Vinylsilane-Terminated Cycloacylation: A General Synthetic Approach to Four- to Six-Membered Cyclic Ketones and its Regiochemical Features

Naoyuki Kishi, Koichi Mikami*, and Takeshi Nakai*

Department of Chemical Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152, Japan

(Received in Japan 9 July 1991)

Key Words: vinylsilane; intramolecular acylation; a-silyl cation; methyl migration; sigmatropic rearrangement

Abstract: Intramolecular acylations of m-trimethylsilyl-m-alkenoyl chlorides (m=4 and 5) are described which afford the expected α -alkylidenecycloalkanone and/or the unexpected cycloalkenone, depending markedly upon the substitution pattern on the vinylsilane moiety and/or the chain length (m).

The construction of carbocyclic systems by electrophilic additions to alkenes is a well-established, powerful methodology in organic synthesis.¹ The carbon-carbon bond forming cyclizations ("carbocyclization") have also been utilized to prepare heterocyclic systems.^{2,3} A main subject of studies on these cation-induced reactions has been the development of an appropriate functionality to initiate or terminate the ring-forming processes. Vinylsilanes react readily with a wide range of electrophiles to give the products of substitution with retention of configuration. The regiochemistry of substitution is ensured by the so-called β -effect that carbenium ion development occurs at the carbon terminus β to the silicon.^{4,5} Thus, the intramolecular acylation of vinylic silanes would provide a versatile synthetic method for cyclic ketones with high regio- and stereocontrol.⁶ Of special interest are the cycloacylations of type A (endocyclic) and B (exocyclic) which are highly anticipated⁷ to give, respectively, the cycloalkenone and the α -alkylidenecycloalkanone, valuable classes of intermediates in organic synthesis (eq 1 and 2).

We now wish to report the details of our studies on the exocyclic cycloacylation of vinylsilanes of type 1 which provides the expected α -alkylidenecycloalkanone and/or the unexpected cycloalkenone, the ratio depending markedly upon the substitution pattern on the vinylsilane moiety and/or the chain length (n) (Scheme 1).⁸

RESULTS AND DISCUSSION

The availability of the starting acid (1) deserves special comment. In our continuing study on new synthetic applications of sigmatropic rearrangements, we have developed the sigmatropic variants of β -(trimethylsilyl)allyl alcohol derivatives which permit ready access to a variety of acid (1).⁹ The Claisen rearrangement of β -(trimethylsilyl)allyl alcohols and the tandem [2,3]Wittig-oxy-Cope sequence¹⁰ of β -(trimethylsilyl)allyl allyl ethers followed by Ag₂O oxidation (except for Ireland rearrangement) afford the acids (1) with n=1 and 2, respectively.

We examined the internal acylations of five acid chlorides using aluminum chloride as the activator. Typically, chloride 2 was added to a dilute suspension of aluminum chloride (3 equiv) in dichloromethane (1 mmol/200 ml) at 0 °C over a period of 3 h. The resulting mixture was stirred at 20-25 °C for 10 h, hydrolyzed with aqueous NaHCO₃ at 0 °C, and worked up as usual.¹¹ The cyclization products thus obtained are summarized in Table 1.

Inspection of Table 1 reveals notable regiochemical trends in the present cycloacylations which are not necessarily consistent with the regiochemical rule (" β -effect")^{4,5} widely accepted for the intermolecular versions. First, the most striking is that vinylsilane **2b** afforded the unusual β -acylation product (**4b**), whereas **2a** gave the normal α -acylation product (**3a**), indicating that the substitution pattern on the vinylsilane moiety exerts a great influence in dictating product regiochemistry (*i.e.* mode of cyclization). Second, comparison of entry 1 vs. 3 reveals that the regiochemical course is also affected, at least partially, by the chain length (*n*). Third and more significantly, entries 2 and 4 obviously indicate the occurrence of migration of methyl group at the allylic position during the unusual β -cycloacylation.

The observed regiochemistry is rationalized (or predicted) by properly considering the relative stability of the incipient cations and/or the ring strain involved. In the cycloacylations of vinylsilane possessing the β -alkyl substituent such as 2a, the secondary β -silylcarbenium ion (10) prevails to give the normal α -cyclization product (3) (eq 3). In the cycloacylations of vinylsilanes without β -alkyl substituent such as 2b and 2e, on the other hand, the tertiary α -silyl cation (11) predominates over the primary β -silyl one (10, R¹=H), thus leading to the unusual β -cyclization product (4) via the rearrangement of 11 to the β -silyl cation (12) accompanied by the migration of R² (eq 4).¹² While little has been known about the relative stability of tertiary α -silyl vs. primary β -silylcarbenium ion, the higher stability of the former is not unexpected.¹³ Overall, these considera-

^a The spectral data (IR and NMR) of these products are fully consistent with the assigned structures including stereochemistry. ^b Refers to isolated yields. ^c The two products were easily separated by column chromatography (silica gel, n-hexane / ether).

Table 1. Vinylsilane-Terminated Cycloacylation

tions would suggest that, unless any steric restrictions are present, the relative stability of the carbenium ions concerned decreases in the order: tertiary trialkyl > secondary β -silyl > tertiary α -silyl > primary β -silyl.¹⁴ The exclusive migration of the β -methyl observed in the reactions of 2b and 2e is rather surprising, because the β -hydride is known to migrate faster than the β -methyl in related carbocation reactions.¹⁵ Thus, the exclusive β -methyl migration is best explained as a result of the stereoelectronic effect operating in the sterically favorable conformer A (eq 5) which better suits for the methyl migration in virtue of the better orbital overlap between the axial methyl and the p-orbital of the α -silyl cation. In the cyclization of 2c or 2d where the normal α -cyclization leading to the cyclobutanone (3c or 3d)¹⁶ is depressed apparently by the severe ring strain, the β -cyclization product (4c or 4d) is formed as the major product.

The regiochemical aspect outlined here⁸ not only offers the first example of the unprecedented β cycloacylation of vinylic silanes⁶, but also warrants that one should not overestimate the " β -effect" in the electrophilic reactions of vinylic silanes in general. Furthermore, the present work convincingly demonstrates the synthetic potential of the internal acylations of vinylic silanes for the construction of a variety of carbocyclic frameworks.

EXPERIMENTAL

B.ps are uncorrected. IR spectra were recorded on a JASCO A-102 spectrometer. NMR spectra were recorded at 90 MHz on a Varian EM-390 spectrometer and chemical shifts were reported in ppm using TMS or CHCl₃ as internal standard. UV spectra were recorded on a Shimazu UV-200 spectrometer. High resolution mass spectra were performed on a JEOL JMS-505H mass spectrometer (Acid chlorides 2 were too unstable to detect the parent peaks.). GC analyses were run on a Shimazu GC-3BT chromatograph using He as a carrier gas (1 kg cm⁻²) and a 3 mm x 3 m column [20% PEG 20M on Chromosorb W (60-80 mesh)] at the indicated temperature. Benzene was dried by azeotropic distillation after drying with CaCl₂. CH₂Cl₂ and CCl₄ were dried by distillation from CaH₂. All reactions were performed under N₂ atmosphere. E/Z geometrical assignment and the isomeric ratio were determined by GC and/or NMR analyses according to the literature method.¹⁷

Preparation of m-trimethylsilyl-m-alkenovl chlorides (m=4.5)

5-Trimethylsilyl-5-heptenoyl chloride (2a)

To a solution of **1a** (0.54 g, 2.7 mmol) in benzene (2 ml) was added dropwise slowly oxalyl chloride (0.31 ml, 3.6 mmol) at 0 °C and allowed to room temperature. After stirring for 1 h, the reaction mixture was concentrated *in vacuo* followed by distillation afforded acid chloride **2a** (0.52 g, 88%; E/Z = 80 : 20 by NMR):

b.p. 73-79 °/0.3 mmHg; IR (neat) 1800, 1615, 1250, 840, 755 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.00 (s, 9H), 1.35-1.92 (m, 2H), 1.63 (d, J=6.9 Hz, 3H), 2.00-2.38 (m, 2H), 2.68-3.04 (m, 2H), 5.90 and 5.97 (2q, J=6.9 Hz, 0.8 and 0.2H).

4-Methyl-5-trimethylsilyl-5-hexenoyl chloride (2b)

To a solution of 1b (0.86 g, 4.3 mmol) in CCl₄ (1.5 ml) was added dropwise slowly thionyl chloride (0.9 ml, 12.3 mmol) at 0 °C and was heated at 55 °C for 3 h. The reaction mixture was concentrated *in vacuo* followed by distillation afforded acid chloride 2b (0.79 g, 84%): b.p. 88-95 °/2 mmHg; IR (neat) 1800, 1250, 840, 760 cm⁻¹; ¹H-NMR (CDCl₃) δ -0.09 (s, 1H), 0.88 (d, J=6.3 Hz, 3H), 1.40-1.90 (m, 2H), 2.00-2.44 (m, 1H), 2.68 (t, J=8.1 Hz, 2H), 5.36 (d, J=2.4 Hz, 1H), 5.54 (d, J=2.4 Hz, 1H).

4-Trimethylsilyl-4-hexenoyl chloride (2c)

Acid chloride 2c was prepared from 1c (0.92 g, 4.9 mmol) by oxalyl chloride as described for the preparation of 2a (0.57 g, 56%; $E/Z \approx 52$: 48 by NMR): b.p. 46-48 °/0.4 mmHg; IR (neat) 1805, 1620, 1255, 840, 760 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.03 and 0.13 (2s, 4.68 and 4.32H), 1.65 and 1.70 (2d, J=6.6 Hz, 1.56 and 1.44H), 2.27-3.00 (m, 4H), 5.93 and 6.10 (2q, J=6.6 Hz, 0.52 and 0.48H).

4-Trimethylsilyl-4-decenoyl chloride (2d)

Acid chloride 2d was prepared from 1d (2.65 g, 11.0 mmol) by oxalyl chloride as described for the preparation of 2a (1.72 g, 60%; E/Z = 55 : 45 by NMR): b.p. 76-84 °/0.2 mmHg; IR (neat) 1800, 1610, 1250, 955, 835, 755 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.00 and 0.08 (2s, 4.95 and 4.05H), 0.67-0.97 (m, 3H), 1.05-1.50 (m, 6H), 1.80-2.20 (m, 2H), 2.24-2.60 (m, 2H), 2.64-3.04 (m, 2H), 5.80 and 6.00 (2t, J=6.6 Hz, 0.55 and 0.45H).

3-Methyl-4-trimethylsilyl-4-pentenoyl chloride (2e)

Acid chloride 2e was prepared from 1e (0.65 g, 3.5 mmol) by thionyl chloride as described for the preparation of 2b (0.57 g, 80%): b.p. 127-128 °/0.2 mmHg; IR (neat) 1800, 1250, 840, 760 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.10 (s, 9H), 1.06 (d, 6.6 Hz, 3H), 2.68-3.23 (m, 3H), 5.43 (d, J=2.1 Hz, 1H), 5.64 (d, J=2.1 Hz, 1H).

Cyclization of m-trimethylsilyl-m-alkenovl chlorides (m=4.5)

A typical procedure is shown in the cyclization of 2a.

Cyclization of 2a

To a dilute suspension of AlCl₃ (0.26 g, 1.95 mmol) in anhydrous CH₂Cl₂ (120 ml) was added dropwise slowly a solution of 2a (0.14 g, 0.65 mmol) in anhydrous CH₂Cl₂ (20 ml) over a period of 3 h at 0 °C. After stirring for 10 h at room temperature, the reaction mixture was poured into sat. NaHCO₃, AlCl₃ was filtered off and extracted with CH₂Cl₂. The organic extracts were washed with brine, dried with MgSO₄ and concentrated *in vacuo* to give 2-ethylidenecyclopentan-1-one, $3a^{18}$ as one isomer (0.11 g, quant.; *E*>95% by NMR): IR (neat) 1710, 1650, 810 cm⁻¹; ¹H-NMR (CDCl₃) δ 1.64-2.77 (m, 6H), 1.88 (d, J=7.5 Hz, 3H), 6.50 (q, t, J=7.5 and 2.7 Hz, 1H).

Cyclization of 2b

The cyclization of 0.22 g (1.0 mmol) of 2b gave 3-methyl-2-cyclohexen-1-one, $4b^{19}$ as one isomer after purification by preparative TLC (84 mg, 76%): TLC (n-hexane : $Et_2O = 2 : 1$) Rf=0.18; IR (neat) 1765, 1665, 1630, 885 cm⁻¹; ¹H-NMR (CCl4) δ 1.40-2.46 (m, 6H), 1.83 (s, 3H), 5.83 (s, 1H) ; MS m/e 110 (M⁺).

Cyclization of 2c

The cyclization of 0.45 g (2.2 mmol) of 2c gave 2-ethylidenecyclobutan-1-one, 3c (80 mg, 38%; E>95% by NMR) and 2-methyl-2-cyclopenten-1-one, $4c^{20}$ (0.13 g, 62%) as two isomers which were isolated by silica-gel column chromatography: 3c; TLC (n-hexane : $Et_2O = 2 : 1$) Rf=0.30; IR (CCl₄) 1760, 1675, 1090 cm⁻¹; ¹H-NMR (CCl₄) δ 1.75 (d, J=7.5 Hz, 3H), 2.40-2.73 (m, 2H), 2.78-3.11 (m, 2H), 6.26 (q, t, J=7.5 and 2.8 Hz, 1H); GC (PEG 20M, 150 °C) Rt = 6.3 min; MS m/e 96.0571 (calcd for C₆H₈O, 96.0575): 4c; TLC (n-hexane : $Et_2O = 2 : 1$) Rf=0.18; IR (CCl₄) 1705, 1640, 1065 cm⁻¹; ¹H-NMR (CCl₄) δ 1.73 (s, 3H), 2.17-2.37 (m, 2H), 2.40-2.64 (m, 2H), 7.12-7.27 (m, 1H); GC (PEG 20M, 150 °C) Rt = 7.3 min; MS m/e 96.0573 (calcd for C₆H₈O, 96.0575).

Cyclization of 2d

The cyclization of 0.52 g (2.0 mmol) of 2d gave 2-hexylidenecyclobutan-1-one, 3d (0.12 g, 39%; *E*>95% by NMR) and 2-pentyl-2-cyclopenten-1-one, $4d^{21}$ (0.17 g, 54%) as two isomers which were isolated by silica-gel column chromatography: 3d; TLC (n-hexane : Et₂O = 1 : 1) R_f = 0.57; IR (neat) 1750, 1665, 1100 cm⁻¹; ¹H-NMR (CDCl₃) δ 0.64-1.00 (m, 3H), 1.07-1.66 (m, 6H), 1.84-2.30 (m, 2H), 2.38-2.68 (m, 2H), 2.74-3.00 (m, 2H), 6.23 (t, t, J=7.5 and 2.8 Hz, 1H); GC (PEG 20M, 180 °C) R_t = 16.6 min; MS m/e 152 (M⁺); UV λ_{max} = 239 nm: 4d; TLC (n-hexane : Et₂O = 1 : 1) R_f = 0.42; IR (neat) 1700, 1630, 1000, 790 cm⁻¹; ¹H-NMR (CCl₄) δ 0.73-1.07 (m, 3H), 1.11-1.67 (m, 6H), 2.00-2.72 (m, 6H), 7.23-7.40 (m, 1H); GC (PEG 20M, 180 °C) R_t = 17.5 min; MS m/e 152 (M⁺); UV λ_{max} = 226 nm.

Cyclization of 2e

The cyclization of 0.57 g (2.8 mmol) of 2e gave 3-methyl-2-cyclopenten-1-one, $4e^{19}$ as one isomer (0.24 g, quant.): TLC (n-hexane : Et₂O = 1 : 1) Rf = 0.17; IR (neat) 1700, 1670, 1620, 1180, 965 cm⁻¹; ¹H-NMR (CDCl₃) δ 2.09 (s, 3H), 2.29-2.67 (m, 4H), 5.80-5.97 (m, 1H); MS m/e 96 (M⁺).

REFERENCES AND NOTES

- Review, Bartlett, P. A. In Asymmetric Synthesis; Morrison, J. D. Ed.; Academic: New York, 1984; Vol. 3, Chapters 5-6.
- Katritsky, A.; Rees, C. W. Eds. Comprehensive Heterocyclic Chemistry; Pergamon: Oxford, 1984; Vol. 1-6.
- 3. Review, Speckamp, W. N.; Hiemstra, H. Tetrahedron 1985, 41, 4367.

- Reviews, (a) Colvin, E. W. Silicon in Organic Synthesis; Butterworths: London, 1981. (b) Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57. (c) Fleming, I. In Comprehensive Organic Chemistry; Barton, D. H. R.; Ollis, W. D. Eds.; Pergamon: Oxford, 1979; Vol. 3, p. 539. (d) Weber W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983. (e) Magnus, P. D.; Sarker, T.; Djuric, S. In Comprehensive Organometallic Chemistry; Wilkinson, G. W.; Stone, F. G. A.; Abel, F. W. Eds.; Pergamon: Oxford, 1982; Vol. 7, p. 515. (f) Hudrlik, P. F. In Journal Organometallic Chemistry Library; Seyferth, D. Ed.; Elsevior: Amsterdam, 1976; Vol. 1, p. 127.
- For a recent theoretical study on the β effect and many leading references, see: Lambert, J. B.; Chelius, E. C. J. Am. Chem. Soc. 1990, 112, 8120.
- Review on vinylsilane- and alkynylsilane-terminated cyclization reactions: Blumenkopf, T. A.; Overman, L. E. Chem. Rev. 1986, 86, 857.
- (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
 (b) Tenud, L.; Farooq, S.; Seibl, J.; Eschenmoser, E. Helv. Chim. Acta 1976, 53, 2059.
- 8. For our preliminary communication: Mikami, K.; Kishi, N.; Nakai, T. Tetrahedron Lett. 1983, 24, 795.
- (a) Mikami, K.; Kishi, N.; Nakai, T. Chemistry Lett. 1982, 1643. (b) Mikami, K.; Kishi, N.; Nakai, T. Tetrahedron 1986, 42, 2911.
- 10. For related sigmatropic sequences of non-silylated substrates, see: Mikami, K.; Taya, S.; Nakai, T.; Fujita, Y. J. Org. Chem. 1981, 46, 5447; Mikami, K.; Nakai, T. Chemistry Lett. 1982, 1349.
- 11. This procedure is essentially the same as used for the cycloacylation of alkynylsilanes: Utimoto, K.; Tanaka, M.; Kitani, M.; Nozaki, H. Tetrahedron Lett. 1978, 2301.
- 12. At present it is not clear whether the rearrangement of 11-----12 occurs in a single step as depicted in eq 4 or via the vinylic silane (C) once formed by deprotonation of 11 as a refree suggested to us.

- 13. (a) Sommer has reported that HCl addition to *i*-propenyltrimethylsilane occurs via the tertiary α-silyl cation: Sommer, L. H.; Bailey, D. L.; Goldberg, G. M.; Buck, C. E.; Bye, T. S.; Evans, F. J.; Whitmore, F. C. J. Am. Chem. Soc. 1954, 76, 1613. (b) Hoflack, J.; De Clercq, P. J. Bull. Soc. Chim. Belg. 1983, 92, 407.
- Kuwajima has reported that a tertiary (trialkyl) carbenium ion is more stable than a secondary β-silyl cation in related cycloacylation reaction: Fukuzaki, K.; Nakamura, E.; Kuwajima, I. J. Chem. Soc., Chem. Commun. 1983, 499.
- (a) Fleming, I.; Patel, S. K. Tetrahedron Lett. 1981, 22, 2321. (b) Sakurai, H.; Imai, T.; Hosomi, A. *Ibid.* 1977, 4045.
- 16. The E geometry of 3a, 3c, and 3d was unequivocally assigned through their NMR comparisons with those of an E and Z authentic sample or closely related compounds: Dubois, J. E.; Dubois, M. C. R. Acad. Sci., Ser. C 1963, 256, 715; Bertrand, M.; Maurin, R.; Gras, J. L.; Gill, G. Tetrahedon 1975, 31, 849.
- 17. Chan, T. H.; Mychajlowskij, W.; Amouroux, A. Tetrahedron Lett. 1977, 1605.
- 18. Smith, R. A. J.; Spencer, T. A. J. Org. Chem. 1970, 35, 3220.

- 19. Sum, F. -W.; Weiler, L. Can. J. Chem. 1979, 57, 1431.
- 20. Fischli, A.; Klaus, M.; Mayer, H.; Schonholzer, P.; Ruegg, R. Helv. Chim. Acta 1975, 58, 564.
- 21. Shimazaki, M.; Huang, Z.-H.; Goto, M.; Suzuki, N.; Ohta, A. Synthesis 1990, 677.