J. CHEM. SOC., CHEM. COMMUN., 1991

Fluorinated γ-Alumina. Catalytic Fluorination of 1,1,1-Trichloroethane at Ambient Temperature

James Thomson, Geoffrey Webb* and John M. Winfield*

Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

 γ -Alumina, fluorinated with sulphur tetrafluoride followed by treatment with 1,1,1-trichloroethane, behaves as a catalyst for the room temperature fluorination of CH₃CCl₃ with anhydrous HF, giving a mixture of chlorofluorohydrocarbons.

The promotion of Lewis acidity on a γ -alumina surface by chlorination with carbon tetrachloride or carbonyl chloride is well established.^{1,2} Carbonyl fluoride does not behave in an analogous fashion but promotes Brønsted acidity. A search for fluorinating agents capable of generating strong Lewis acid

sites has led to the discovery of a novel, heterogeneous catalytic reaction in which 1,1,1-trichloroethane is converted to a mixture of chlorofluorohydrocarbons at room temperature.

γ-Alumina chlorinated with CCl₄ or Cl₂CO has no ability to

Table 1 Composition of the organic products (mole %)^b from the catalytic fluorination of CH3CCl3a

Run	CH ₃ CCl ₃	CH ₂ =CCl ₂	CH ₃ CCl ₂ F	CH ₃ CClF ₂	CH ₃ CF ₃
1	76.9	4.5	7.2	7.6	3.6
2	68.7	5.3	24.3	1.4	0.35
3	76.5	0.5	22.5	0.75	trace
4	85.0	0.3	12.7	1.1	1.0
5	95.0	trace	4.0	0.75	0.75

^a Reaction conditions: 2 h at room temperature, Monel metal vessel, mole ratio CH₃CCl₃ to HF = 3:1 Catalyst prepared from calcined (523 K) γ -alumina treated with SF₄ (F content = 3.7 mg atom g⁻¹ then CH₃CCl₃ as described in the text. ^b Determined by ¹H NMR analysis of the liquid mixture.

isomerize but-1-ene at room temperature but isomerisation occurs when but-1-ene is exposed to y-alumina which has been fluorinated with OCF₂ or chlorinated with anhydrous hydrogen chloride. The former surface is more selective for the isomerisation of but-1-ene to but-2-ene, a reaction which is known to be dependent on Brønsted acidity.3

Hydrolysis of F_2CO on the surface of calcined γ -alumina is rapid at room temperature and the increased Brønsted acidity of the surface appears to be due to the hydrolysis product HF. Promotion of Brønsted acidity by other fluorides, for example BF₃ or NH₄F,⁴ has been noted previously. The reaction between Cl₂CO and calcined y-alumina is minimal at room temperature. At 500 K surface chlorination produces both Brønsted and Lewis sites. The former are derived from the hydrolysis product HCl and we have suggested that the latter result from a direct reaction between Cl₂CO and in-plane bridging oxygens.²

Surface Lewis acidity has been probed by the dehydrochlorination behaviour of 1,1,1-trichloroethane. The behaviour of CCl₄- or Cl₂CO-chlorinated γ-alumina towards 1,1,1trichloroethane at room temperature is analogous to that observed previously using the strong Lewis acid, solid anhydrous aluminium(III) chloride.⁵ Dehydrochlorination of CH₃CCl₃ occurs rapidly at room temperature to give 1,1dichloroethene and HCl. 1,1-Dichloroethene undergoes further reaction on the surface to give a purple, oligomeric, organic layer. Neither calcined y-alumina nor y-alumina halogenated with HCl, OCF₂ (at either 298 or 500 K) or anhydrous HF has any dehydrochlorinating ability towards CH₃CCl₃ at room temperature.

Hydrolysis of sulphur tetrafluoride on calcined y-alumina, giving F_2SO and SO_2 , is rapid at room temperature, and is very exothermic. Treatment of calcined (523 K) y-alumina

J. CHEM. SOC., CHEM. COMMUN., 1991

(0.5 g) with three successive aliquots of SF₄ (1 mmol) under static conditions at room temperature for 2 h, followed by CH₃CCl₃ (3 mmol) at room temperature for 1 h results in the formation of CH2=CCl2, laydown of purple oligomeric material on the surface, and a mixture of chlorofluorohydroethanes, CH₃CCl₂F, CH₃CClF₂ and CH₃CF₃. This surface is a catalyst for the room-temperature fluorination of CH₃CCl₃ by anhydrous HF which gives a mixture of $CH_3CCl_{3-n}F_n$, n = 0-3, and some CH2=CCl2, Table 1. Fluorination of CH3CCl3 does not occur in the absence of a catalyst and the F-for-Cl halogen exchange reactions occur under conditions that are far milder than those usually required, for example for the vapour-phase catalytic fluorination of $C_2Cl_{6-n}F_n$, n = 3 or 4, on fluorinated chromia.6

The dehydrochlorination of CH₃CCl₃ at SF₄-fluorinated γ -alumina indicates that strong Lewis acid sites, analogous to those formed using CCl₄ or Cl₂CO,² are present. An additional treatment of calcined γ -alumina with SF₄, then CH₃CCl₃, as described above, results in further fluorination since F₂SO and SO₂ are both observed. Dehydrochlorination of CH₃CCl₃ occurs on this surface but no fluorinated organic products are formed. Evidently fluorination with SF4 after the initial laydown of the purple oligomer does not produce the HF necessary for the halogen exchange reaction and HF must be supplied directly mixed with CH₃CCl₃. Too much HF must be avoided, for example a mole ratio of HF to CH₃CCl₃ of 1:1 with the other reaction conditions specified in Table 1 results in a far lower conversion. This is related to the observation that the dehydrochlorination behaviour of y-alumina which has been fluorinated by SF₄ or chlorinated by CCl₄ or Cl₂CO is blocked by the HF treatment. However, treatment with HCl has no effect.

We thank the SERC and ICI Chemicals and Polymers Ltd. for support of this work.

Received, 26th November 1990; Com. 0/05312K

References

- 1 A. G. Goble and P. A. Lawrance, Proc. Int. Congr. Catal., 3rd edn., Amsterdam, 1964, p. 320.
- 2 J. Thomson, G. Webb and J. M. Winfield, J. Mol. Catal., in the press
- 3 J. P. Damon, B. Delinon and J. M. Monnier, J. Chem. Soc., Faraday Trans. 1, 1977, 73, 372.
- 4 J. N. Miale and C. D. Chang, US Pat. 4, 427, 791, 1984.
- 5 D. G. McBeth, J. M. Winfield, B. W. Cook and N. Winterton, J. Chem. Soc., Dalton Trans., 1990, 671.
- 6 E.g. L. Rowley, G. Webb, J. M. Winfield and A. McCulloch, Appl. Catal., 1989, 52, 69.