PRACTICAL AND STEREOCONTROLLED SYNTHESES OF BOTH (1R*, 3S*)- AND (1R*,3R*)-3-(2-CHLORO-3,3,3-TRIFLUORO-1-PROPENYL)-2,2-DIMETHYLCYCLOPROPANECARBOXYLATES

Makoto Fujita, Tamejiro Hiyama,* and Kiyosi Kondo
Sagami Chemical Research Center
4-4-1 Nishiohnuma, Sagamihara, Kanagawa 229, Japan

The title compounds of ($1 R^{*}, 3 S^{*}$) configuration were prepared from 3-formy1-2,2-dimethylcyclopropanecarboxylate by addition of $\mathrm{CF}_{3} \mathrm{CCl}_{2} \mathrm{ZnCl}$, acetylation, and reductive B -elimination with zinc, whereas the ($1 R^{*}, 3 R^{*}$) isomer was derived from $\mathrm{Me}_{2} \mathrm{C}=\mathrm{CHCH}(\mathrm{OH}) \mathrm{CCl} \mathrm{CF}_{3}$ by diazoacetylation, $C u(I I)$ catalyzed intramolecular cyclization, and the zinc reduction.

In the last decade, a great deal of effort has been made in search for new synthetic pyrethroids of high activity, and many derivatives, e.g. permethrin (1a), ${ }^{1}$ cypermethrin (1b), ${ }^{2}$ and deltamethrin (1c), ${ }^{3}$ have been developed and used currently. New fluorinated analogs 2^{4} having $C H=C(C l) C_{3}$ group in place of $\mathrm{CH}=\mathrm{CCl}_{2}$ moiety are found recently to exhibit more potent activity: ${ }^{4}$ typical examples are cyhalothrin ${ }^{5}$ and bifenthrin. Although several synthetic methods for 2 are reported, ${ }^{4}$ the stereochemical aspects seem to remain unsolved yet. Highly efficient aldehyde-addition of $\mathrm{CF}_{3} \mathrm{CCl}_{2} \mathrm{znCl}$ reagent ${ }^{6}$ allowed us to establish a practical and stereocontrolled synthesis of both (1R*,3S*)- and (1R*,3R*)-2.

$\mathrm{a}: \mathrm{X}=\mathrm{Cl}, \mathrm{R}=\mathrm{H}$ (permethrin)
b: $X=C l, R=C N$ (cypermethrin)
$\mathrm{c}: \mathrm{X}=\mathrm{Br}, \mathrm{R}=\mathrm{CN}$ (deltamethrin)

2

Our strategy is based on the transformation of formyl group to $\mathrm{CH}=\mathrm{C}(\mathrm{Cl}) \mathrm{CF}_{3}$ group by (1) addition of $\mathrm{CF}_{3} \mathrm{CCl}_{2} \mathrm{ZnCl}$ reagent, (2) activation of the resulting hydroxyl group of the adduct, and (3) reductive $\beta-e l i m i n a t i o n$.

The first step is assured by the results reported in the preceding paper. The second and the last steps were studied using benzaldehyde as the model. The benzaldehyde $-\mathrm{CCl}_{2} \mathrm{CF}_{3}$ adduct 3 was converted into the acetate 4 ($\mathrm{Ac} 2_{2} \mathrm{O}$-pyridine, r.t., overnight), which was then treated with zinc powder (1.2 mol) in dimethylformamide (DMF) ($50{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$). The desired 2-chloro-3,3,3-trifluoro-1phenylpropene 5^{7} was produced in 84% overall yield. The mesylate of 3 also underwent the reductive elimination to give 5 in 65% yield. The acetate 4 was directly obtained in 79 y yield, when benzaldehyde and $\mathrm{CF}_{3} \mathrm{CCl}_{3}$ (1.2 mol) were treated with zinc powder (1.2 mol) in the presence of acetic anhydride (1.2 mol) in DMF ($0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ - r.t., 3 h).

These findings were successfully applied to 3-formyl-2,2-dimethylcyclopropanecarboxylates $6 .{ }^{8}$ The addition of $\mathrm{CF}_{3} \mathrm{CCl}_{2} \mathrm{ZnCl}^{6}$ to 6 proceeded in good yields. The adducts 7^{9} were transformed to (1R*, 3S*)-2 [(Z) : (E) = $86: 14$ to 93 : 7] ${ }^{10}$ by the acetylation and reductive elimination with zinc. Results are summarized in Table 1.

Table 1. Transformation of 6 to ($1 \mathrm{R}^{*}, 35^{*}$) -2

R	step a (\%)	step b (\%)	step c (\%)
Et-	58	93	86
$3-\mathrm{PhO}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}-$	74	98	74
$2-\mathrm{Me}-3-\mathrm{PhC}_{6} \mathrm{H}_{3} \mathrm{CH}_{2}-$	86	100	95
$\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{CH}_{2}-$	71	-	-

It should be noted that only (1R*, $3 R^{*}$) isomers of 7^{11} were isolated, though (1R*,3R*)/(1R*,3S*) mixtures (4 to 6 : 1) of 6 were employed. The $\mathrm{CF}_{3} \mathrm{CCl}_{2}$ adducts of the (1R*, $\left.3 \mathrm{~S} *\right)$ isomers of 6 apparently underwent lactonization under the reaction conditions to give rise to a bicyclic lactone 12 (< 10 \% yield). Actually, pure ($\left.1 R^{*}, 3 R^{*}\right)-6(R=M e)$ did not give any trace of 12. Since (1R*,3R*)-6 are easily prepared from the (1R*,3R*)/(1R*, 3S*) mixtures by base catalyzed epimerization, 12 this route is applicable to the synthesis of (1R*,3S*)-2.

The other (1R*, 3R*) isomer of $2(R=H)$ was synthesized stereospecifically according to the following scheme. ${ }^{13}$ The alcohol $9^{6,14}$ was treated with diketene in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ catalyst at $80^{\circ} \mathrm{C}$ to give the acetylacetate 10 (88 \% yield), which was converted into the diazoacetate 11 by treatment with a slight excess of tosyl azide and triethylamine (r.t., 1.5 h) followed by alkaline hydrolysis with 1.2 M aqueous solution of sodium hydroxide (3 mol, r.t., 1 h) (82 \% yield from 10). The dioxane solution of 11 was added over 2.5 h to the refluxing dioxane solution of $\mathrm{Cu}(\mathrm{acac})_{2}$ ($3 \mathrm{~mol} \%$), and the reflux was continued for 1.5 h to give rise to the lactone 12 in 75 \% yield. Final reductive elimination was effected with zinc powder in DMF solution at $60{ }^{\circ} \mathrm{C}$ for 3 h to afford ($1 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$)-2 ($\mathrm{R}=\mathrm{H}$) without epimerization in 84% yield.

a: diketene, $\mathrm{K}_{2} \mathrm{CO}_{3} ; \mathrm{b}: \mathrm{TsN}_{3}, \mathrm{NEt}_{3} ; c: \mathrm{NaOH} ; \mathrm{d}: \mathrm{Cu}(\mathrm{acac})_{2} ; \mathrm{e}: \mathrm{Zn}$, DMF

The method disclosed herein provides an easy way to both ($1 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$) - and (1R*, 3S*)-2 under high stereocontrol. In particular, practicability of our process should be emphasized: most of reagents are commercially available, and the reaction conditions of each step are mild.

Acknowledment. We thank FMC Corporation for a geneous gift of (2-methyl-3phenylphenyl)methanol.

References and Notes

1. M. E1liott, A. Farnham, N. Janes, R. Needham, D. Pulman, and J. Stevenson, Nature (London), 246, 169 (1973).
2. M. Elliott, A. Farnham, N. Janes, P. Needham, and D. Pulman, Pestic. Sci., 6, 537 (1975).
3. M. Elliott, A. Farnham, N. Janes, R. Needham, and D. Pulman, Nalure (London), 248, 710 (1974).
4. (a) D. Holland and D. A. Laidler, J. Mo1. Cat., 11, 119 (1981). (b) Japan Kokai Tokkyo Koho 53-95945; 54-112820; 54-130537; 55-59142; 55-89248; 55-111488; 59-92830.
5. P. D. Bentley, R. Cheetham, R. K. Huff, R. Pascoe, and J. D. Sayle, Pestic. Sic., 11, 156 (1980).
6. M. Fujita, T. Morita, and T. Hiyama, the preceding paper.
7. The ratio $(Z):(E)=79: 21\left({ }^{19} \mathrm{~F}-\mathrm{NMR}\right.$ analysis). The stereochemistry was assigned by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ by $\mathrm{J}_{\mathrm{H}-\mathrm{CF}_{3}}$ value ($\mathrm{J}_{\text {trans }}>\mathrm{J}_{\text {cis }}$).
8. The aldehyde esters 6 were easily prepared by ozonolysis of the corresponding chrysanthemates (81-89 \% yield).
9. The mesylate of 7 was also converted into 10 in 95% yield.
10. The (Z) : (E) ratios did not depend on the stereochemistry of the side chain of 8 significantly.
11. Two stereoisomers of ($1 \mathrm{R}^{*}, 3 \mathrm{R}^{*}$) -7 were formed in a ratio of ca. $1: 1$.
12. S. Julia, M. Julia, and G. Linstrumelle, Bul1. Soc. Chim. Fr., 1964, 2693.
13. Transformation of 4-trich1oromethy1-6,6-dimethy1-3-oxa-bicyc1o[3.1.0]hexan-2-one to (1R*, 3R*)-2-(2,2-dich1oroethenyl)-3,3-dimethylcyclopropanecarboxylic acid is carried out with zinc in acetic acid: K. Kondo, T. Takashima, A. Negishi, K. Matsui, T. Fujimoto, K. Sugimoto, C. E. Hatch III, and J. S. Baum, Pestic Sci., 11, 180 (1980); C. E. Hatch III, J. S. Baum, T. Takashima, and K. Kondo, J. Org. Chem., 45, 3281 (1980). However, under the same conditions, 12 was not converted into 2.
14. The zinc mediated reductive elimination was applied to the acetate i derived from 9 , and we obtained a diene ii in 82% yield $[(Z):(E)=85: 15]$. The diene ii is successfully transformed to 2 by the reaction with ethyl diazoacetate. ${ }^{4 a}$

(Received in Japan 8 February 1986)
