

Tetrahedron Letters 41 (2000) 9731-9733

TETRAHEDRON LETTERS

Conjugate reduction of α , β -unsaturated ketones using an Mn^{III} catalyst, phenylsilane and isopropyl alcohol

Philip Magnus,* Michael J. Waring and David A. Scott

Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

Received 7 August 2000; revised 25 September 2000; accepted 28 September 2000

Abstract

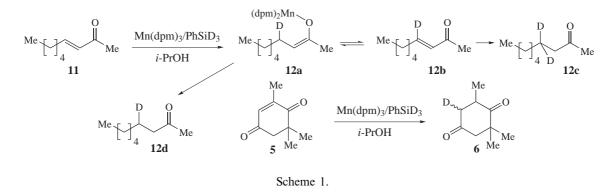
Treatment of a variety of α,β -unsaturated ketones with Mn(dpm)₃ (3 mol%)/PhSiH₃ (1.3 equiv.)/isopropyl alcohol with the exclusion of air resulted in the formation of the saturated ketone. © 2000 Elsevier Science Ltd. All rights reserved.

Keywords: reduction; conjugate; manganese; phenylsilane.

In the accompanying letter we reported the conjugate reduction of α , β -unsaturated ketones followed by oxidation of in situ generated enolates to give α -hydroxyketones using Mn(dpm)₃(cat)/PhSiH₃/O₂/*i*-PrOH.¹ In this letter the application of this reagent system (minus O₂) to the conjugate reduction of α , β -unsaturated ketones is reported.²

In a stoichiometric reaction a dark olive-green solution of $Mn(dpm)_3$ in *i*-PrOH at 23°C was treated with PhSiH₃ to give a pale yellow solution, which rapidly reduced **5** to give **6**. When the same reaction was conducted with catalytic amounts of $Mn(dpm)_3$ (3 mol%) the reduction was much slower but proceeded in good yields. Table 1 lists a series of enones that were conjugatively reduced using this procedure.

Deuterium labeling experiments using PhSiD₃ converted **11** (Scheme 1) into **12d** with the incorporation of one deuterium atom in the β -position. This demonstrates that the hydride addition is irreversible since if a putative Mn^{III} enolate **12a** could β -eliminate HMn(dpm)₂ (isotope effect) one would expect to accumulate **12b** which would be converted into the β , β -dideuterium derivative **12c**. Similarly, treatment of **5** with Mn(dpm)₃/PhSiD₃ gave **6** with incorporation of one deuterium atom. Attempts to increase the rate of reduction of **5** by conducting the reaction at slightly higher temperatures than 23°C did not work and also lead to small amounts of 1,2-reduction to give 4-hydroxyisophorone.³ The use of alcohols other than isopropyl alcohol was not productive. For example, if methanol is substituted for isopropyl


^{*} Corresponding author.

^{0040-4039/00/}\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(00)01728-7

Table 1

Entry	Substrate	Conditions	Product	Yield
1	Me	Mn(dpm) ₃ (3 mol%), PhSiH ₃ (2 equiv.), <i>i</i> -PrOH (0.2 M conc of 1)	Me	50%
2		Mn(dpm) ₃ (3 mol%), PhSiH ₃ (1.3 equiv.), <i>i</i> -PrOH/DCE	Me 2 Me C	99%
3	Me O Me	As above	4 Me	99%
4	Me O Me Me	As above	Me O Me	25%
5	Me 7	As above	Me 8	50%
6	9 Me	As above		74%
7		Mn(dpm) ₃ (3 mol%), PhSiH ₃ (1.3 equiv.), <i>i</i> -PrOH/DCM (1:4)	4 12	100%
8	O Tr 13	As above	OTr 14	100%
	Me O OTr 15		Me O OTr 16	

alcohol there was rapid gas evolution (H_2) , no reduction of 5, and the formation of PhSi(OMe)₃.⁴ If the proton source is *t*-BuOH the reduction proceeds very slowly, consequently *i*-PrOH is the preferred (optimal) alcohol. The use of other hydride sources was briefly

As expected from the results described in the accompanying paper, β , β -disubstituted α , β -unsaturated ketones (and esters) are not conjugatively reduced using the above conditions.

Acknowledgements

The National Institutes of Health (GM 32718), The Robert A. Welch Foundation, Merck Research Laboratories and Novartis are thanked for their support of this research.

References

- 1. Magnus, P.; Payne, A. H.; Waring, M. J.; Scott, D. A.; Lynch, V. Tetrahedron Lett. 2000, 41, 9725.
- A number of methods have been reported in the literature to accomplish this transformation. Conjugate reduction using Na(MeOCH₂CH₂O)₂AlH₂/CuBr: Semmelhack, M. F.; Stauffer, R. D.; Yamashita, A. J. Org. Chem. 1977, 42, 3180. [(Ph₃P)CuH]₆: Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291. [(Ph₃P)CuH]₆ (cat)/n-Bu₃SnH or PhSiH₃: Lipshutz, B. H.; Keith, J.; Papa, P.; Vivian, R. Tetrahedron Lett. 1998, 39, 4627. PhSiH₃/Mo(CO)₆ (cat): Keinan, E.; Perez, D. J. Org. Chem. 1987, 52, 2576. Interestingly, and in contrast, this latter reagent combination did not conjugatively reduce carvone (cf. entry 1). Hydrosilylation of enones: Ojima, I.; Anagi, M. N.; Kogare, T.; Kumagai, M.; Horiuchi, S.; Nakatsugawa, K. J. Organomet. Chem. 1975, 94, 449. Fe–H based reagents: Noyori, R.; Umeda, I.; Ishigami, T. J. Org. Chem. 1972, 37, 1542. Cainelli, G.; Panunzio, M.; Umani-Ronchi, A. Tetrahedron Lett. 1973, 2491. Yamashita, M.; Watanabe, Y.; Mitsudo, T.; Takegami, Y. Tetrahedron Lett. 1975, 1867. Collman, J. P.; Finke, R. G.; Matlock, P. L.; Wahren, R.; Komoto, R. G.; Brauman, J. I. J. Am. Chem. Soc. 1978, 100, 1119. For a general review of conjugate reductions: Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Ed.; Pergamon Press, 1991; Vol. 8, p. 523.
- 3. Zarghami, N. S.; Heinz, D. E. Phytochemistry 1971, 10, 2755. Hennig, M.; Püntener, K.; Scalone, M. Tetrahedron: Asymmetry 2000, 11, 1849.
- 4. Corriu, R. J. P.; Moreau, J. J. E. J. Organomet. Chem. 1976, 114, 135.