) etc. (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{2}$: $\% \mathrm{C}, 68.800 ; \% \mathrm{H}, 4.691 ; \% \mathrm{~N}, 15.045$; Found: $\% \mathrm{C}, 68.800$; $\% \mathrm{H}, 4.690 ; \% \mathrm{~N}, 15.044$).

3f ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $7.1-8.4$ (complex m, 9 H , four p-nitrophenyl protons, four aryl protons and one vinylic proton); ${ }^{13} \mathbf{C}$-NMR ($\left.\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 15.5$ (3), 122.35, 123.642, 128.134, 130.282,
131.292, 143.335, 145.955, 153.229 (six p-nitrophenyl carbons, six aryl carbons, two vinylic carbons and one imidazole quaternary carbon); MS: $\boldsymbol{m} / \boldsymbol{z}(\% \mathbf{I}): 279\left(32.8, \mathrm{M}^{+}\right), 278$ (100, M-1), 249 (10.4), 248 (41.8), 233 (35.8), 232 (91), 231 (40.3), 218 (16.4), 190 (23.9), 145 (7.46), 131 (10.44), 116 (46.2), 115 (58.2), 77 (41.8), 65 (25.4), 64 (14.9), 63 (34.32) etc. (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: $\% \mathrm{C}, 68.800 ; \% \mathrm{H}, 4.691 ; \% \mathrm{~N}, 15.045$; Found: $\% \mathrm{C}, 68.800$; $\% \mathrm{H}, 4.690 ; \% \mathrm{~N}, 15.044)$.
$\mathbf{4}^{\mathbf{1}} \mathbf{H - N M R}$ (DMSO-d ${ }_{\mathbf{6}}$): $\delta 7.11-7.50$ (complex m, 14H, ten phenyl protons and four aryl protons), 8.12 (sharp s, 1 H , vinylic proton); MS: $\boldsymbol{m} / \boldsymbol{z}$ (\%I): $296\left(100, \mathbf{M}^{+}\right), 219$ (41.2), 218 (18), 181 (10), 178 (11.1), 176 (8.9), 169 (10), 148 (14.7), 147 (14.9), 146 (15), 131 (25), 119 (25), 92 (5.9), 77 (19.1), 69 (90), 65 (14.9), 64 (10), 63 (14), 51 (34), 44 (54.4). (Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2}$: $\% \mathrm{C}, 85.106$; $\% \mathrm{H}, 5.441$; $\% \mathrm{~N}, 9.452$; Found: $\% \mathrm{C}, 85.105$; $\% \mathrm{H}, 5.440 ; \% \mathrm{~N}, 9.450)$.
$5{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{C D C l}_{3} / \mathbf{T M S}\right): \delta 2.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.82(\mathrm{~s}, 1 \mathrm{H}$, vinylic proton), 7.26-7.72 (complex $\mathrm{m}, 9 \mathrm{H}$, five phenyl and four aryl protons), 12.4 (broad s, $1 \mathrm{H},-\mathrm{NH}$); ${ }^{13} \mathbf{C}$-NMR ($\left.\mathbf{C D C l}_{3} / \mathbf{T M S}\right): ~ \delta 17.93\left(\mathrm{CH}_{3}\right)$, $115.124,121.996,125.86,128.146,128.633,142.532,144.088,150.998$ (six phenyl carbons, six aryl carbons, two vinylic carbons and one imidazole quaternary carbon); MS: $\boldsymbol{m} / \boldsymbol{z}(\mathbf{\% I}): 236(4.2, \mathbf{M}+2), 235(22.8, \mathbf{M}+1)$, $234\left(46, \mathrm{M}^{+}\right), 233$ (100, M - 1), 231 (4.6), 219 (8.85), 218 (7), 156 (4), 131 (3.5), 128 (3.5), 117 (3.5), 116 (8.85), 115 (10.6), 109 (4), 105 (4.4), 104 (5.3), 103 (8), 102 (4.4), 92 (4.4), 91 (6.2), 90 (3.5). (Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2}$: $\% \mathrm{C}, 82.0220$; \%H, 6.022; \%N, 11.956; Found: $\% \mathrm{C}, 82.019 ; \% \mathrm{H}, 6.020$; $\% \mathrm{~N}, 11.952$).
$6{ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{C D C l}_{3} / \mathbf{T M S}$): $\delta 7.1-7.7$ (complex m , ten phenyl protons, four aryl protons and vinylic proton); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{C D C l}_{\mathbf{3}} / \mathbf{T M S}\right): ~ \delta 117.327$, $122.896,127.316,128.57,128.71,129.043,129.662,129.76,139.00,140.5$, 146.4 and 150.00 (twelve phenyl carbons, six aryl carbons, two vinylic carbons and one imidazole quaternary carbon); MS: m/z (\%I): 298 (3.7, $\mathrm{M}+2$), 297 (17.7, $\mathrm{M}+1$), 296 (29.7, M^{+}), 295 (100, M - 1), 293 (7.1), 219 (9.7), 218 (4.9), 147 (10.6), 105 (2.6), 91 (3.1), (Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{2}$: \%C, 85.106; \%H, 5.441; \%N, 9.452; Found: \%C, 85.105; \%H, 5.440; \%N, 9.450).

ACKNOWLEDGMENT

The authors are grateful to UGC, New Delhi, India and NSERC, Ottawa, Canada for financial support. They are also thankful to Dr. K. Syamasunder, Professor and Head, Department of Chemistry, J. N. T.

University, Hyderabad for providing laboratory facilities and constant encouragement.

REFERENCES

1. Ramaiah, K.; Dubey, P.K.; Rao, D.E.; Ramanathan, J.; Ramesh Kumar; Grossert, J.S.; Hooper, D.L. Indian J. Chem. Sect-B (Communicated).
2. Phillips, M.A. J. Chem. Soc. 1928, 2395.
3. Hein, D.W.; Alheim, R.J.; Leavitt, J.J. J. Amer. Chem. Soc. 1957, 79, 427.
4. Kanaoka, Y.; Yonemitsu, O.; Tanizawa, K.; Ban, Y. Chem. Pharm. Bull (Tokyo) 1964, 12(7), 773; Chem. Abstr. 1964, 61, 9487.
5. Govindachari, T.R.; Nagarajan, K. Indian J. Chem. 1964, 2, 169.
6. Furniss, B.S.; Hannford, A.J.; Rogers, V.; Smith, P.W.G.; Tatchell, A.R. Vogel's Text Book of Practical Organic Chemistry, Fourth Edition, ELBS/Longman, Essex, England, 1978, 802.
7. Gensler, W.J.; Berman, E. J. Amer. Chem. Soc. 1958, 80, 4949.
8. Lindenbaum, S. Ber. 1917, 50, Part-2, 1270.
9. Furniss, B.S.; Hannford, A.J.; Rogers, V.; Smith, P.W.G.; Tatchell, A.R. Vogel's Text Book of Practical Organic Chemistry, Fourth Edition, ELBS/Longman, Essex, England, 1978, 801.
10. a) Kurihara, T.; Chiba, K.; Kameyama, T. Ann. Rept. Tohoku Coll. Pharm. 1955, No-2, 42; Chem. Abstr. 1956, 50, 10689a. (b) Kurihara, T.; Chiba, K.; Kameyama, T. Ann. Rept. Tohoku Coll. Pharm. 1955, No-2, 42; Chem. Abstr. 1956, 50, 10688 g.
11. Weidenhagen, R. Ber. 1936, 69, 2263.
12. Pushkina, L.N.; Mazalov, S.A.; Postovskii, I. Ya. Zh Obshch Khim 1962, 32, 2617; Chem. Abstr. 1963, 58, 9049h.
13. Soc pour I'ind. Chim. à Bâle. French Patent No. 818, 919, Oct. 6, 1937; Chem. Abstr. 1938, 32, 2251.

Received in the UK November 9, 1999

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request
Permission/Reprints Here" link below and follow the instructions. Visit the U.S. Copyright Office for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on Fair Use in the Classroom.

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our Website User Agreement for more details.

Order now!

Reprints of this article can also be ordered at http://www.dekker.com/servlet/product/DOI/101081SCC100106202

[^0]: *Corresponding author.

