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Abstract—A series of lactosaminylated oligosaccharides found in mucin type O-glycans was synthesized using a generalized block
strategy. The synthesis involved the addition of a protected lactosamine donor to a partially protected T-disaccharide derivative.
The nonreducing galactose residues of the deblocked oligosaccharide products could be removed by b-galactosidase from jack bean
to produce the corresponding GlcNAc terminated compounds. A series of tri- to hexasaccharides was thus efficiently produced.
# 2001 Elsevier Science Ltd. All rights reserved.

Serine and threonine glycosylation of proteins occurs in
the secretory pathway of all eukaryotic cells.1 The
modification of serine or threonine residues on proteins
by addition of a GalNAc residue results in O-linked
oligosaccharides or O-glycans, which can lead to mucin
type molecules. Mucins are defined as cell surface or
secreted glycoproteins with large numbers of clustered
O-glycans. Though the structures of mucin-type O-gly-
cans are extremely heterogeneous, they have been clas-
sified as core-1, -2, -3, and so on, according to the
branching pattern at the a-GalNAc residue.2 Mucin-
type glycoproteins carrying poly-N-acetyllactosamine
oligosaccharides have been demonstrated on a variety
of tumor cells.3 Poly-N-acetyllactosamine chains may be
modified further by sialylation and fucosylation to pro-
duce selectin ligands.4 Poly-N-acetyllactosamine can be
formed on core-2 branched oligosaccharides by the
sequential tandem action of b-(1,4)-galactosyltransfer-
ase IV and b-(1,3)-N-acetylglucosaminyltransferase (i-
GlcNAc transferase). Biological studies have shown
that, unlike the N-glycans, core-2 O-glycans rarely con-
sist of more than two or three N-acetyllactosamine
repeats.5 We therefore undertook the synthesis of the
oligosaccharides 1–4, which represent biosynthetic
intermediates in the synthesis of short core-2 poly-
lactosamine chains. These compounds are for use in
kinetic studies on recently cloned glycosyltransferases.

Several reports on the synthesis of polylactosamine-
derived sequences have appeared in which a lactosamine
donor with an orthogonally protected OH-3 group of

galactose was utilized,6 a strategy requiring significant
protecting group manipulation. In continuation of our
efforts to increase the availability of biologically impor-
tant carbohydrate molecules, we here used a differen-
tially protected lactosamine donor (8) made from
monosaccharide precursors in a minimum number of
steps. This disaccharide was then employed as the gly-
cosyl donor in a general block synthetic glycosylation
strategy to furnish oligolactosaminylated core-2O-glycans
(Fig. 1).

Ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-b-
d-glucopyranoside (6), prepared from ethyl 3,4,6-tri-O-
acetyl-2-deoxy-2-phthalimido-1-thio-b-d-glucopyranoside
(5)7 in four steps, was coupled with 2,6-di-O-acetyl-3,4-
di-O-chloroacetyl-a-d-galactopyranosyl chloride (7)6 in
the presence of AgOTf to give the required bifunctional
disaccharide donor (8) in 73% yield (Scheme 1).
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Figure 1. Lactosaminylated core-2 O-glycans.
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Octyl 2-acetamido-4,6-O-benzylidene-2-deoxy-a-d-galacto-
pyranoside (10) was prepared from commercially avail-
able N-acetyl-d-galactosamine (9) in five steps, taking
advantage of the presence of the 4,6-O-acetal in the
molecule and a reported solvent effect to induce a-gly-
cosylation.8 The suitably protected T-disaccharide
acceptor 12 was prepared by coupling of methyl 2,3,4,6-
tetra-O-benzoyl-1-thio-b-d-galactopyranoside (11) with
10 in a dimethyl(methylthio)sulfonium triflate
(DMTST)9 promoted reaction (68%).10 The disacc-
haride diol 13 was obtained on benzylidene cleavage
under acidic conditions (Scheme 2).

Reaction of the disaccharide donor 8 with the di-
saccharide acceptor 13 in the presence of DMTST gave
the tetrasaccharide 14 in 61% yield. De-chloroacetyla-
tion of 14 using ‘hydrazinedithiocarbonate’11 in 2,6-
lutidine–HOAc (3:1) then furnished the tetrasaccharide
triol acceptor 15 in 74% yield after chromatographic
purification. DMTST catalyzed glycosylation of 15 with
the donor 8 gave the hexasaccharide derivative 16
(54%), which could in principle be further extended by
the above mentioned two-step sequence (Scheme 3).
Conventional deprotection of 15 and 16 was achieved in
four steps involving de-phthaloylation (ethylenediamine

in hot 1-butanol), N- and O-acetylation (Ac2O/Pyr), O-
deacetylation (0.1M NaOMe/MeOH) and catalytic
hydrogenolysis [H2 over 20% Pd(OH)2/C] giving an
overall yield of 56% for 1 and 49% for 2 after purification
on LH-20 Sephadex.

The two required GlcNAc terminated oligosaccharides
3 and 4 (Fig. 1) were conveniently obtained on a 5 mg
scale from 1 and 2 by b-galactosidase12 from jack beans.

The structures of all the products were supported by
their NMR13 and mass spectral data.14 Compounds 1–4
are being evaluated in a kinetic study of the i- and I-
GlcNAc transferases as well as several b-(1,4)-galacto-
syltransferases. Preliminary results indicate that the
biosynthesis of polylactosamines in O-glycans becomes
less efficient as chain length is increased. Using 1–4 and
other synthetic acceptors and several recombinant b-
(1,4)-galactosyltransferases, it appears that b-(1,4)-
galactosyltransferase IV together with b-(1,3)-N-acet-
ylglucosaminyltransferase is capable of synthesizing
poly-N-acetyllactosamines in core-2 branched oligo-
saccharides and the efficiency decreases dramatically with
chain length. Detailed results will be reported elsewhere.
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