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The synthesis of enantiopure a-arylalkanoic acids is an
objective of significant interest, due in part to the bioactivity
and commercial importance of this family of compounds.[1]

One approach that has been pursued in industry is the
asymmetric addition of alcohols to aryl alkyl ketenes to
generate chiral esters (which can then be hydrolyzed to a-

arylalkanoic acids).[2–5] Herein, we report a new method for
the enantioselective synthesis of esters: the catalytic asym-
metric coupling of a ketene with an aldehyde [Eq. (1)].

In the presence of planar-chiral dimethylaminopyridine
(DMAP) derivative 1,[6] we observed no reaction between
phenyl ethyl ketene and n-decanal (Table 1, entry 1). In

contrast, phenylacetaldehyde coupled with the ketene to
furnish an enol ester in modest yield and with very good
enantioselectivity (entry 2). Diphenylacetaldehyde was an
excellent reaction partner (entry 3: 91% ee, 84% yield),
whereas a related ketone was not (entry 4).[7,8]

As illustrated in Table 2, we achieved the catalytic
asymmetric synthesis of a wide array of enol esters of a-
arylalkanoic acids through couplings of ketenes with diphe-
nylacetaldehyde.[9–11] Thus, reactions of phenyl alkyl ketenes,
in which the alkyl group ranges in size from methyl to tert-
butyl, proceeded with moderate to excellent enantioselectiv-
ity (Table 2, entries 1–6). Furthermore, the addition occurred
with very good stereoselectivity regardless of whether the
aromatic group of the ketene was bulky (Table 2, entries 7
and 8), electron-rich (entries 8 and 9), or electron-poor
(entry 10).

Enol esters are attractive targets in synthetic organic
chemistry, in part as a result of the ease with which they can be

Table 1: Survey of carbonyl compounds: Catalytic asymmetric couplings
with ketenes.[a]

Entry Carbonyl compound ee [%] Yield [%][b]

1 – 0

2 92 55

3 91 84

4 – 0

[a] All data are the average of two experiments. [b] Isolated product.
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converted into other useful families of compounds. We have
established that our diphenyl-substituted enol esters can be
hydrolyzed and reduced under mild conditions without
racemization [Eqs. (2) and (3)].[12]

A number of mechanisms, two of which are illustrated in
Scheme 1, can be envisioned for this new catalytic asymmetric
coupling of ketenes with aldehydes to generate enol esters. In
one possible pathway (Scheme 1a), catalyst 1 serves as a
nucleophile and adds to the ketene to afford chiral enolate
A,[13] which undergoes diastereoselective protonation by the
aldehyde to furnish the ion pair B. Acylation of the enolate by
the acylpyridinium ion then produces the enantioenriched
enol ester and regenerates the catalyst.

Alternatively, the role of catalyst 1 may be to serve as a
Brønsted base/acid (Scheme 1b). According to this hypoth-
esis, the catalyst deprotonates the aldehyde to furnish an
achiral enolate C. This nucleophilic enolate then adds to the
electrophilic ketene to produce a new achiral enolate D,[14]

which undergoes enantioselective protonation by its counter-
ion (protonated 1, a chiral Brønsted acid) to thereby generate
the enol ester.[15]

To date, we have made the following observations with
respect to the reaction pathway:
* The ee value of the product correlates linearly with that of

the catalyst;[16]

* When catalyst 1 is mixed with one equivalent of diphe-
nylacetaldehyde, there is no evidence for deprotonation of
the aldehyde to form an ion pair;[17]

* In the presence of catalyst 1, the a proton of diphenyla-
cetaldehyde exchanges rapidly with D2O at 0 8C (in the
absence of 1, there is essentially no exchange after 3 days
at room temperature);

* A small primary kinetic isotope effect is observed (kH/kD
� 2 for the reaction of diphenylacetaldehyde relative to
a-d-diphenylacetaldehyde).[18]

These data can be accommodated by either of the
pathways illustrated in Scheme 1, as well as by others. A
detailed mechanistic investigation will be required in order to
gain improved insight into this interesting process.

In summary, we have developed a new method for the
synthesis of enantioenriched esters: the catalytic asymmetric
coupling of ketenes with aldehydes. We have established that
this approach provides access to a wide array of a-arylalka-
noic acid derivatives. Future studies will build upon our
preliminary mechanistic observations to elucidate the reac-
tion pathway for this intriguing transformation.
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Table 2: Catalytic asymmetric couplings of aldehydes with ketenes to
generate enol esters.[a]

Entry Ar R ee [%] Yield [%][b]

1 Ph Me 78 74
2 Ph Et 91 84
3 Ph iBu 77 81
4 Ph iPr 98 95
5 Ph cyclopentyl 97 99
6 Ph tBu 88 96
7 o-tolyl Et 98 99
8 o-anisyl Me 97 95
9 p-anisyl Et 92 89
10 4-chlorophenyl Et 88 96

[a] All data are the average of two experiments. [b] Isolated product.

Scheme 1. Two of the possible mechanisms for the coupling of ketenes
with aldehydes to form enol esters: a) nucleophilic catalysis and
b) Brønsted acid/base catalysis.
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