[Supporting Information]

# Copper(I)-catalyzed Carboxylation of Aryl- and Alkenylboronic Esters

Jun Takaya, Satoshi Tadami, Kazutoshi Ukai, and Nobuharu Iwasawa\*

Department of Chemistry, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8551, Japan

## Contents

| 1) Experimental section and analytical data for new compounds                         | SI1-SI8  |
|---------------------------------------------------------------------------------------|----------|
| 2) Copies of <sup>1</sup> H NMR, <sup>13</sup> C NMR and IR spectra for new compounds |          |
| and carboxylation products                                                            | SI9-SI98 |

**General.** <sup>1</sup>H and <sup>13</sup>C-NMR spectra were recorded on a JEOL Lambda-400 (400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C), a JEOL AL-400 (400 MHz for <sup>1</sup>H and 100 MHz for <sup>13</sup>C), a JEOL Lambda-300 (300 MHz for <sup>1</sup>H and 75 MHz for <sup>13</sup>C) or a JEOL AL-300 (300 MHz for <sup>1</sup>H and 75 MHz for <sup>13</sup>C) spectrometer using CHCl<sub>3</sub> (<sup>1</sup>H,  $\delta = 7.26$ ), CDCl<sub>3</sub> (<sup>13</sup>C,  $\delta = 77.0$ ), DMSO (<sup>1</sup>H,  $\delta = 2.49$ ), DMSO (<sup>13</sup>C,  $\delta = 40.45$ ) as an internal standard. IR spectra were recorded on an FT/IR-460 plus (JASCO Co., Ltd.) or a Spectrum 100 with universal ATR sampling accessory (Perkim Elmer instruments). Flash column chromatography was conducted on silica gel 60N (Kanto Chemical Co., Inc.). THF was purified by solvent purification system of Glass Contour. Dehydrated N,N-dimethylformamide, diethyl ether and dichloromethane were purchased from Kanto Chemicals. Recycling preparative GPC-HPLC was carried out on LC-918 (Japan Analytical Industry Co., Ltd.) using JAIGEL-2H. Cesium fluoride (Wako Pure Chemical Industries, Ltd.) was dried by heating at 150 °C for 2 days in vacuo.

# preparation of bisoxazoline ligand 1: 5,5-Bis(4,5-dihydrooxazol-2-yl)nonan 1

Bu Bu

Under an argon atmosphere,  $N,N^{\circ}$ -bis(2-chloroethyl)-2,2-di-*n*-butylpropan-1,3-diamide<sup>1</sup> (2.92 g, 8.61 mmol) was

added to 5% NaOH / MeOH (NaOH 1.31 g, MeOH 24 ml) and the mixture was refluxed for 2 hours. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The resulting solids were dissolved in water (20 ml), followed by extraction 6 times with methylene chloride. After the combined organic layer was dried over MgSO<sub>4</sub>, the solvent was removed under reduced pressure to give crude product (2.05 g). The crude product was purified by recrystllization from hexane to give 1 (1.59 g, 5.97 mmol, 62% from 6) as colorless crystal.

IR (KBr): 2957, 2925, 2902, 2871, 1652 cm<sup>-1</sup>.

<sup>1</sup>H-NMR (400 MHz, CDCl<sub>3</sub>):  $\delta = 0.88$  (6H, t, J = 7.2 Hz), 1.08-1.22 (4H, m), 1.22-1.39 (4H, m), 1.85-1.98 (4H, m), 3.87 (4H, t, J = 9.2 Hz), 4.23 (4H, t, J = 9.2 Hz).

<sup>13</sup>C-NMR (100 MHz, CDCl<sub>3</sub>):  $\delta = 14.0, 22.9, 26.1, 32.7, 45.9, 54.2, 67.5, 168.5.$ 

Anal. Calcd. For C<sub>15</sub>H<sub>26</sub>N<sub>2</sub>O<sub>2</sub>: C 67.63; H 9.84; N 10.52; Found: C 67.34; H 9.67; N 10.29.

## preparation of aryl- or alkenylboronic esters:

 $2a^2$ ,  $2b^2$ ,  $2c^2$ ,  $2d^3$ ,  $2e^3$ ,  $2l^3$  and  $4a^4$  were prepared according to the literature procedures. 2f, 2g, 2h, 2j and 4e were prepared from the corresponding bromobenzene or bromostyrene derivatives according to the literature procedure using 2,2-dimethylpropan-1,3-diol instead of ethylene glycol.<sup>5</sup>

### 5,5-Dimethyl-2-[4-(phenylethynyl)phenyl]-1,3,2-dioxaborinane (2f)



IR (KBr) 3076, 3033, 2956, 2937, 2900, 2211, 1604, 1478, 1421 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (400 MHz):  $\delta = 1.04$  (6H, s), 3.78 (4H, s), 7.30-7.39 (3H, m), 7.50-7.58 (4H, m), 7.80 (2H, d, J = 8.4 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz): δ = 22.0, 31.9, 72.3, 89.7, 90.3, 123.2, 125.2, 128.18, 128.25, 130.6, 131.5, 133.6 (1C<sub>C-B</sub> missing);

Anal. Calcd for C<sub>19</sub>H<sub>19</sub>BO<sub>2</sub>: C 78.65, H 6.60. Found: C 78.54, H 6.70.

### 5,5-Dimethyl-2-(4-(oct-1-yn-1-yl)phenyl)-1,3,2-dioxaborinane (2g)



IR (KBr) 3072, 3030, 2958, 2932, 2871, 2857, 2223, 1603, 1477, 1421 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (400 MHz):  $\delta = 0.91$  (3H, t, J = 7.2 Hz), 1.02 (6H, s), 1.26-1.40 (4H, m), 1.41-1.52 (2H, m), 1.61 (2H, tt, J = 7.6, 7.2 Hz), 2.41 (2H, t, J = 7.2 Hz), 3.76 (4H, s), 7.38 (2H, d, J = 8.0 Hz), 7.72 (2H, d, J = 8.0 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz):  $\delta$  = 14.1, 19.6, 21.9, 22.6, 28.7, 28.8, 31.4, 31.9, 72.3, 80.9, 91.5, 126.2, 130.5, 133.5 (1C<sub>C-B</sub> missing);

Anal. Calcd for  $C_{19}H_{27}BO_2$ : C 76.52, H 9.13. Found: C 76.32, H 9.20.

5,5-Dimethyl-2-(4-ethenylphenyl)-1,3,2-dioxaborinane (2h)



IR (KBr) 2960, 2928, 2873, 1605, 1479, 1423 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (400 MHz):  $\delta = 1.03$  (6H, s), 3.78 (4H, s), 5.28 (1H, d, J = 11.0 Hz), 5.81 (1H, d, J = 17.8 Hz), 6.74 (1H, dd, J = 17.8, 11.0 Hz), 7.41 (2H, d, J = 8.0 Hz), 7.77 (2H, d, J = 8.0 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz): δ = 21.9, 31.9, 72.3, 114.4, 125.4, 134.1, 137.0, 139.6(1C<sub>CB</sub> missing);

Anal. Calcd for C<sub>13</sub>H<sub>17</sub>BO<sub>2</sub>: C 72.26, H 7.93. Found: C 72.50, H 8.13.

5,5-Dimethyl-2-(4-bromophenyl)-1,3,2-dioxaborinane (2j)



IR (KBr) 3050, 2958, 2939, 2903, 1584, 1480, 1422 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (400 MHz):  $\delta = 1.02$  (6H, s), 3.76 (4H, s), 7.48 (2H, d, J = 8.3 Hz), 7.65 (2H, d, J = 8.3 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz):  $\delta$  = 21.9, 31.9, 72.3, 125.6, 130.7, 135.5 (1C<sub>C-B</sub> missing); Anal. Calcd for C<sub>11</sub>H<sub>14</sub>BBrO<sub>2</sub>: C 49.12, H 5.25. Found: C 49.35, H 5.53.

## 5,5-Dimethyl-2-(1-phenylethen-1-yl)-1,3,2-dioxaborinane (4e)



IR (neat) 3056, 3025, 2962, 2933, 2890, 1597, 1476, 1415, 1340, 1251, 1230, 1197, 1104, 1001, 943, 912, 781, 731, 699, 644 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>2</sub>) (400 MHz):  $\delta = 1.05$  (6H, s), 3.75 (4H, s), 5.97 (1H, d, J = 3.4 Hz),

6.07 (1H, d, J = 3.4 Hz), 7.27 (1H, t, J = 7.3 Hz), 7.35 (2H, t, J = 7.3 Hz), 7.45 (2H, d, J = 7.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz): δ = 21.8, 31.6, 72.3, 126.6, 127.5, 127.9, 129.5, 142.4 (1C<sub>C-B</sub> missing); *Anal*. Calcd for C<sub>13</sub>H<sub>17</sub>BO<sub>2</sub>: C 72.26, H 7.93. Found: C 72.05, H 7.63.

Arylboronic esters **2k** and **4b** were prepared by esterification of the corresponding commercially available arylboronic acids: To a mixture of arylboronic acid (3.0 mmol) and 2,2-dimethylpropan-1,3-diol (3.3 mmol) in  $CH_2Cl_2$  (6.0 ml) was added MgSO<sub>4</sub> (4.0 g) and the mixture was stirred at room temperature overnight. After filtration, the solvent was evaporated and the crude product was purified by silica gel chromatography (5~10% ethyl acetate in hexanes) or by recrystallization from hexane and ethyl acetate.

### 5,5-Dimethyl-2-(4-iodophenyl)-1,3,2-dioxaborinane (2k)



IR (KBr) 2955, 1579, 1479, 1421 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (300 MHz):  $\delta = 1.02(6H, s)$ , 3.75 (4H, s), 7.51 (2H, d, J = 6.6 Hz), 7.70 (2H, d, J = 6.6 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (75 MHz): δ = 21.9, 31.9, 72.3, 98.1, 135.5, 136.7 (1C<sub>C-B</sub> missing); *Anal*. Calcd for C<sub>11</sub>H<sub>14</sub>BIO<sub>2</sub>: C 41.82, H 4.47. Found: C 41.92, H 4.54.

### 5,5-Dimethyl-2-(2-cyclohexylethen-1-yl)-1,3,2-dioxaborinane (4b)



IR (KBr) 2925, 2851, 1634, 1476, 1413 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (300 MHz):  $\delta = 0.97$  (6H, s), 1.03-1.35 (5H, m), 1.52-1.78 (5H, m), 1.92-2.08 (1H, m), 3.63 (4H, s) 5.29 (1H, dd, J = 18.0, 1.2 Hz), 6.49 (1H, dd, J = 18.0, 6.6 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (75 MHz):  $\delta$  = 21.9, 26.0, 26.2, 31.8, 32.2, 43.0, 72.1, 157.2 (1C<sub>C-B</sub> missing);

Anal. Calcd for C<sub>13</sub>H<sub>23</sub>BO<sub>2</sub>: C 70.29, H 10.44. Found: C 70.30, H 10.15.

## **Preparation of 2i<sup>6</sup>:**

A mixture of 4-bromonitrobenzene (202 mg, 1.00 mmol), bis(neopentyl glycolato)diboron (247 mg, 1.09 mmol), PdCl<sub>2</sub>(dppf) (21.8 mg, 0.03 mmol) and potassium acetate (290 mg, 3.04 mmol) in DMSO (6 ml) was heated at 80 °C for 5 hours. The reaction was quenched by adding water and the mixture was filtered through a short pad of Celite. The filtrate was extracted four times with ether and combined organic layer was washed with brine, and dried over MgSO<sub>4</sub>. Solvent was removed under reduced pressure to give crude product. This crude product was purified by silica gel chromatography (10% ethyl acetate in hexanes) to afford **2i** (125 mg, 0.53 mmol, 53%).

#### 5,5-Dimethyl-2-(4-nitrophenyl)-1,3,2-dioxaborinane (2i)



IR (KBr) 2963, 1514, 1478, 1425, 1348, 1333, 1309, 1255, 1125, 851, 729, 700, 633 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (300 MHz):  $\delta = 1.04$  (6H, s), 3.80 (4H, s), 7.98 (2H, d, J = 8.8 Hz), 8.17 (2H, d, J = 8.8 Hz);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz):  $\delta$  = 21.8, 31.9, 72.4, 122.2, 134.7, 149.6 (1C<sub>C-B</sub> missing); Anal. Calcd for C<sub>11</sub>H<sub>14</sub>BNO<sub>4</sub>: C 56.21, H 6.00, N 5.96. Found: C 56.19, H 6.16, N 5.86.

#### **Preparation of 2m:**

To a stirred solution of benzothiophene (1.75 ml, 15.0 mmol) in THF (75 ml) was added *n*-butyllithium (9.6 ml, 1.56 M) at -40 °C. After 2 h, triethylborate (2.80 ml, 16.5 mmol) was added dropwise over 5 min at -40 °C and the mixture was stirred overnight at the same temperature. The mixture was treated with 1 M HCl and then extracted with AcOEt three times. To the combined organic layer was added Na<sub>2</sub>SO<sub>4</sub> and 2,2-dimethyl-1,3-propanediol (1.58 g, 15.2 mmol), and the mixture was stirred overnight. Removal of the solvent under reduced pressure afforded white solids, which were recrystallized to give **2m** (2.42 g, 9.8 mmol) in 66% yield.

5,5-Dimethyl-2-(benzothiophen-2-yl)-1,3,2-dioxaborinane (2m)



IR (KBr) 3055, 3022, 2954, 2906, 2867, 1518, 1493, 1480, 1455 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (300 MHz):  $\delta = 1.05$  (6H, s), 3.80 (4H, s), 7.32-7.37 (2H, m), 7.81-7.97 (3H, m);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (75 MHz): δ = 21.8, 32.0, 72.5, 122.5, 123.9, 124.2, 124.9, 132.8, 140.6, 143.4 (1C<sub>C-B</sub> missing);

Anal. Calcd for  $C_{13}H_{15}BO_2S$ : C 63.44, H 6.14, S 13.03. Found: C 63.74, H 6.34, S 13.01.

### **Preparation of 4d**<sup>7</sup>:

A mixture of *p*-trifluoromethylphenylacetylene (2.57 g, 15.1 mmol) and catecholborane (2.5 ml, 23.5 mmol) was heated at 70 °C for 4 hours. The reaction was quenched by adding water and the mixture was stirred for 9 hours at room temperature. The mixture was extracted with AcOEt three times, and the combined organic layer was washed with water (2 times) and brine, and dried over MgSO<sub>4</sub>. After removal of solvent under reduced pressure, 2,2-dimethylpropan-1,3-diol (1.76g, 16.9 mmol) and toluene (40 ml) were added and the mixture was heated to reflux with the azeotropic removal of water. Organic layer was extracted with ether and the combined ether extract was washed with water three times, dried over MgSO<sub>4</sub>. After removal of solvent under reduced pressure, dried over MgSO<sub>4</sub>. After removal of solvent under (40 ml) were added and the mixture was heated to reflux with the azeotropic removal of water. Organic layer was extracted with ether and the combined ether extract was washed with water three times, dried over MgSO<sub>4</sub>. After removal of solvent under reduced pressure, the residue was purified by silica gel chromatography (10% ethyl acetate in hexanes) and recrystallization from hexane to give the alkenylboronic ester **4d** (860 mg, 20 %, 2 steps).

## 5,5-Dimethyl-2-[2-(4-trifluoromethylphenyl)ethen-1-yl)]-1,3,2-dioxaborinane (4d)



IR (KBr) 3055, 3016, 2962, 2905, 1631, 1615, 1577, 1477, 1415, 1378, 1314, 1282, 1259, 1172, 1111, 1066, 1014, 990, 819, 679, 588, 498 cm<sup>-1</sup>;

<sup>1</sup>H NMR (CDCl<sub>3</sub>) (400 MHz):  $\delta = 1.01$  (6H, s), 3.71 (4H, s), 6.20 (1H, d, J = 18.4 Hz), 7.33 (1H, d, J = 18.4 Hz), 7.53-7.61 (4H, m);

<sup>13</sup>C NMR (CDCl<sub>3</sub>) (100 MHz):  $\delta$  = 21.9, 31.9, 72.2, 124.1(1C, q, *J*<sub>CF</sub> = 270.6 Hz), 125.4 (1C, q, *J*<sub>CF</sub> = 3.3 Hz), 127.0, 130.0 (1C, q, *J*<sub>CF</sub> = 32 Hz), 141.0, 145.3 (1C<sub>C-B</sub> missing); *Anal*. Calcd for C<sub>14</sub>H<sub>16</sub>BF<sub>3</sub>O<sub>2</sub>: C 59.19, H 5.68. Found: C 59.44, H 5.85.

#### **Preparation of 4c:**

A mixture of 3,3-dimethyl-1-butyne (1.0 ml, 8.2 mmol) and dibromoborane dimethylsulfide complex (1 M  $CH_2Cl_2$  sol., 8.2 ml, 8.2 mmol) in methylene chloride (8 ml) was stirred overnight at room temperature. After removal of solvent, 1 M aq. NaOH (8.0 ml) was slowly added to give precipitates, which were collected by suction filtration. The filtrate was extracted with methylene chloride and the solvent was removed under reduced pressure. To the residue was added a small amount of 1M aq. NaOH to give precipitates, which were collected again by suction filtration. The combined precipitates (609 mg) were used for the next esterification.

To a solution of the above precipitates and 2,2-dimethylpropan-1,3-diol (850 mg 8.16 mmol) in ether was added  $Na_2CO_3$ , and the mixture was stirred overnight at room temperature. Filtration and evaporation gave crude product (white solid, 1.12 g). A part of this crude product (ca. 700 mg) was purified by GPC to give **4c** (423 mg, 2.2 mmol) in 27 % yield (2 steps).

#### 5,5-Dimethyl-2-(2-t-butylethen-1-yl)-1,3,2-dioxaborinane (4c)



IR (KBr) 2960, 2869, 1634, 1477, 1414 cm<sup>-1</sup>; <sup>1</sup>H NMR (CDCl<sub>3</sub>) (300 MHz):  $\delta = 0.97$  (6H, s), 1.01 (9H, s), 3.64 (4H, s) 5.26 (1H, d, J = 18.3 Hz), 6.55 (1H, d, J = 18.3 Hz); <sup>13</sup>C NMR (CDCl<sub>3</sub>) (75 MHz):  $\delta = 21.9, 29.0, 31.8, 34.6, 72.1, 161.8$  (1C<sub>C-B</sub> missing);

Anal. Calcd for C<sub>11</sub>H<sub>21</sub>BO<sub>2</sub>: C 67.37, H 10.79. Found: C 67.08, H 10.59.

# <u>General procedure for copper-catalyzed carboxylation of arylboronic esters with</u> <u>carbon dioxide (in the presence of bis(oxazoline)):</u>

A DMF suspension (2.5 ml) of CuI (1.9 mg, 0.01 mmol), bisoxazoline ligand 1 (2.9 mg, 0.01 mmol), arylboronic ester (0.2 mmol) and CsF (0.60 mmol, 91 mg) was stirred in a glass tube ( $\phi = 1.7$  cm, 18 cm) under an atmospheric pressure of CO<sub>2</sub> and then the system was closed. The mixture was heated at 90 °C for 10 hours, and then the reaction was quenched with 1 M HCl aq. Organic layer was extracted with Et<sub>2</sub>O four times and the combined extract was dried over MgSO<sub>4</sub>. After removal of the solvent under reduced pressure, the residue was purified by silica gel chromatography (hexane : CH<sub>2</sub>Cl<sub>2</sub> = 7:1 – 0:1, followed by CH<sub>2</sub>Cl<sub>2</sub>: ethyl acetate = 9:1) or by reverse extraction (Et<sub>2</sub>O/aq. NaHCO<sub>3</sub> then Et<sub>2</sub>O/ aq. HCl) followed by filtration through silica gel to afford corresponding carboxylic acids.

# <u>General procedure for copper-catalyzed carboxylation of alkenylboronic esters</u> with carbon dioxide (in the absence of bis(oxazoline)):

A DMF suspension (2.5 ml) of CuI (1.9 mg, 0.01 mmol), alkenylboronic ester (0.2 mmol) and CsF (0.60 mmol, 91 mg) was stirred in a glass tube ( $\phi = 1.7$  cm, 18 cm) under an atmospheric pressure of CO<sub>2</sub> and then the system was closed. The mixture was heated at 90 °C for 10 hours, and then the reaction was quenched with 1 M HCl aq. Organic layer was extracted with Et<sub>2</sub>O four times and the combined extract was dried over MgSO<sub>4</sub>. After removal of the solvent under reduced pressure, the residue was purified by silica gel chromatography (hexane : CH<sub>2</sub>Cl<sub>2</sub> = 7:1 – 0:1, followed by CH<sub>2</sub>Cl<sub>2</sub>: ethyl acetate = 9:1) or by reverse extraction (Et<sub>2</sub>O/aq. NaHCO<sub>3</sub> then Et<sub>2</sub>O/ aq. HCl) followed by filtration through silica gel to afford corresponding carboxylic acids.

Spectroscopic data of carboxylic acids  $3f^8$ ,  $3g^9$ ,  $5b^{10}$ ,  $5c^{11}$  and  $5e^{12}$  were reported in the literature. Other carboxylic acids were commercially available.

#### References

(1) *N*,*N*'-Bis(2-chloroethyl)-2,2-di-*n*-butylpropan-1,3-diamide was prepared according to the literature procedure for the synthesis of analogous diamide, which was an intermediate for the synthesis of well established chiral bis(oxazoline) ligand, see; Evans, D. A.; Woerpel, K. A.; Hinman, M. M.; Faul, M. M. *J. Am. Chem. Soc.* **1991**, *113*, 726-728.

(2) Kabalka, G. W.; Akula, M. R.; Zhang, J. *Nuclear Medicine and Biology* **2002**, 29, 841.

- (3) Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 8706.
- (4) Kobayashi, Y.; Nakayama, Y.; Mizojiri, R. Tetrahedron 1998, 54, 1053.

(5) Wong, K. -T.; Chien, Y.-Y.; Liao, Y.-L.; Lin, C.-C.; Chou, M.-Y.; Leung, M.-k. J. Org. Chem. 2002, 67, 1041.

(6) (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. **1995**, 60, 7508. (b) Ishiyama, T.; Itoh, Y.; Kitano, T.; Miyaura, N. *Tetrahedron Lett.* **1997**, *38*, 3447.

(7) Brown, H. C.; Gupta, S. K. J. Am. Chem. Soc. 1975, 97, 5249.

(8) Moore, L. R.; Western, E. C.; Craciun, R.; Spruell, J. M. Dixon, D. A.; O'Halloran,

K. P.; Shaughnessy, K. H. Organometallics 2008, 27, 576.

- (9) Gavrin, A. J.; Douglas, E. P. Macromolecules 2001, 34, 5876.
- (10) Concellón, J. M.; Concellón, C. J. Org. Chem 2006, 71, 1728.
- (11) Freeman, F.; Kappos, J. C. J. Org. Chem 1986, 51, 1654.
- (12) Zhao, X.; Alper, H.; Yu, Z. J. Org. Chem 2006, 71, 3988.



¢

17

Mi







| number of scan<br>zero filling<br>gain<br>date of scan | 16<br>ON<br>Auto (8)<br>2007/02/20 21:29 | resolution<br>apodization<br>scan speed<br>date of data processing | 4 cm-1<br>Cosine<br>Auto (2 mm/sec)<br>2007/02/20 21:30 | Ph-=-{-}-B |
|--------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|------------|
| sample name                                            | NO. 2-2-20                               |                                                                    |                                                         | 2f         |

KBr

| No. cm-1    | %T       | No. cmr—1   | %Т       | No. cm-1    | %Т       | No. cm-1    | %T       | No. cm-1    | %T       |
|-------------|----------|-------------|----------|-------------|----------|-------------|----------|-------------|----------|
| 1 3855 01   | 91, 1013 | 2 3807.76   | 92.8935  | 3 3650.59   | 91.6271  | 4_3434.6    | 83. 631  | 5 3075.9    | 75. 1079 |
| 6 3033 48   | 81.0022  | (7)2956.34  | 41.774   | (8)2937.06  | 50, 5001 | 9/2900. 41  | 55.6262  | 10 2210. 99 | 88.356   |
| 11 1932 32  | 87.3045  | 12 1816.62  | 92,7239  | 13 1677.77  | 91.5581  | 14/1603.52  | 29. 2498 | 15 1542.77  | 60.0363  |
| 16 1478 17  | 20 2883  | 17 1442 49  | 56.8353  | 18 1421, 28 | 21.6623  | 19 1403 92  | 66.2783  | 20 1377.89  | 39. 3488 |
| 21 1341 25  | 16 2837  | 22)1308.46  | 1.85978  | 23 1249, 65 | 9.67323  | 24 1142, 62 | 22. 1147 | 25 1125, 26 | 12. 5859 |
| 26 1103 08  | 51 2216  | 27 1070 3   | 61.7868  | 28 1018 23  | 51.6274  | 29 995, 089 | 64.5191  | 30 927, 593 | 78, 1489 |
| 31 914 093  | 69 614   | 32)834 062  | 23, 6986 | 33 810 92   | 61, 615  | 34 753.066  | 17.0829  | 35 738, 603 | 58, 3344 |
| 36 687 498  | 19 3045  | 37 659 536  | 49 0449  | 38 642 179  | 16.0254  | 39 543, 828 | 82.49    | 40 509, 115 | 59, 6203 |
| 41 499, 473 | 63. 2658 | 42 473. 439 | 83.9786  |             |          |             |          |             |          |

C:\WINNMR98\COMMON\DATA\iwasawa\ukai\PhCCPhBneo.als 4-PhCCPhBneo





#### C:\WINNMR98\COMMON\DATA\iwasawa\ukai\PhCCPhBneo (13C).als 4-PhCCPhBneo

•

.



C:\WINNMR98\COMMON\\_DEFAULT.ALS





#### C:\WINNMR98\COMMON\\_DEFAULT.ALS 4-HexCCPhBneo (13C)







p-Nitro ph Breo

![](_page_20_Figure_1.jpeg)

![](_page_21_Figure_0.jpeg)

![](_page_22_Figure_0.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_24_Figure_0.jpeg)

![](_page_25_Figure_0.jpeg)

p-Jodo ph Breo

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

![](_page_32_Figure_1.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

Ph

![](_page_35_Figure_1.jpeg)
10.5













Ac



ATR





Software Version: Report Builder, Rev. 2.01 Date: Thursday, April 03, 2008



Date Created: Thursday, April 03, 2008 1:14 PM "Œ<ž (•WI€Žž)

Analyst: guest

Description:















Description:

ATR

3g
























































| it SM trans t-Bu alkenyl Bneo |                                                                                                                |                                 |                                                                             |                                                                                                              |
|-------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| 161.840                       |                                                                                                                | 77 428                          | . 34.642<br>                                                                | Date<br>FileN<br>Comme<br>Siice<br>EXMOO<br>FAEQU<br>FREQU<br>FILTR<br>DELAY<br>DELAY                        |
| ·                             | х.                                                                                                             |                                 |                                                                             | INTUL<br>TIMES<br>DUMMY<br>PD<br>ACQTM<br>PREDL<br>INIWT<br>RESOL<br>PW1<br>OBFNC<br>OBFRC<br>OBSET<br>RGAIN |
|                               |                                                                                                                |                                 |                                                                             | IRNUC<br>IRFRG<br>IRSET<br>IRRPM<br>IRRNS<br>SCANS<br>SLVNI<br>SPINN<br>TEMP                                 |
|                               |                                                                                                                |                                 |                                                                             |                                                                                                              |
| . w. a. U                     | Laskana shinin isioonta waxaa kii shacada Afradan ini aadadadha dhan dhan dharda kiisio dhadda dhadda dhada dh | Tarditariibirla (charlinkirlan) |                                                                             | in CDCI <sub>3</sub>                                                                                         |
|                               |                                                                                                                |                                 | I sendan zana Li zi têdilîna azwî ên li zîla yanî î î zîrî zanî ganî ya zir | G DDw<br>Inda, at an index of the dual of                                                                    |





## C:\WINNMR98\COMMON\\_DEFAULT.ALS

NO.4

## C:\WINNMR98\COMMON\\_DEFAULT.ALS NO.4 (13C)



















5b













t–Bu

Software Version: Report Builder, Rev. 2.01 Date: Thursday, April 03, 2008



Description:











