Asymmetric Total Synthesis of (+)-Brefeldin A from (S)-Lactate by Triple Chirality Transfer Process and Nitrile Oxide Cycloaddition ${ }^{\dagger, 1}$

Deukjoon Kim,*, \ddagger J ongkook Lee, \ddagger Phil J ong Shim, ${ }^{\ddagger}$ J oong Inn Lim, \ddagger Hyunil J o, ${ }^{\ddagger}$ and Sanghee Kim ${ }^{\S}$
Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, San 56-1, Shillim-Dong, Kwanak-Ku, Seoul 151-742, Korea, and Natural Products Research Institute, Seoul National University, 28 Yungun-Dong, J ongro-Ku, Seoul 110-460, Korea
deukjoon@plaza.snu.ac.kr

Received J uly 25, 2001
A novel synthesis of (+)-brefeldin A (1) has been accomplished on the basis of triple chirality transfer methodology, intramolecular ester enolate alkylation, and both intra- and intermolecular nitrile oxide cycloaddition strategies.

Introduction

$(+)$-Brefeldin A (1) is a 13 -membered macrol ide fungal metabolite whose structure has been established by X-ray crystall ography. ${ }^{2}$ Since the first isolation of brefeldin A from the fungus Penicillium decumbens ${ }^{3}$ in 1958, a diverse range of interesting biol ogical activities has been reported for this metabolite including antibiotic, antiviral, cytostatic, antimitotic, and antitumor effects. ${ }^{4}$ Based upon extensive studies of its mode of action, it has been found that brefeldin A causes the Golgi complex disassembly and redistribution into the endoplasmic reticulum and inhibits protein transport into post-Gol gi compartments in the cell. ${ }^{5}$ Recent significant attention toward brefeldin A stems from its ability to induce apoptosis of human cancer cells and its predinical devel opment status as an anticancer agent. ${ }^{6}$

[^0]Brefeldin A possesses five sp^{3} stereogenic centers and two trans double bonds in addition to a 13 -membered macrocyclic lactone unit. The challenging structural features of brefeldin A along with its unusually broad spectrum of biol ogical activity have prompted impressive synthetic efforts to date from a number of laboratories. ${ }^{7}$
In this context, we describe a stereoselective synthetic approach to optically pure (+)-brefeldin A (1), which is unique compared to other previous syntheses ${ }^{7}$ in that the chirality of readily available ethyl O-benzyl-(S)-Iactate (6) [C15 in the brefeldin numbering system] controls the

[^1]
Scheme 1

relative stereochemistry of the remote stereogenic centers in the molecule.

The presence of a γ-oxygenated α, β-unsaturated macrocyclic lactone unit in brefeldin A (1) suggested the use of an intramolecular nitrile oxide cycloaddition (INOC) reaction as shown in the retrosynthetic analysis in Scheme 1. The successful execution of the INOC strategy hinges upon the chemoselective cleavage of the $\mathrm{N}-\mathrm{O}$ bond of compound $\mathbf{2}$ in the presence of the double bond and ester functionality. Further analysis indicated Bar-tlett-type ${ }^{7 c}$ intermediate 4 to be an ideal synthetic precursor for the INOC substrate 3. We envisaged the cyclopentanecarboxylate 4 might be stereoselectively constructed by an intramolecular ester enolate alkylation $(\text { IEEA })^{8}$ of 5 and postulated that the acyclic precursor 5 could be prepared from simple lactate 6 by way of a triple chirality transfer process (vide infra). ${ }^{9}$

Results and Discussion

Burke's one-pot "reduction and chelation-controlled nucleophilic addition" protocol ${ }^{10}$ on ethyl O-benzyl-(S)lactate (6) yielded the desired syn-allylic al cohol 7 as the major component in a 6:1 ratio. Acylation of the resulting syn-alcohol 7 with PMB-protected glycolic acid under Steglich's DCC coupling conditions ${ }^{11}$ to yield 8, followed by application of the "chelation-controlled" modification ${ }^{12}$ of the Ireland ester enolate Claisen rearrangement, ${ }^{13}$ produced the corresponding γ, δ-unsaturated glycolate 9 after diazomethane workup in a highly stereoselective

[^2]manner (Scheme 2). We were able to perform a reduction of the superfluous double bond of 9 by a catalytic hydrogenation in the presence of n-butylamine ${ }^{14}$ to furnish 10 in 82\% yield without hydrogenolysis of either benzylic protecting group. A reiterative three-step sequence on α-alkoxy ester 10 (i.e., one-pot reduction/ chelation-controlled nucleophilic addition, followed by DCC coupling of the resulting allylic alcohol 11 with MOM-protected glycolic acid, and Ireland-Claisen rearrangement of 12) stereoselectively furnished the el aborated glycolate $\mathbf{1 3}$ in good overall yield. Removal of the PMB protecting group with wet DDQ under Yonemitsu conditions, ${ }^{15}$ followed by stereoselective J ohnson ortho ester Claisen rearrangement, ${ }^{16}$ led to the formation of diester 15 with the correct configuration at C9. Chemoselective NaBH_{4} reduction of the α-alkoxy ester and iodination of the resulting al cohol $\mathbf{1 6}$ yielded the internal alkylation substrate 5. The crucial intramolecular cyclization of ω-iodo ester 5 was successfully performed with LHMDS in THF at $0^{\circ} \mathrm{C}$ to produce cyclopentanecarboxylate $\mathbf{4}$ with excellent stereoselectivity and in high yield (92\%). ${ }^{17}$

With the desired cyclopentanecarboxylate 4 in hand, we began the second stage of our synthesis of brefeldin A by employing an INOC reaction to construct the γ-oxygenated α, β-unsaturated macrocydic lactone moiety (Scheme 3). The requisite INOC substrate 18 was prepared from the key cyclopentanecarboxylate 4 in a straightforward five-step sequence, which entails removal of the benzyl group with concurrent reduction of the ester function by treatment with lithium in ethanol/ammonia, selective tosylation at the primary hydroxyl group, Finkelstein reaction, ${ }^{18}$ conversion of the resulting primary iodide to nitro compound 17, ${ }^{19}$ and acryloylation of

[^3]
Scheme $\mathbf{2 a}^{\text {a }}$

a Key: (i) (a) DIBALH, ether, $-78^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; (b) $\mathrm{CH}_{2} \mathrm{CHMgBr},-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then rt, $2 \mathrm{~h}, 63 \%$; (ii) $\mathrm{PMBOCH} \mathrm{CO}_{2} \mathrm{H}, \mathrm{DMAP}, \mathrm{DCC}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~h}, 93 \%$; (iii) (a) LHMDS, TMSCI/Et $\mathrm{N}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathrm{rt}, 3 \mathrm{~h}, \mathrm{~b}$) $\mathrm{CH}_{2} \mathrm{~N}_{2}$, ether, rt, $30 \mathrm{~min}, 86 \%$; (iv) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, $\mathrm{n}-\mathrm{BuNH}_{2}$, EtOAc, rt, $3 \mathrm{~h}, 82 \%$; (v) (a) DIBALH, ether, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, (b) $\mathrm{CH}_{2} \mathrm{CHMgBr}^{2}-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then rt, $2 \mathrm{~h}, 63 \%$; (vi) $\mathrm{MOMOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$, DMAP, DCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3 \mathrm{~h}, \mathrm{rt}, 93 \%$; (vii) (a) LHMDS, TMSCI/Et $\mathrm{I}_{3} \mathrm{~N}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then rt, 3 h , (b) $\mathrm{CH}_{2} \mathrm{~N}_{2}$, ether, rt, $30 \mathrm{~min}, 86 \%$; (viii) DDQ, $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:18), rt, $40 \mathrm{~min}, 86 \%$; (ix) $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OEt})_{3}$, phenol, $125{ }^{\circ} \mathrm{C}, 4.5 \mathrm{~h}, 84 \%$; (x) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, \mathrm{rt}, 8 \mathrm{~h}, 97 \%$; (xi) $\mathrm{I}_{2}, \mathrm{Ph} 3 \mathrm{P}$, imidazole, ether $/ \mathrm{CH}_{3} \mathrm{CN}$ (3:1), rt, $30 \mathrm{~min}, 85 \%$; (xii) LHMDS, THF, $0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$.

Scheme 3^{a}

${ }^{\text {a }} \mathrm{Key}$: (i) $\mathrm{Li}, \mathrm{EtOH} / \mathrm{NH}_{3}$ (1:4), THF, $-78{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 95 \%$; (ii) $\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5 \mathrm{~h}, 5{ }^{\circ} \mathrm{C}, 86 \%$; (iii) Nal, 2-butanone, reflux, $1.5 \mathrm{~h}, 98 \%$; (iv) NaNO_{2}, urea, DMSO, $15 \mathrm{~h}, \mathrm{rt}, 75 \%$; (v) $\mathrm{CH}_{2} \mathrm{CHCOCl}$, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 70 \%$; (vi) p-CIC $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCO}^{2}, \mathrm{Et}_{3} \mathrm{~N}$, benzene, reflux, $20 \mathrm{~h}, 78 \%$; (vii) $\mathrm{Mo}(\mathrm{CO})_{6}, \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ (1:99), reflux, 1.5 h ; (viii) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 71 \%$ for the two steps; (ix) $\mathrm{NaBH}_{4}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 85 \%$; (x) $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$, PhSH , rt, $30 \mathrm{~min}, 95 \%$; (xi) TBDMSCI, imidazole, DMF, rt, $5 \mathrm{~h}, 95 \%$; (xii) $\mathrm{CH}_{2} \mathrm{CHCO}_{2} \mathrm{Me}$, p-CIC $6_{6} \mathrm{H}_{4} \mathrm{NCO}, \mathrm{Et}_{3} \mathrm{~N}$, benzene, reflux, 10 h , 85%; (xiii) Mo(CO) ${ }_{6}, \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1: 99)$, reflux, 1.5 h ; (xiv) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 2 \mathrm{~h}, 65 \%$ for the two steps; (xv) PPTS, EtOH, $50^{\circ} \mathrm{C}, 10 \mathrm{~h}, 97 \%$; (xvi) LiOH, THF/H2O (1:1), $5^{\circ} \mathrm{C}, 20 \mathrm{~min}, 95 \%$; (xvii) (a) 2,4,6-trichlorobenzoyl chloride, THF, rt, 3 h , (b) DMAP, toluene, reflux, $14 \mathrm{~h}, 53 \%$.
secondary al cohol 17. The nitro acrylate 18 underwent a smooth INOC reaction under the standard reaction conditions to produce a 1:1 mixture of the desired bridged isomers 2 and the unwanted fused isomer 19 (78\% total yield). ${ }^{20}$ This regiochemical outcome, to our surprise, was

[^4]contrary to Asaoka's observation ${ }^{21}$ that the bridged isomer is favored over the fused isomer in a ratio of 68:14 in the case of a simple saturated 13-membered ring cycloaddition.

F or the completion of the total synthesis, chemoselective $\mathrm{N}-\mathrm{O}$ bond cleavage of $\mathbf{2}$ with wet $\mathrm{Mo}(\mathrm{CO})_{6},{ }^{22}$ followed by dehydration of the resulting β-hydroxy ketone by the
action of methanesulfonyl chloride and triethylamine, yielded γ-oxo- α, β-unsaturated macrolide 20 in 71\% yield for the two steps. Finally, stereoselective NaBH_{4} reduction ${ }^{7 c}$ (85%) and removal of the MOM protecting group with thiophenol and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ (95\%) afforded (+)brefeldin A (1), identical in all respects with the natural product. ${ }^{23}$

To overcome the regi oselectivity problem in the INOC reaction, we turned our attention to an intermolecular version. It was necessary to protect the secondary hydroxyl group of $\mathbf{1 7}$ as a silyl ether to avoid urethane formation during nitrile oxideformation. As expected, the intermolecular nitrile oxide cycloaddition ${ }^{24}$ of the silyl ether of $1 \mathbf{7}^{25}$ with methyl acrylate proceeded in a regioselective fashion in high yield (85\%) to give the desired bridged isoxazolines $\mathbf{2 1}$ as a 1:1 mixture of stereoisomers at C2.

The intermolecular nitrile oxide cycloaddition product was transformed into γ-oxo- α, β-unsaturated macrol ide 20 as follows: chemosel ective $\mathrm{N}-\mathrm{O}$ bond cleavage with wet $\mathrm{Mo}(\mathrm{CO})_{6}$ and dehydration of the resulting β-hydroxy ketone yielded the desired γ-oxo- α, β-unsaturated ester 22 in 65\% yield. Removal of the silyl protecting group of 22 by mild acid hydrolysis, basic hydrolysis of ester function, and macrolactonization of the resulting hydroxy acid 23 under Yamaguchi's conditions ${ }^{26}$ led to the formation of macrocyclic lactone $\mathbf{2 0}$ in 49\% overall yield for the three steps.

Conclusion

In summary, a novel synthesis of (+)-brefeldin A (1) has been accomplished on the basis of triple chirality transfer methodology, intramolecular ester enolate alkylation, and both intra- and intermolecular nitrile oxide cycloaddition strategies. During this synthetic endeavor, we observed an unexpected result regarding the regioselectivity of the intramol ecular nitrile oxide cycl oaddition reaction, which is one of the main themes of the following paper. ${ }^{27}$

Experimental Section

General Methods. All chemicals were reagent grade and used as purchased. All moisture-sensitive reactions were performed under an inert atmosphere of N_{2} or Ar using distilled dry solvents. Reactions were monitored by TLC analysis using E . Merck silica gel $60 \mathrm{~F}_{254}$ thin layer plates. Flash chromatography was carried out on E. Merck silica gel 60 (230-400 mesh). Optical rotations were measured using sodium light (D line 589.3 nm).
(4S,3S)-4-Benzyloxypent-1-en-3-ol (7). To a cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of ethyl O-benzyl (S)-Iactate (6) (5.00 g, 24.00 mmol) in dry ether (2.1 L) was added dropwise DIBALH (31 $\mathrm{mL}, 1.0 \mathrm{M}$ solution in hexane). After 1.5 h , vinylmagnesium

[^5]bromide ($108 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added to the reaction mixture at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 20 min at the same temperature. The reaction mixture was warmed to room temperature, stirred for 2 h , and quenched with saturated aqueous citric acid solution. The separated organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated at reduced pressure. The resulting residue was purified by column chromatography on silica gel (acetone/ $\mathrm{CHCl}_{3}, 1: 99$) to afford syn-allylic alcohol 7 (2.91 g, 63%) and anti-allylic alcohol ($476 \mathrm{mg}, 10 \%$). syn-Allylic al cohol 7: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.38-7.26$ (m, 5H), 5.83 (ddd, $\mathrm{J}=17.1,10.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{dd}, \mathrm{J}=17.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.23 (dd, J $=10.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.68 (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.47 (d, J $=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.95 (br t, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (quintet, $\mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 138.2,136.9,128.4,127.7$, 117.3, 78.2, 76.5, 71.1, 15.4; IR (neat) $3434,1092 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}$ $=-23.3\left(\mathrm{c}=1.00, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ HRMS (EI) cal cd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right)$192.1150, found 192.1168. anti-Allylic alcohol: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 5.86$ (ddd, $\mathrm{J}=17.1$, $10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.32 (ddd, J = 17.2, 1.4, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.22 (ddd, J $=10.8,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.54(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.60(\mathrm{~m}$, 1 H), 2.25 (br s, 1H), 1.16 (d, J $=6.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (CDCI ${ }_{3}$, 50 MHz) δ 138.4, 136.5, 128.4, 127.7, 127.6, 116.5, 77.4, 74.6, $70.8,14.0$; IR (neat) $3435,1092 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=+4$ ($\mathrm{c}=0.10$, $\mathrm{CH}_{3} \mathrm{OH}$).
(4-Methoxybenzyloxy)acetic Acid (1S)-1-[(1S)-(1-Benzyloxyethyl)]allyl Ester (8). To a mixture of syn-allylic al cohol 7 ($1.89 \mathrm{~g}, 9.83 \mathrm{mmol}$), O-(p-methoxybenzyl) glycol ic acid (4.30 $\mathrm{g}, 21.92 \mathrm{mmol}$), and DMAP ($110 \mathrm{mg}, 0.90 \mathrm{mmol}$) in dry CH_{2-} $\mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added DCC $(3.10 \mathrm{~g}, 15.02 \mathrm{mmol})$ at room temperature. After 2.5 h , methanol (2.0 mL) and acetic acid $(2.0 \mathrm{~mL})$ were added to the reaction mixture. The mixture was stirred for 20 min and neutralized with saturated aqueous NaHCO_{3} solution. The organic layer was separated and diluted with hexane (100 mL). The white precipitate was filtered off using a short pad of Celite, and the filtrate was concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:6) to give ester 8 ($3.39 \mathrm{~g}, 93 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.34-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{ddd}, \mathrm{J}=$ $17.2,10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.45 (t, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (ddd, J $=17.4,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}$), 5.28 (ddd, J = 10.8, 1.6, $1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.63(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.66$ (quintet, J $=6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.16(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.4$, 159.3, 138.3, 132.6, 129.6, 129.1, 128.2, 127.4, 118.6, 113.7, 76.7, 75.2, 72.7, 71.2, 66.7, 55.1, 15.5; IR (neat) 1755, 1250 $\mathrm{cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-7.3\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 370.1780$, found 370.1784 .
(2R,4E,6S)-6-Benzyloxy-2-(4-methoxybenzyloxy)hept-4-enoic Acid Methyl Ester (9). To a cooled ($-78^{\circ} \mathrm{C}$) solution of LHMDS ($100 \mathrm{~mL}, 0.24 \mathrm{M}$ in THF) were added TMSCI/Et ${ }_{3} \mathrm{~N}$ ($1: 1,13.3 \mathrm{~mL}$) and ester $8(2.18 \mathrm{~g}, 5.89 \mathrm{mmol})$ in THF (20 mL). After 30 min at the same temperature, the reaction mixture was warmed to room temperature and stirred for 3 h . The solvent (about 60\%) was evaporated at reduced pressure, and 2 N NaOH solution $(33.8 \mathrm{~mL})$ and water $(23.0 \mathrm{~mL})$ were added to the mixture. After 20 min , the mixture was acidified with $\mathrm{d}-\mathrm{HCl}(\mathrm{pH} 2)$ and extracted with ether ($100 \mathrm{~mL} \times 3$). The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. After excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to the resulting residue, the mixture was stirred for 30 min at room temperature and concentrated at reduced pressure. The residue was purified by column chromatography on silica gel (acetone/CHCl $3,1: 99$) to give α-alkoxy ester 9 ($1.95 \mathrm{~g}, 86 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.34-7.24(\mathrm{~m}, 7 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}$), 5.63 (ddd, J = 15.6, 7.0, $7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.46 (dd, J = $15.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.00(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.87 (quintet, J $=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.78 ($\mathrm{s}, 3 \mathrm{H}$), $3.74(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 50 \mathrm{MHz}$) $\delta 172.5,159.4,138.8,135.5$,
129.6, 129.4, 128.2, 127.6, 127.3, 126.9, 113.8, 77.5, 75.4, 71.9, $69.7,55.2,51.7,35.8,21.6$; IR (neat) $1752,1250 \mathrm{~cm}^{-1}$; $[\alpha]^{18}{ }_{\mathrm{D}}=$ +39.2 (c = 1.0, $\mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) cal ca for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\right.$ BnOH) 276.1362, found 276.1355 .
(2R,6S)-6-Benzyloxy-2-(4-methoxybenzyloxy)heptanoic Acid Methyl Ester (10). A mixture of α-alkoxy ester $\mathbf{9}$ (1.00
 $\operatorname{EtOAc}(25 \mathrm{~mL})$ was stirred for 3 h at room temperature under a hydrogen atmosphere (30 psi). The mixture was filtered through a pad of Celite, and the filtrate was concentrated at reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:6) to give saturated ester 10 ($820 \mathrm{mg}, 82 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.33-7.26(\mathrm{~m}, 7 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.62$ $(\mathrm{d}, \mathrm{J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.34(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, \mathrm{J}=7.0,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 1 \mathrm{H}), 1.75-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 173.4,159.4,139.0,129.7,128.3$, $127.6,127.3,113.8,113.6,77.6,74.6,72.0,70.3,55.2,51.7,36.2$, 33.0, 21.3, 19.6; IR (neat) $1750,1514,1250 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=+4.9$ ($\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}_{5}\left(\mathrm{M}^{+}-\mathrm{Bn}\right)$ 295.1546, found 295.1540.
(3R,4R,8S)-8-Benzyloxy-4-(4-methoxybenzyloxy)non-1-en-3-ol (11). To a cooled ($-78^{\circ} \mathrm{C}$) solution of ester $\mathbf{1 0}$ (1.02 g , 2.64 mmol) in anhydrous ether (190 mL) was added DIBALH ($4.9 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in hexane). After 1 h , vinylmagnesium bromide ($10.6 \mathrm{~mL}, 1.0 \mathrm{M}$ solution in THF) was added to the mixture at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 20 min at the same temperature and warmed to room temperature. After 2 h , the mixture was quenched with $\mathrm{d}-\mathrm{HCl}$ and washed with saturated NaHCO_{3} solution. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (acetone/ CHCl_{3} 1:49) to give syn-allylic alcohol $\mathbf{1 1}$ (639 mg , 63%) and anti-allylic alcohol ($107 \mathrm{mg}, 11 \%$) as colorless oils. syn-Allylic al cohol 11: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.33-$ $7.23(\mathrm{~m}, 5 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.36-$ $5.19(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.42(\mathrm{~m}, 4 \mathrm{H}), 4.04(\mathrm{br} \mathrm{t}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.50(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.19(\mathrm{~d}, \mathrm{~J}=5.6$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 159.3,139.0,137.7$, 130.3, 129.5, 128.3, 127.6, 127.3, 116.6, 113.8, 81.9, 74.6, 74.4, 72.4, 70.3, 55.2, 36.6, 30.6, 21.2, 19.6; IR (neat) 3439, 1514 $\mathrm{cm}^{-1} ;[\alpha]^{18} \mathrm{D}=+41.8\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) cal cd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{Bn}\right)$ calcd 293.1753, found 293.1741. antiAllylic al cohol: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.25$ (m, $5 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.19(\mathrm{~m}, 2 \mathrm{H})$, 4.57-4.42 (m, 4H), $4.30(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H})$, $3.42(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 159.3,139.1,136.7,130.5,129.4$, $128.3,127.6,127.3,116.4,113.8,81.7,74.7,73.4,71.9,70.3$, $55.2,36.7,29.3,21.8,19.6$; IR (neat) $3453,1514 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=$ $+26\left(\mathrm{c}=0.20, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Methoxymethoxyacetic Acid (1R)-1-[(1R,5S)-5-Benzyl-oxy-1-(4-methoxybenzyloxy)hexyl]allyl Ester (12). To a mixture of syn-allylic alcohol 11 ($541 \mathrm{mg}, 1.41 \mathrm{mmol}$), O(methoxymethyl) glycolic acid ($254 \mathrm{mg}, 2.12 \mathrm{mmol}$), and DMAP ($30 \mathrm{mg}, 0.25 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$) was added DCC ($494 \mathrm{mg}, 2.39 \mathrm{mmol}$) at room temperature. After 3 h , the reaction mixture was diluted with hexane and filtered through a pad of Celite. Concentration of the filtrate in vacuo and purification of the resulting residue by column chromatography on silica gel (EtOAc/hexane, 1:2) gave ester 12 (637 mg) in 93% yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.26-7.16(\mathrm{~m}, 7 \mathrm{H})$, 6.78 (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.78 (ddd, J = 17.2, 10.8, 6.4 Hz , $1 \mathrm{H}), 5.42(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $(\mathrm{d}, \mathrm{J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.48(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, \mathrm{~J}=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}$, $\mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.43-3.35$ $(\mathrm{m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 169.2,159.2,139.0,132.6$, 130.3, 129.4, 128.2, 127.5, 127.3, 116.4, 113.7, 96.3, 79.1, 75.8, 74.7, 72.4, 70.3, 64.2, 55.7, 55.2, 36.6, 30.5, 21.5, 19.6; IR (neat) 1757, 1514, $1063 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=+37.9\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38} \mathrm{O}_{7}\left(\mathrm{M}^{+}\right) 486.2618$, found 486.2640 .
(2S,4E,6R,10S)-10-Benzyloxy-6-(4-methoxybenzyloxy)-2-methoxymethoxyundec-4-enoic Acid Methyl Ester (13). To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of LHMDS ($30 \mathrm{~mL}, 0.09 \mathrm{M}$ in THF) were added TMSCI/Et ${ }_{3} \mathrm{~N}$ (1:1, 1.45 mL) and ester 12 (313 $\mathrm{mg}, 0.64 \mathrm{mmol}$) in THF (4 mL). After 20 min , the reaction mixture was warmed to room temperature and stirred for 3 h . The sol vent (about 60\%) was removed at reduced pressure, and $2 \mathrm{~N} \mathrm{NaOH}(3.7 \mathrm{~mL})$ and water (1.3 mL) were added to the mixture. After 20 min , the mixture was acidified with $\mathrm{d}-\mathrm{HCl}(\mathrm{pH} 2-3)$ and extracted with ether ($50 \mathrm{~mL} \times 5$). The combined organic layers were dried over anhydrous MgSO_{4} and concentrated in vacuo. After excess ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added to the resulting residue, the mixture was stirred for 30 min at room temperature and concentrated at reduced pressure. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to give ester 13 (277 $\mathrm{mg}, 86 \%$) as a col orless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.26-$ $7.16(\mathrm{~m}, 7 \mathrm{H}), 6.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.55$ (ddd, J $=15.6$, $7.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.39 (dd, J = 15.6, $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.64 (d, J = $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}$, 1 H), 4.42 (d, J $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ $(\mathrm{d}, \mathrm{J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}$, $3 \mathrm{H}), 2.55-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 4 \mathrm{H})$, $1.10(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.2$, $158.9,139.0,134.8,130.8,129.2,128.2,127.5,127.3,127.2$, 113.6, 96.1, 79.1, 75.4, 74.7, 70.2, 69.4, 55.9, 55.1, 51.6, 36.4, 35.7, 35.7, 21.4, 19.5; IR (neat) 1752, 1514, $1034 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}_{\mathrm{D}}$ $=+24.3\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{6}\left(\mathrm{M}^{+}\right.$ - MOM) calcd 455.2434, found 455.2437.
(2S,4E ,6R,10S)-10-Benzyloxy-6-hydroxy-2-methoxy-methoxyundec-4-enoic Acid Methyl Ester (14). A mixture of ester $\mathbf{1 3}$ ($281 \mathrm{mg}, 0.56 \mathrm{mmol}$) and DDQ ($154 \mathrm{mg}, 0.68 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ water ($18: 1,15 \mathrm{~mL}$) was stirred for 40 min at room temperature. The mixture was filtered through a short pad of Celite, and the filtrate was concentrated at reduced pressure. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:3) to give allylic al cohol 14 (183 $\mathrm{mg}, 86 \%$) as a col orless oil: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.27-$ 7.18 (m, 5H), 5.58 (ddd, J = 15.6, 6.4, 6.4 Hz, 1H), 5.51 (dd, J $=15.6,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, \mathrm{~J}=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.11(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.49-$ $3.41(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.33(\mathrm{~m}$, $\left.6 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 50 \mathrm{MHz}\right) ~ \delta ~$ 172.2, 138.9, 136.9, 128.2, 127.5, 127.3, 125.1, 96.0, 75.2, 74.7, $72.3,70.2,55.9,51.8,37.1,36.4,35.5,21.3,19.5$; IR (neat) 3447 , $1752 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-3.2\left(\mathrm{c}=0.50, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ HRMS (EI) calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{O}_{5}\left(\mathrm{M}^{+}-\mathrm{MOM}\right) 335.1859$, found 335.1861.
(2S,4R)-4-[(6S)-6-Benzyloxyhept-1-enyl]-2-methoxymethoxyhexanedioic Acid 6-Ethyl Ester 1-Methyl Ester (15). A mixture of allylic alcohol 14 ($131 \mathrm{mg}, 0.344 \mathrm{mmol}$), triethyl orthoacetate (12 mL), and phenol ($3 \mathrm{mg}, 0.032 \mathrm{mmol}$) was stirred for 4.5 h at $125^{\circ} \mathrm{C}$. The mixture was concentrated in vacuo, and the resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to give diester 15 ($130 \mathrm{mg}, 84 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 400 MHz) $\delta 7.27-7.17$ (m,5H), 5.42 (ddd, J = 15.2, 6.8, 6.8 $\mathrm{Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, \mathrm{J}=15.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (d, J $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{q}, \mathrm{J}=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 2.68-$ $2.59(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{dd}, \mathrm{J}=14.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{dd}, \mathrm{J}=$ $14.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{q}, \mathrm{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77-1.73(\mathrm{~m}, 2 \mathrm{H})$, $1.52-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.8,171.9,139.1$, 131.9, 131.4, 128.2, 127.5, 127.3, 98.2, 74.6, 73.8, 70.2, 60.1, $56.1,51.8,39.8,37.7,36.0,35.6,32.4,25.2,19.5,14.2$ I IR (neat) $1736,1028 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=+2.3\left(\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{O}_{6}\left(\mathrm{M}^{+}-\mathrm{MOM}\right)$ calcd 405. 2277, found 405. 2261.
(3R ,4E ,9S)-9-Benzyloxy-3-[(2S)-3-hydroxy-2-methoxy-methoxypropyl]dec-4-enoic Acid Ethyl Ester (16). To a solution of diester $\mathbf{1 5}(119 \mathrm{mg}, 0.26 \mathrm{mmol})$ in absolute ethanol $(8.0 \mathrm{~mL})$ was added $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.64 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The
reaction mixture was warmed to room temperature and stirred for 8 h . After water (0.5 mL) was added to the mixture, the mixture was concentrated in vacuo. The residue was dissolved in EtOAc and washed with water. The aqueous phase was reextracted with EtOAc. The combined organic layers were dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:1) to afford alcohol 16 (108 mg, 97\%) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.27-$ 7.18 (m, 5H), 5.40 (ddd, J = 15.2, 6.8, 6.8 Hz, 1H), 5.17 (dd, J $=15.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.57-3.36(\mathrm{~m}, 4 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.96$ (br s, 1H), 2.55-2.45 (m, 1H), 2.29 (dd, J $=14.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.18 (dd, J $=15.0,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $1.91(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.53-$ $1.29(\mathrm{~m}, 6 \mathrm{H}), 1.16(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl $3,50 \mathrm{MHz}$) $\delta 172.1,139.0,132.4,131.5$, 128.2, 127.5, 127.3, 96.6, 79.5, 74.6, 70.2, 64.9, 60.2, 55.5, 40.4, $36.5,36.1,36.0,32.3,25.2,19.5,14.2$; IR (neat) 3468, 1732, $1036 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=+10.0\left(\mathrm{C}=0.50, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{5}\left(\mathrm{M}^{+}-\mathrm{Bn}, \mathrm{MeOH}\right)$ calcd 299.1854, found 299.1852.
(3R,4E,9S)-9-Benzyloxy-3-[(2S)-3-iodo-2-methoxy-methoxypropyl]dec-4-enoic Acid Ethyl Ester (5). To a solution of al cohol $16(482 \mathrm{mg}, 1.14 \mathrm{mmol})$ in ether/acetonitrile ($3: 1,11 \mathrm{~mL}$) were added imidazole ($201 \mathrm{mg}, 2.96 \mathrm{mmol}$), $\mathrm{Ph}_{3} \mathrm{P}$ ($388 \mathrm{mg}, 1.48 \mathrm{mmol}$), and iodine ($375 \mathrm{mg}, 1.48 \mathrm{mmol}$) at room temperature. After 30 min , the mixture was diluted with hexane and filtered through a short pad of silica gel. Concentration of the filtrate in vacuo and purification of the residue by col umn chromatography on silica gel (EtOAc/hexane, 1:20) gave ω-iodo ester 5 ($516 \mathrm{mg}, 85 \%$): ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 200 \mathrm{MHz}$) $\delta 7.33-7.24(\mathrm{~m}, 5 \mathrm{H}), 5.55-5.18(\mathrm{~m}, 2 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}$, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, \mathrm{J}=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.55-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.44-2.18(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{q}, \mathrm{J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.39(\mathrm{~m}$, $6 \mathrm{H}), 1.22(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 172.0,139.1,131.9,131.7,128.3$, $127.6,127.3,95.8,74.6,74.2,70.3,60.3,56.1,40.6,40.1,36.1$, 32.4, 25.3, 19.6, 14.3, 11.2; IR (neat) 1734, $1038 \mathrm{~cm}^{-1}$; $[\alpha]^{18}{ }_{\mathrm{D}}=$ +6.9 ($\mathrm{c}=1.0, \mathrm{CH}_{3} \mathrm{OH}$).
(1R,2S,4S)-2-[(1E,6S)-6-Benzyloxyhept-1-enyl]-4-methoxymethoxycyclopentanecarboxylic Acid Ethyl Ester (4). To a solution of iodide 5 ($124 \mathrm{mg}, 0.233 \mathrm{mmol}$) in anhydrous THF (12 mL) was added LHMDS ($9.3 \mathrm{~mL}, 1 \mathrm{M}$ solution in THF) at $0^{\circ} \mathrm{C}$. After 50 min at the same temperature, the reaction mixture was quenched with saturated $\mathrm{NH}_{4}-$ Cl solution and concentrated in vacuo. The residue was dissolved in EtOAc, and the solution was washed with water. The aqueous layer was reextracted with EtOAc. The combined organic layers were washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/ hexane, 1:3) to give cyclopentanecarboxylate 4 ($87 \mathrm{mg}, 92 \%$) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.28-7.18$ (m, $5 \mathrm{H}), 5.42-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.01$ $(\mathrm{m}, 2 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.24-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.54-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.16$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N M R\left(\mathrm{CDCl}_{3}\right.$, 50 MHz) $\delta 175.3,139.1,132.2,130.7,128.3,127.6,127.3,95.3$, 77.1, 74.7, 70.3, 60.3, 55.3, 48,7, 45.7, 40.0, 36.9, 36.1, 32.4, $25.3,19.6,14.3$; IR (neat) $1732,1040 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=-23.3$ (c $=0.50, \mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 404.2563$, found 404.2541 .
(2S,6E)-7-[(1S,2R,4S)-4-Methoxymethoxy-2-nitrometh-ylcyclopentyl]hept-6-en-2-ol (17). (1) Reduction of Ester Group and Debenzylation. To a solution of cyclopentanecarboxylate 4 ($705 \mathrm{mg}, 1.74 \mathrm{mmol}$) in dry THF (4.7 mL) were added ethanol (4.7 mL) and liquid ammonia (19 mL) at -78 ${ }^{\circ} \mathrm{C}$. Li wire ($122 \mathrm{mg}, 17.58 \mathrm{mmol}$) was then added portionwise to the mixture over 15 min at $-78{ }^{\circ} \mathrm{C}$. After 30 min , the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ sol ution and warmed to room temperature. The mixture was diluted with EtOAc and washed with water. The aqueous layer was reextracted with EtOAc. The combined organic layers were
washed with brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 1: 9$) to give the diol (450 $\mathrm{mg}, 95 \%)$ as a thick syrup: $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.40-$ $5.32(\mathrm{~m}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.69(\mathrm{~m}$, $1 \mathrm{H}), 3.58(\mathrm{dd}, \mathrm{J}=10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, \mathrm{J}=10.7,6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.90(\mathrm{~m}, 3 \mathrm{H})$, 1.83 (ddd, J = 12.9, 8.3, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.56 (ddd, J = 13.4, 9.2, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47-1.29(\mathrm{~m}, 5 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 134.19,130.29,95.30,67.92,65.57$, 55.24, 46.12, 44.55, 40.61, 38.72, 35.97, 32.28, 25.56, 23.47; IR (neat) $3403,1042 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-32.8\left(\mathrm{c}=0.50, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{MeOH}\right) 240.1725$, found 240.1725.
(2) Monotosylation. To a solution of the above diol (230 $\mathrm{mg}, 0.84 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added p toluenesulfonyl chloride ($1.62 \mathrm{~g}, 8.50 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(3.6 \mathrm{~mL}$, 25.83 mmol), and DMAP ($103 \mathrm{mg}, 0.84 \mathrm{mmol}$) at $5^{\circ} \mathrm{C}$. After 1.5 h at room temperature, the mixture was poured into icewater and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 3)$. The combined organic layers were washed with d-HCl, saturated NaHCO_{3} solution, and brine, dried over anhydrous MgSO_{4}, and concentrated at reduced pressure. The residue was purified by col umn chromatography on silica gel (EtOAc/hexane, 1:3) to give the monotosylate ($308 \mathrm{mg}, 86 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.71(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.24-5.15 (m, 2H), $4.51(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (dd, $\mathrm{J}=9.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.79$ (ddd, $\mathrm{J}=13.2$, $7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.11$ $(\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{MR}\left(\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 144.6,133.0$, 132.4, 131.1, 129.7, 127.8, 95.1, 76.4, 71.6, 67.7, 55.1, 43.4, 42.8, 40.0, 38.6, 35.7, 32.1, 25.3, 23.3, 21.5; IR (neat) 3435, 1177 $\mathrm{cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-30.8\left(\mathrm{c}=0.50, \mathrm{CH}_{3} \mathrm{OH}\right) ;$ HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}^{+}-\mathrm{MeOH}\right) 394.1814$, found 394.1818.
(3) Iodination. A mixture of the above tosylate (107 mg , 0.25 mmol) and sodium iodide ($753 \mathrm{mg}, 5.02 \mathrm{mmol}$) in 2-butanone (12 mL) was refluxed for 1.5 h . After removal of the solvent, cold water was added to the residue. The mixture was extracted with EtOAc ($30 \mathrm{~mL} \times 3$). The combined organic layers were washed with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, saturated NaHCO_{3} solution, and brine, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/ hexane, 2:3) to give the iodo compound ($94 \mathrm{mg}, 98 \%$) as a col orless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 5.53-5.21(\mathrm{~m}, 2 \mathrm{H})$, $4.59(\mathrm{~s}, 2 \mathrm{H}), 4.19-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.30$ $(\mathrm{m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, \mathrm{J}=9.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.22$ (m, 1H), 2.16-1.95 (m, 4H), 1.91-1.33 (m, 7H), $1.17(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 132.3,131.4,95.2$, $75.8,67.9,55.2,47.7,45.1,40.8,40.0,38.7,32.3,25.5,23.5$, 12.7; IR (neat) $3408,1044 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-38.0\left(\mathrm{c}=0.50, \mathrm{CH}_{3}-\right.$ OH); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{IO}_{2}\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$ calcd 350.0743, found 350.0737.
(4) Conversion to Nitro Compound. To a solution of the above iodo compound ($93 \mathrm{mg}, 0.24 \mathrm{mmol}$) in DMSO (4 mL) were added urea ($101 \mathrm{mg}, 1.68 \mathrm{mmol}$) and sodium nitrite (83 $\mathrm{mg}, 1.20 \mathrm{mmol}$) at room temperature. After 15 h , the mixture was poured into water and extracted with EtOAc ($30 \mathrm{~mL} \times$ 3). The combined organic layers were washed with water, dried over anhydrous MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:3) to give nitro compound 17 (54 $\mathrm{mg}, 75 \%$) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.38$ (ddd, J $=15.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, \mathrm{J}=15.2,8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{dd}, \mathrm{J}=12.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-4.08$ $(\mathrm{m}, 2 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 1 \mathrm{H})$, 2.21 (ddd, J = 14.3, 7.8, 6.4 Hz, 1H), 2.07-1.93 (m, 4H), 1.58$1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.12(\mathrm{~d}, \mathrm{~J}=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 132.2,131.6,95.2$, 78.7, 76.0, 67.9, 55.3, 45.7, 42.1, 40.2, 38.6, 37.4, 32.2, 25.4, 23.5; IR (neat) $3412,1553,1040 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=-21.6$ (c=0.50, $\mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{4}\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$ 270.1705, found 270.1702.

Acrylic Acid (1S,5E)-6-[(1S,2R,4S)-4-Methoxymethoxy-2-nitromethylcyclopentyl]-1-methylhex-5-enyl Ester (18). To a mixture of alcohol $17(46 \mathrm{mg}, 0.15 \mathrm{mmol})$ and pyridine $(0.12 \mathrm{~mL}, 1.48 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added acryloyl chloride ($0.11 \mathrm{~mL}, 1.35 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 30 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with d-HCl, NaHCO_{3} sol ution, and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated at reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4) to give acrylate 18 ($38 \mathrm{mg}, 70 \%$) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.31(d d, \mathrm{~J}=17.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.03$ (dd, J = 17.8, $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dd, J = 10.4, $1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.36 (ddd, J $=15.2,6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.26 (dd, J $=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~s}, 2 \mathrm{H}), 4.37(\mathrm{dd}$, $\mathrm{J}=12.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.50-$ $2.42(\mathrm{~m}, 1 \mathrm{H}), 2.21$ (ddd, J = 13.9, 8.0, 6.3 Hz, 1H), 2.06-1.92 $(\mathrm{m}, 4 \mathrm{H}), 1.59-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.40-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 50 \mathrm{MHz}\right) \delta 165.9,132.0,131.8$, 130.2, 129.1, 95.3, 78.7, 76.0, 71.0, 55.3, 45.6, 42.1, 40.2, 37.4, 35.3, 32.0, 25.0, 19.9; IR (neat) $1721,1553 \mathrm{~cm}^{-1} ;[\alpha]^{20}{ }_{\mathrm{D}}=-6.1$ ($\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{5}\left(\mathrm{M}^{+}-\right.$ OMe) 324.1811, found 324.1818.

Intramolecular Nitrile Oxide Cycloaddition of Acrylate 18. A mixture of acrylate 18 ($52 \mathrm{mg}, 0.15 \mathrm{mmol}$), p-chlorophenyl isocyanate ($246 \mathrm{mg}, 1.60 \mathrm{mmol}$), and $\mathrm{Et}_{3} \mathrm{~N}(0.22$ $\mathrm{mL}, 1.60 \mathrm{mmol}$) in benzene (49 mL) was refluxed for 18 h . The reaction mixture was filtered through a short pad of Celite and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:4). The first fraction was collected and rechromatographed (EtOAc/hexane, 1:5) to give fused isomer 19 ($21 \mathrm{mg}, 38 \%$) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.44$ (ddd, J $=15.3,9.7,5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.19$ (dd, J $=15.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.62$ (dd, J = 8.8, $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 4.61 (s, 2H), 4.39 (dd, $\mathrm{J}=10.9,8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.96$ (dd, J $=10.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.36(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.37$ (ddd, J = 13.8, 7.0, 7.0 $\mathrm{Hz}, 1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.49$ (m, $5 \mathrm{H}), 1.25-1.15(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.6,157.3,132.2,132.1,95.2,76.8,71.7$, 70.6, 58.3, 55.4, 48.1, 41.6, 40.4, 39.6, 31.7, 30.2, 20.4, 17.9; IR (neat) $1721 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}_{\mathrm{D}}=+99\left(\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right) 337.1889$, found 337.1873.
The second fraction was collected and rechromatographed (EtOAc/hexane, 1:4) to give C2-(R) bridged isomer 2 (10 mg, 19%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.77$ (ddd $\mathrm{J}=15.0,10.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dd, J = 15.0, $9.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.94 (dd, J $=11.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~s}$, $2 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.41(\mathrm{dd}, \mathrm{J}=17.3,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35$ (s, 3H), $3.01(\mathrm{dd}, \mathrm{J}=17.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H})$, 2.55 (ddd, J = 11.8, 11.8, 5.0 Hz, 1H), 2.40 (ddd, J = 13.9, 7.2, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.74$ $(\mathrm{m}, 1 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~d}, \mathrm{~J}=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04-0.96(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ 171.5, 159.2, 132.8, 131.4, 95.1, 77.2, 76.0, 73.3, 55.4, 51.1, 46.1, 42.7, 40.0, 39.0, 32.7, 31.0, 26.2, 20.1; IR (neat) $1728 \mathrm{~cm}^{-1}$; $[\alpha]^{18}{ }_{\mathrm{D}}=-62\left(\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27^{-}}$ $\mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$337.1889, found 337.1888.

The third fraction was collected and rechromatographed (EtOAc/hexane, 1:2) to give C2-(S) bridged isomer 2 (12 mg, 21%) as a white solid: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.70$ (ddd, $\mathrm{J}=15.1,10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, \mathrm{J}=15.1,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.99 (dd, J $=11.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.88(\mathrm{~m}, 1 \mathrm{H}), 4.61(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.22(\mathrm{~m}, 1 \mathrm{H})$, $3.35(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{dd}, \mathrm{J}=16.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, \mathrm{J}=$ $16.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.29(\mathrm{~m}, 2 \mathrm{H})$, 2.05-1.97 (m, 2H), 1.81-1.51 (m, 6H), $1.27(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.09-1.02(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 169.6$, 160.1, 132.5, 130.8, 95.3, 77.2, 75.7, 74.4, 55.4, 48.7, 41.6, 40.0, $37.1,35.8,33.2,31.2,26.1,20.4$; IR (neat) $1734 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=$ +88 (c = 0.10, $\mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5}\left(\mathrm{M}^{+}\right)$ 337.1889, found 337.1888.
(2S,3aR,5E ,9S,13E,14aS)-2-Methoxymethoxy-9-methyl-2,3,3a,9,10,11,12,14a-octahydro-1H-8-oxa-cyclopentacy-clotridecene-4,7-dione (20). To a mixture of the two bridged isomers 2 ($8 \mathrm{mg}, 0.024 \mathrm{mmol}$ and $9.5 \mathrm{mg}, 0.028 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} /$
$\mathrm{CH}_{3} \mathrm{CN}$ (1:99, 4 mL) was added $\mathrm{Mo}(\mathrm{CO})_{6}(14 \mathrm{mg}, 0.053 \mathrm{mmol})$ at room temperature. The mixture was refluxed for 1.5 h , and the solvent was removed in vacuo. The resulting residue was dissolved in EtOAc, and the solution was washed with saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo to afford the crude β-hydroxy ketone (15.9 mg). This crude al cohol was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.13 \mathrm{~mL}, 0.93$ mmol) and methanesulfonyl chloride ($0.04 \mathrm{~mL}, 0.52 \mathrm{mmol}$) were added to the solution. After 2 h at room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated citric acid, saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/hexane, 1:3) to give lactone 20 ($12 \mathrm{mg}, 65 \%$ for the two steps): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.76(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, \mathrm{~J}=$ $15.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.86 (ddd, J = 15.1, 10.9, $4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 5.52 (ddd, $\mathrm{J}=15.2,9.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$, 4.12-4.07 (m, 1H), 3.36(s,3H), 2.88 ($\mathrm{q}, \mathrm{J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.56 (quintet, J $=9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30-2.21 (m, 2H), 2.18-2.11 (m, $1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.16(\mathrm{~m}$, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.5,166.1,140.2,135.7$, 132.9, 128.3, 95.2, 77.2, 73.7, 56.0, 55.3, 45.2, 40.3, 34.2, 32.7, 32.2, 25.6, 20.2; IR (neat) $1725,1042 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-18.5$ (c $=0.50, \mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{MeOH}\right)$ 290.1518, found 290.1541.

3-[(1R,2S,4S)-2-[(1E ,6S)-6-(tert-Butyl-dimethylsi lanyl-oxy)hept-1-enyl]-4-methoxymethoxycyclopentyl]-4,5-di-hydroisoxazole-5-carboxylic Acid Methyl Ester (21). (1) Protection of Hydroxyl Group. A mixture of alcohol 17 (54 $\mathrm{mg}, 0.18 \mathrm{mmol}$), TBDMSCI ($35 \mathrm{mg}, 0.23 \mathrm{mmol}$), and imidazole ($18 \mathrm{mg}, 0.26 \mathrm{mmol}$) in DMF (3.0 mL) was stirred for 5 h at room temperature. The mixture was diluted with EtOAc and washed with water. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAc/ hexane, 1:7) to give the silyl ether ($71 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.45$ (ddd, J $=15.2,6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.31 (dd, J = 15.2, 8.6 Hz, 1H), 4.61 (s, 2H), 4.45 (dd, J = 12.1, 4.7 $\mathrm{Hz}, 1 \mathrm{H}$), 4.20-4.15 (m, 2H), 3.78 (dddd, J = 11.9, 5.9, 5.9, 5.9 $\mathrm{Hz}, 1 \mathrm{H}$), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.28$ (ddd, J = 13.9, $7.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 2 \mathrm{H}), 1.66-$ $1.54(\mathrm{~m}, 3 \mathrm{H}), 1.46-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (s, 9H), 0.05 (s, 3H), $\left.0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 100 \mathrm{MHz}\right)$ $\delta 132.6,131.3,95.3,78.7,76.0,68.4,55.3,45.7,42.2,40.2,39.1$, $37.4,32.3,25.9,25.5,23.8,18.1,-4.4,-4.7$; IR (neat) 1553, $1044 \mathrm{~cm}^{-1} ;[\alpha]^{17} \mathrm{D}=-13.2\left(\mathrm{c}=1.5, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (EI) calcd for $\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{NO}_{5} \mathrm{Si}\left(\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}\right) 358.2050$, found 358.2061 .
(2) Intermolecular Nitrile Oxide Cycloadditon. A mixture of the above silyl ether ($60 \mathrm{mg}, 0.14 \mathrm{mmol}$), methyl acrylate ($0.25 \mathrm{~mL}, 2.78 \mathrm{mmol}$), p-chlorophenyl isocyanate (236 $\mathrm{mg}, 1.54 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.22 \mathrm{~mL}, 1.58 \mathrm{mmol})$ in benzene $(20 \mathrm{~mL}$) was refluxed for 10 h . The mixture was cooled to room temperature. The white precipitate was filtered off through a pad of Celite and the filtrate was concentrated in vacuo. The resulting residue was dissolved in EtOAc/hexane (1:3) and insoluble material was removed by filtration. Concentration of the filtrate and purification of the residue by column chromatography on silica gel (EtOAc/hexane, 2:3) afforded a 1:1 mixture of isoxazoles $\mathbf{2 1}(58 \mathrm{mg}, 85 \%$) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 5.47-5.35(\mathrm{~m}, 2 \mathrm{H}), 4.96$ (ddd, J $=11.4,6.3,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.79-$ $3.74(\mathrm{~m}, 4 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}),[3.28(\mathrm{dd}, \mathrm{J}=17.1,6.3 \mathrm{~Hz})$ and 3.24 (dd, J = 17.1, 11.1 Hz), 1H], [3.13 (dd, J = 16.9, 6.7 Hz) and $3.10(\mathrm{dd}, \mathrm{J}=16.9,11.3 \mathrm{~Hz}$), 1 H$], 2.81$ (quintet, $\mathrm{J}=9.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.45 (dddd, J = 18.4, 9.1, 9.1, $9.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.30 (ddd, $\mathrm{J}=14.0,8.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.61-1.55(\mathrm{~m}$, $1 \mathrm{H}), 1.45-1.31(\mathrm{~m}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, $0.87-0.80(\mathrm{~m}, 1 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 170.9, 160.04, 159.95, 132.18, 132.16, 131.6, 95.24, 95.22, 77.17, 77.14, 76.9, 76.48, 76.45, 68.48, 68.46, 55.4, 52.7, 46.5, 46.4, 42.4, 42.2, 40.4, 40.2, 39.7, 39.2, 37.2, 37.1, 32.4, 29.7, 25.9, 25.53, 25.50, 23.8, 18.2, -4.4, -4.7; IR (neat) $1744 \mathrm{~cm}^{-1}$;
$[\alpha]^{18}{ }_{\mathrm{D}}=-27.0\left(\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (CI) calcd for $\left(\mathrm{MH}^{+}\right)$ 484.3094, found 484.3105.
(2E)-4-[(1R,2S,4S)-2-[(1E,6S)-6-(tert-Butyldimethylsila-nyloxy)hept-1-enyl]-4-methoxymethoxycyclopentyl]-4-oxobut-2-enoic Acid Methyl Ester (22). A mixture of isoxazoles 21 ($56 \mathrm{mg}, 0.12 \mathrm{mmol}$), water (0.8 mL), and Mo$(\mathrm{CO})_{6}(31 \mathrm{mg}, 0.12 \mathrm{mmol})$ in acetonitrile $(8.0 \mathrm{~mL})$ was refluxed for 1.5 h . The solvent was evaporated and the residue was dissolved in EtOAc. The mixture was washed with saturated NaHCO_{3} solution and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated at reduced pressure to give the crude hydroxy ketone which was dissol ved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). To the solution were added methanesulfonyl chloride $(0.14 \mathrm{~mL}, 1.81 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.33 \mathrm{~mL}, 2.37 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. After 2 h at room temperature, the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated citric acid solution, saturated NaHCO_{3} solution, and brine. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAcl hexane, 1:7) to give ketone 22 ($35 \mathrm{mg}, 65 \%$) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.11(\mathrm{~d}$, J $=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.67$ $(\mathrm{d}, \mathrm{J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.37(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.23-$ $4.16(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.14$ $(\mathrm{q}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, \mathrm{J}=13.9$, $8.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.45-$ $1.26(\mathrm{~m}, 4 \mathrm{H}), 1.10(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.04(\mathrm{~s}$, $3 \mathrm{H}), 0.03$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.9,166.0$, 139.5, 132.3, 131.5, 130.6, 95.4, 77.2, 68.5, 55.4, 54.6, 52.3, 44.8, 40.2, 39.2, 36.1, 32.3, 25.9, 25.4, 23.8, 18.1, -4.4, -4.7; IR (neat) $1732 \mathrm{~cm}^{-1}$; $[\alpha]^{18} \mathrm{D}_{\mathrm{D}}=-23.0\left(\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$; HRMS (CI) calcd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{Si}\left(\mathrm{MH}^{+}\right) 469.2985$, found 469.2987.
(2E)-4-[(1R ,2S,4S)-2-[(1E,6S)-6-Hydroxyhept-1-enyI]-4-methoxymethoxycyclopentyl]-4-oxobut-2-enoic Acid (23). (1) Removal of Silyl Group. A mixture of ketone 22 (16.0 $\mathrm{mg}, 0.034 \mathrm{mmol}$) and PPTS ($17 \mathrm{mg}, 0.068 \mathrm{mmol}$) in ethanol (4 mL) was stirred for 10 h at $50^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc and washed with water. The aqueous layer was reextracted with EtOAc. The combined organic layers were washed with saturated NaHCO_{3} solution, dried over MgSO_{4}, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:3) to give the hydroxy ester ($12.0 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $7.12(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-$ $5.38(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.80-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{q}, \mathrm{J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66$ (quintet, J $=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.25 (ddd, J $=13.8,7.9,5.8 \mathrm{~Hz}$, 1H), 2.12-2.07 (m, 1H), 2.02-1.97 (m, 3H), 1.62-1.55 (m, 1H), $1.48-1.32(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.80(\mathrm{~m}$, $1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 200.8,166.1,139.6,132.8$, 131.4, 130.5, 95.3, 77.2, 67.9, 55.4, 54.6, 52.4, 45.1, 40.3, 38.8, $35.8,32.2,25.5,23.4$; IR (neat) $3439,1730 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=-39.0$ ($\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) cal cd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{O}_{5}\left(\mathrm{M}^{+}-\mathrm{OMe}\right)$ 323.1859, found 323.1861.
(2) Saponification. A mixture of the above hydroxy ester ($12.0 \mathrm{mg}, 0.03 \mathrm{mmol}$) and LiOH ($4 \mathrm{mg}, 0.17 \mathrm{mmol}$) in 50% aqueous THF (2.0 mL) was stirred for 20 min at $5^{\circ} \mathrm{C}$. The mixture was acidified with d- $\mathrm{HCl}(\mathrm{pH} 1-2)$ and diluted with EtOAc. The organic layer was washed with brine, dried over anhydrous MgSO_{4}, and concentrated at reduced pressure to afford crude hydroxy acid $\mathbf{2 3}$ ($10.9 \mathrm{mg}, 95 \%$) as a thick syrup that was subjected to the next step without further purification. An analytical sample of $\mathbf{2 3}$ was obtained by column chromatography on silica gel ($\mathrm{MeOH} / \mathrm{CHCl}_{3}, 3: 7$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.76(\mathrm{~d}, \mathrm{~J}=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.41 (dd, J $=15.2,8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 5.33 (ddd, J $=$ $15.0,6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.20-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.76-$ $3.72(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.14(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 2.52 (quintet, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (ddd, J $=13.7,7.8,5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.10-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88-1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.55$ (ddd, J = 13.6, 8.9, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.42-1.19 (m,3H), $1.11(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz) $203.8,173.1,139.1,136.2,133.2,131.1,95.2,77.2$,
67.6, 55.3, 53.4, 46.2, 40.5, 38.2, 35.8, 31.9, 25.3, 23.0; IR (neat) 3376, 1738, $1042 \mathrm{~cm}^{-1} ;[\alpha]^{18}{ }_{\mathrm{D}}=-23\left(\mathrm{c}=0.10, \mathrm{CH}_{3} \mathrm{OH}\right)$.

Lactone $\mathbf{2 0}$ from Hydroxy Acid 23. To a solution of crude hydroxy acid $\mathbf{2 3}$ ($10.9 \mathrm{mg}, 0.032 \mathrm{mmol}$) in THF (0.5 mL) were added $\mathrm{Et}_{3} \mathrm{~N}(0.0059 \mathrm{~mL}, 0.04 \mathrm{mmol})$ and 2,4,6-trichlorobenzoyl chloride ($0.0055 \mathrm{~mL}, 0.035 \mathrm{mmol}$). After 3 h at room temperature, the mixture was diluted with dry toluene (11 mL) and was added slowly over 3 h to a refluxing solution of DMAP $(20 \mathrm{mg}, 0.16 \mathrm{mmol})$ in dry toluene $(2 \mathrm{~mL})$. The reaction mixture was refluxed for 14 h , and the solvent was removed at reduced pressure. The residue was dissolved in EtOAc, and the solution was washed with aqueous citric acid solution and saturated NaHCO_{3} solution. The organic layer was dried over anhydrous MgSO_{4} and concentrated in vacuo. The resulting residue was purified by column chromatography on silica gel (EtOAd hexane, 1:3) to give lactone $\mathbf{2 0}$ ($5.5 \mathrm{mg}, 53 \%$) as a thick syrup.
(+)-Brefeldin A (1). (1) NaBH_{4} Reduction of Carbonyl Group. To a solution of ketone $\mathbf{2 0}(14.8 \mathrm{mg}, 0.046 \mathrm{mmol})$ in methanol (3 mL) was added $\mathrm{NaBH}_{4}(5 \mathrm{mg}, 0.13 \mathrm{mmol})$ at -78 ${ }^{\circ} \mathrm{C}$. After 30 min at the same temperature, acetone (0.2 mL) was added and the mixture warmed to room temperature. The mixture was diluted with EtOAc and washed with water, saturated NaHCO_{3} solution, and brine. The organic layer was dried over MgSO_{4} and concentrated at reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/hexane, 2:3) to give the alcohol ($12.7 \mathrm{mg}, 85 \%$) as a thick syrup: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35$ (dd, J = 15.7, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}=15.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (ddd, $\mathrm{J}=$ $15.1,10.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25$ (dd, J $=15.1,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.89-$ $4.82(\mathrm{~m}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.32$ (quintet, J $=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.20-2.12 (m, 2H), 2.05-1.99 (m, $1 \mathrm{H}), 1.89-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, \mathrm{~J}=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.97-0.88(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $166.16,151.45,136.26,130.55,117.59,95.16,77.21,75.97$, $71.12,55.33,51.83,43.99,40.61,38.18,34.07,31.82,26.72$, 20.88; IR (neat) $3412,1713 \mathrm{~cm}^{-1} ;[\alpha]^{18} \mathrm{D}=+62.2\left(\mathrm{c}=0.50, \mathrm{CH}_{3}-\right.$ OH); HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{5}\left(\mathrm{M}^{+}\right) 324.1945$, found 324.1937.
(2) Removal of MOM Group. To a solution of the above alcohol ($18.0 \mathrm{mg}, 0.056 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ were added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ ($0.035 \mathrm{~mL}, 0.28 \mathrm{mmol}$) and thiophenol (0.029 $\mathrm{mL}, 0.28 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred for 30 min at $20^{\circ} \mathrm{C}$ and concentrated at reduced pressure. The resulting residue was purified by column chromatography on silica gel (EtOAC), fol lowed by recrystallization (EtOAc), to afford (+)-brefeldin A (1) ($14.8 \mathrm{mg}, 95 \%$) as white crystals: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 7.35$ (dd, $\mathrm{J}=15.7$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, \mathrm{J}=15.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{ddd}, \mathrm{J}=$ $15.1,10.3,4.7 \mathrm{~Hz}, 1 \mathrm{H}$), 5.18 (dd, J $=15.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}$), $4.73-$ $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.11$ (quintet, J $=5.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.93 (ddd, J = $9.6,3.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (quintet, J $=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.03 (ddd, $\mathrm{J}=13.4,8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.63(\mathrm{~m}$, 5 H), $1.52-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.34$ (dddd, J $=13.4,7.9,5.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.14(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85-0.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 75 \mathrm{MHz}$) $\delta 168.4,155.1,138.1,131.4,117.8,76.6$, 73.2, 73.0, 53.2, 45.5, 44.1, 41.9, 35.0, 33.0, 28.0, 21.1; IR (KBr) $3367,1713 \mathrm{~cm}^{-1}$; mp $203-204{ }^{\circ} \mathrm{C}$; $[\alpha]^{18} \mathrm{D}=+92.2(\mathrm{c}=0.10$, $\mathrm{CH}_{3} \mathrm{OH}$); HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{4}\left(\mathrm{M}^{+}\right) 280.1675$, found 280.1663.

Acknowledgment. This research was supported by KMOE (BSRI-97-3420), the Ministry of Health and Welfare (HMP-00-CD-02-0004), and 2001 BK 21 Project for Medicine, Dentistry and Pharmacy.

Supporting Information Available: Copies of the ${ }^{1} \mathrm{H}$ NMR spectra for $\mathbf{1}, \mathbf{4}, \mathbf{5}, \mathbf{1 8}, \mathbf{2 0}$, and $\mathbf{2 3}$ and ${ }^{13} \mathrm{C}$ NMR spectra for 1, 4, 5, 11, 16, silyl ether of 17, 18, 20, 21, and 23. This material is available free of charge via the Internet at http://pubs.acs.org.
j 00107431

[^0]: * To whom correspondence should be addressed. Tel: +82-2-8807850. Fax: +82-2-888-0649.
 \dagger Dedicated to Professor Steven M. Weinreb on the occasion of his 60th birthday.
 \neq College of Pharmacy, Seoul National University.
 § Natural Products Research Institute, Seoul National University.
 (1) Taken from the doctoral thesis of J. I. Lim, Seoul National University, 1998.
 (2) Weber, H. P.; Hauser, D.; Sigg, H. P. Helv. Chim. Acta 1971, 54, 2763.
 (3) Singleton, V. L.; Bohonos, N.; Ullstrupp, A. J . Nature 1958, 181, 1072.
 (4) (a) Betina, V.; Nemec, P.; Dobias, J.; Barath, Z. Folia Microbiol. 1962, 7, 353. (b) Harri, E.; Loeffler, W.; Sigg, H. P.; Staehelin, H.; Tamm, C. Helv. Chim. Acta 1963, 46, 1235. (c) Drobnica, L.; Nemec, P.; Zemanova, M. J . Antibiot. (Tokyo), Ser. A 1964, 17, 93. (d) Baker, C. J.; Barrett, F. F.; Clark, D. J. J . Anti biot. 1974, 27, 65. (e) Tamura, G.; Ando, K.; Suzuki, S.; Takatsuki, A.; Arima, K. J. Antibiot. 1968, 21, 160. (f) Takatsuki, A.; Yamaguchi, I.; Tamura, G.; Misato, T.; Arima, K. J. Antibiot. 1969, 22, 442. (g) Betina, V.; M ontanier, L. Bull. Soc. Chim. Biol. 1966, 48, 194. (h) Betina, V.; Horakova, K.; Barath, Z. Naturwissenschaften 1962, 49, 241. (i) Betina, V. Neoplasma 1969, 16, 23.
 (5) (a) Low, S. H.; Wong, S. H.; Tang, B. L. J. Biol. Chem. 1991, 266, 17729. (b) Miller, S.; Carnell, L.; Moore, H. P. H. J. Biol. Chem. 1992, 118, 267. (c) Chardin, P.; McCormick, F. Cell 1999, 97, 153 and references cited.
 (6) (a) Shao, R.-G.; Shimizu, T.; Pommier, Y. Exp. Cell Res. 1996, 227, 190. (b) Zhu, J.-W.; Hori, H.; Nojiri, H.; Tsukuda, T.; Taira, Z. Bioorg. Med. Chem. Lett. 1997, 7, 139. (c) Zhu, J.-W.; Nagasawa, H.; Nagura, F.; M ohamad, S. B.; Uto, Y.; Ohkura, K.; Hori, H. Bio. Med. Chem. 2000, 8, 455. (d) Argade, A. B.; Devraj, R.; Vroman, J. A.; Haugwitz, R. D.; Hollingshead, M.; Cushman, M.J . Med. Chem. 1998, 41, 3337.

[^1]: (7) (a) Corey, E. J.; Wollenberg, R. H. Tetrahedron Lett. 1976, 25, 4705. Corey, E. J .; Wollenberg, R. H.; Williams, D. R. Tetrahedron Lett. 1977, 26, 2243. Corey, E. J.; Carpino, P. Tetrahedron Lett. 1990, 31, 7555. (b) Baudouy, R.; Crabbe, P.; Greene, A. E.; Le Drian, C.; Orr, A. F. Tetrahedron Lett. 1977, 34, 2973. Greene, A. E.; Le Drian, C.; Crabbe, P. J. Am. Chem. Soc. 1980, 102, 7583. Le Drian, C.; Greene, A. E.J.Am. Chem. Soc. 1982, 104, 5473. Bernades, V.; Kann, N.; Riera, A.; Moyano, A.; Pericas, M. A.; Greene, A. E. J . Org. Chem. 1995, 60, 6670. (c) Bartlett, P. A.; Green, F. R. J. Am. Chem. Soc. 1978, 100, 4858. (d) Köksal, Y.; Raddatz, P.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1980, 19, 472. Raddatz, P.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1981, 20, 286. Marx, K.-H.; Raddatz, P.; Winterfeldt, E. Liebigs Ann. Chem. 1984, 474. (e) Kitahara, T.; M ori, K.; Matsui, M. Tetrahedron Lett. 1979, 20, 2935.; Kitahara, T.; Mori, K. Tetrahedron 1984, 40, 2935. (f) Honda, M.; Hirata, K.; Sueka, H.; Katsuki, T.; Yamaguchi, M. Tetrahedron Lett. 1981, 22, 2679. (g) Gais, H. J.; Lied, T. Angew. Chem., Int. Ed. Engl. 1984, 23, 145. (h) Nakatani, K.; I soe, S. Tetrahedron Lett. 1985, 26, 2209. (i) Ueno, K.; Suemune, H.; Saeki, S.; Sakai, K. Chem. Pharm. Bull. 1985, 33, 4021. (j) Trost, B. M.; Lynch, J.; Renaut, P.; Steinman, D. H. J. Am. Chem. Soc. 1986, 108, 284. (k) Hatakeyama, S.; Sugawara, K.; K awamura, M.; Takano, S. Synlett 1990, 691. (I) Nokami, J.; Ohkura, M.; Dan-oh, Y.; Sakamoto, Y. Tetrahedron Lett. 1991, 32, 2409. (m) Taber, D. F.; Silverberg, L. J .; Robinson, E. D. J. Am. Chem. Soc. 1991, 113, 6639. (n) Solladié, G.; Lohse, O. J. Org. Chem. 1993, 58, 4555. (o) Miyaoka, H.; Kajiwara, M. J. Chem. Soc., Chem. Commun. 1994, 483. (p) Casy, G.; Gorins, G.; McCague, R.; Olivo, H. F.; Roberts, S. M. J. Chem. Soc., Chem. Commun. 1994, 1085.; Carnell, A. J.; Casy, G.; Gorins, G.; KompanySaeid, A.; McCague, R.; Olivo, H. F.; Roberts, S. M.; Willetts, A. J. J . Chem. Soc., Perkin Trans. 1 1994, 3431. (q) Tomioka, K.; Ishikawa, K.; Nakai, T. Synlett 1995, 901. (r) Kim, D.; Lim, J. I. Tetrahedron Lett. 1995, 36, 5035. (s) Haynes, R. K.; Lam, W. W.-L.; Yeung, L. L.; Williams, I. D.; Ridley, A. C.; Starling, S. M.; Vonwiller, S. C.; Hambley, T. W.; Lelandais, P.J. Org. Chem. 1997, 62, 4552. (t) Argade, A. B.; Haugwitz, R. D.; Devraj, R.; K ozlowski, J.; Fanwick, P.; Cushman, M. J. Org. Chem. 1998, 63, 273. (u) Suh, Y.-G.; J ung, J.-K.; Suh, B.-C.; Lee, Y.-C.; Kim, S.-A. Tetrahedron Lett. 1998, 39, 5377.; Suh, Y.-G.; Seo, S.-Y.; J ung, J .-K.; Park, O.-H.; J eon, R.-O. Tetrahedron Lett. 2001, 42, 1691. (v) Ducray, P.; Rousseau, B.; Mioskoeski, C. J. Org. Chem. 1999, 64, 3800.

[^2]: (8) (a) Stork, G.; Uyeo, S.; Wakamatsu, T.; Grieco, P.; Labovitz, J . J. Am. Chem. Soc. 1971, 93, 4945. (b) D. Kim, I. H. Kim, Tetrahedron Lett. 1997, 38, 415 and references cited.
 (9) (a) For an elegant example of acyclic double chirality transfer process in natural product synthesis, see: Stork, G.; Raucher, S. J. Am. Chem. Soc. 1976, 98, 1583. (b) A synthesis of compound 4 has been reported in preliminary form: see ref $7 r$.
 (10) Burke, S. D.; Deaton, D. N.; Olsen, R. J .; Armistead, D. M.; Blough, B. E. Tetrahedron Lett. 1987, 28, 3905.
 (11) Neises, B.; Steglich, W. Angew. Chem., Int. Ed. Engl. 1978, 17, 52.
 (12) (a) Burke, S. D.; Fobare, W. F.; Pacofsky, G. J. J . Org. Chem. 1983, 48, 5221. (b) Kallmerten, J.; Gould, T. J . Tetrahedron Lett. 1983, 24, 5177. (c) Gould, T. J.; Balestra, J.; Wittman, M. D.; Gary, J. A.; Rossano, L. T.; K alImerten, J . J. Org. Chem. 1987, 52, 3889. (d) Sato, T.; Tajima, K.; Fujisawa, T. Tetrahedron Lett. 1983, 24, 729. (e) Fujisawa, T.; K ohama, H.; Tajima, K.; Sato, T. Tetrahedron Lett. 1984, 25, 5155.
 (13) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J . Am. Chem. Soc. 1976, 98, 2868.

[^3]: (14) (a) Czech, B. P.; Bartsch, R. A. J . Org. Chem. 1984, 49, 4076. (b) Our previously reported diimide reduction did not go to completion and was not amenable to scale-up: see ref 7 r .
 (15) Horita,K.; Y oshioka, T.; Tanaka, T.; Y onemitsu, O. Tetrahedron 1986, 42, 3021.
 (16) J ohnson, W. S.; Werthemann, L.; Bartlett, W. R.; Brocksom, T.J .; Li, T.; Faulkner, J .; Peterson, M. R. J . Am. Chem. Soc. 1970, 92, 741.
 (17) The cyclization of the corresponding ω-tosyl ester with KHMDS in THF provided 4 in only 56% yield: see ref $7 r$.
 (18) Hann, R. M.; Richtmyer, N. K.; Diehl, H. W.; Hudson, C. S. J . Am. Chem. Soc. 1950, 72, 561.
 (19) K ornblum, N.; Larson, H. O.; Blackwood, R. K.; M ooberry, D. D.; Oliveto, E. P.; Graham, G. E. J. Am. Chem. Soc. 1956, 78, 1497.

[^4]: (20) F or the structure determination of compound 2 and 19, see the Supporting Information of the accompanying paper. ${ }^{27}$

[^5]: (21) Asaoka, M.; Abe, M.; Mukata, T.; Takei, H. Chem. Lett. 1982, 215.
 (22) (a) Baraldi, P. G.; Barco, A.; Benetti, S.; Manfredini, S.; Simoni, D. Synthesis 1987, 277. (b) We thank Professor G. P. Pollini (University of Ferrara, Italy) for his hel pful suggestion on the chemoselective N-O bond cleavage.
 (23) Natural brefeldin A: $[\alpha]^{16} \mathrm{D}=+92.6$ (c $\left.=0.1, \mathrm{MeOH}\right)$. Synthetic brefeldin A: $[\alpha]^{16_{\mathrm{D}}}=+92.2(\mathrm{c}=0.1, \mathrm{MeOH})$.
 (24) Christl, M.; Huisgen, R.; Sustmann, R. Chem. Ber. 1973, 106, 3275.
 (25) For the another synthesis of the silyl ether of 17, see the accompanying paper. ${ }^{27}$
 (26) Innaga, J .; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. J pn. 1979, 52, 1989.
 (27) Kim, D.; Lee, J.; Shim, P. J.; Lim, J . I.; Doi, T.; Kim, S. J. Org. Chem. 2002, 67, 772.

