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Abstract—Four 4-methyl-3 0,4 0-di-O-(�)-camphanoyl-(+)-cis-khellactone (4-methyl DCK) analogs (7a–d) with different alkyl sub-
stituents at the 2 0-position were synthesized and evaluated for inhibition of HIV-1 replication in H9 lymphocytes. 2 0-Methyl-2 0-
ethyl-4-methyl DCK (7b) was more potent (EC50 = 0.22lM, TI > 175) than the other three compounds (7a, 7c, and 7d), but signif-
icantly less potent than 4-methyl DCK (2, EC50 = 0.0059lM, TI > 6600). The bioassay results indicated that the 2 0-substituents had
a strong effect on the anti-HIV activity, and gem-dimethyl substitution at the 2 0-position was greatly preferable to larger alkyl sub-
stituents or hydrogen atoms.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

30,40-Di-O-(�)-camphanoyl-(+)-cis-khellactone (DCK, 1)
was discovered as a potent anti-HIV agent with an
EC50 value of 2.56 · 10�4lM and a therapeutic index
(TI) of 1.37 · 105 in H9 lymphocytic cells in our previ-
ous research.2 Further research studies indicated that
3-methyl DCK, 4-methyl DCK, and 5-methyl DCK
were much more potent than DCK and AZT in the same
assay with EC50 and TI values ranging from 5.25 · 10�5
to 2.39 · 10�7lM and 2.15 · 106 to 3.97 · 108, respec-
tively.3,4 A preliminary mechanistic study showed that
the DCK analog 3-hydroxymethyl-4-methyl DCK
inhibits HIV reverse transcriptase (RT), but has a novel
mechanism of action compared to current anti-HIV/
AIDS drugs. More recent studies indicated that DCK
analogs act at a point in the virus life cycle immediately
following the target for AZT and nevirapine, which are
RT inhibitors.5 Additional mechanism of action studies
are ongoing; therefore, further structure modification
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will be helpful in exploring interactions with the viral
target and the mechanism of DCK analogs.

In recent structure modifications,6,7 two new series of 4-
methyl DCK (2) analogs were synthesized based on the
concept of bioisosterism, namely, by replacing the ring
oxygen atom of DCK with a sulfur atom. The bioassay
results suggested that the 2 0-substituents might have a
significant effect on the anti-HIV activity. This finding
prompted us to synthesize additional DCK analogs with
different substituents at the 2 0-position and examine the
relationship with anti-HIV activity (Fig. 1).
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Figure 1. Structures of 1 and 2.
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Scheme 2. Reagents and conditions: (i) t-BuOK, acetylene gas, THF,

0 �C, >99%; (ii) PBr3 or SOCl2, rt, 40–50%.

Table 1. Anti-HIV activity of DCK analogs in acutely infected H9

lymphocytes*

Compound IC50 (lM)
a EC50 (lM)

b TIc

7a >41.1 6.9 >6.0

7b >38.4 0.22 >175

7c >37.6 6.4 >5.9

7d >37.6 2.84 >13.2

DCK (1)d >16.1 0.049 >328

4-Me DCK (2)d >38.9 0.0059 >6600

AZT 1872 0.048 39,000

* This assay was performed by Panacos, Inc. The general procedure
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2. Chemistry

The propargyl ethers 4a–d were synthesized via the
reaction of 4-methyl-7-hydroxycoumarin with 3-bromo-
prop-1-yne, 3-chloro-3-methylpent-1-yne, 3-chloro-3-
ethylpent-1-yne, or 3-chloro-3-methylhex-1-yne, respec-
tively, in the presence of K2CO3 and KI by refluxing
in acetone or heating in DMF at 80–90 �C (Scheme 1).
The propargyl bromides were obtained from the halo-
genation of corresponding propargyl alcohols, which
were prepared by ethynylation of different carbonyl
compounds (Scheme 2). Thermo ring closure of 4a–d
by refluxing in N,N-dimethylaniline or heating in
DMF at 80–90 �C afforded 5a–d. Compounds 5b and
5c are racemic mixtures.

Asymmetric dihydroxylation8 of 5a–d followed by acyl-
ation with (S)-camphanic chloride gave the desired 4-
methyl DCK analogs with different alkyl substituents
at the 2 0-position (7a–d) (Scheme 1).9
was described previously.
a Concentration that inhibits uninfected H9 cell growth by 50%.
b Concentration that inhibits viral replication by 50%.
c TI = therapeutic index IC50/EC50.
d EC50 and TI for DCK and 4-methyl DCK were 2.56 · 10�4lM,
1.83 · 10�6lM, and 1.37 · 105, 6.89 · 107, respectively, in previous
screenings and publication.2
3. Results and discussion

Table 1 shows the inhibitory activities against HIV-1
replication of compounds 7a–d together with DCK, 4-
methyl DCK, and AZT as reference compounds. 4-
Methyl DCK (2), which has gem-dimethyl substitution
at the 2 0-position, was the most potent compound with
an EC50 value of 0.0059lM and a therapeutic index
(TI) of >6600 in H9 lymphocytic cells. Replacing just
one 2 0-methyl group with an ethyl group resulted in a
dramatic decrease of anti-HIV activity. 2 0-Methyl-2 0-
ethyl-4-methyl DCK (7b) was ca. 102-fold less active
than 4-methyl DCK (2). When the 2 0-substituents be-
came bulkier, the activity decreased further. 2 0-Methyl-
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Scheme 1. Reagents and conditions: (i) 3-bromoprop-1-yne (R = R 0 = H

methylhex-1-yne (R = CH3, R
0 = C3H7), and 3-chloro-3-ethylpent-1-yne (R =

80–90�C, 32–95%; (ii) diethylaniline, reflux, or DMF 80–90�C, 11–85%; (iii)
camphanic chloride, DMAP/CH2Cl2, 80–88%.
2 0-propyl-4-methyl DCK (7c) and 2 0,2 0-diethyl-4-methyl
DCK (7d) were ca. 30- and 10-fold less potent, respec-
tively, than 7b. The 2 0-unsubstituted compound, 2 0,2 0-di-
hydro-4-methyl DCK (7a), showed weak potency,
similar to 7c.

Based on these findings, we speculate that the space
around the 2 0-position is very tight when a DCK analog
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), 3-chloro-3-methylpent-1-yne (R = CH3, R
0 = C2H5), 3-chloro-3-

R 0 = C2H5), respectively, K2CO3, KI in acetone reflux or in DMF at

K2OsO2(OH)4, K3Fe(CN)6, (DHQ)2-PHAL, K2CO3, 75–98%; (iv) (S)-
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binds with its target enzyme. Thus, there is a space
requirement at this position for optimal anti-HIV activ-
ity. To date, two methyl groups at the 2 0-position are
preferred to other alkyl substituents for enhanced anti-
HIV activity in the DCK series. Synthesis of analogs
with other 2 0-functional groups and mechanism studies
of this compound series are under investigation.
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