Syntheses and Binding Studies of New [(Aryl)(aryloxy)methyl]piperidine Derivatives and Related Compounds as Potential Antidepressant Drugs with High Affinity for Serotonin (5-HT) and Norepinephrine (NE) Transporters

Aurelio Orjales,* Ramón Mosquera, Antonio Toledo, M. Carmen Pumar, Neftalí García, Lourdes Cortizo, Luis Labeaga, and Ana Innerárity

FAES FARMA S. A., Research Department, Máximo Aguirre 14, 48940 Leioa, Vizcaya, Spain
Received J une 20, 2003

Abstract

In a wide search program toward new, efficient, and fast-acting antidepressant drugs, we have prepared series of new compounds having an (aryl)(aryloxy)methyl moiety linked directly or through a methylene chain to different substituted and unsubstituted cycles (isoquinoline, piperazine, piperidine, tetrahydropyran, or cyclopentane). These compounds have been evaluated for their affinities for serotonin (5-HT) transporter (SERT) and 5-HT 1 and 5-HT 2 A receptors. Racemic mixtures of 4-[(aryl)(aryloxy)methyl]piperidine derivatives showed much higher affinity values for SERT than fluoxetine and resulted in lack of affinity for $5-\mathrm{H}_{1 A}$ and $5-\mathrm{HT}_{2 A}$ receptors. Some of these racemic mixtures were resol ved to their enantiomers and tested for binding to norepinephrine (NE) transporter (NET), dopamine (DA) transporter (DAT), and α_{2} receptor. Several of these enantiomers [(-)-15b, (-)-15j, ($-\mathbf{)} \mathbf{- 1 5 t}, \mathbf{(+) - 1 5 u] ~ d i s p l a y e d ~ a ~ d u a l ~}$ binding profile with affinities for SERT and NET with $\mathrm{K}_{\mathrm{i}}<25 \mathrm{nM}$ and a NET/SERT ratio <10. Compound (-)-15j (coded as F-98214-TA for development studies) showed a dual binding profile with very high affinity values for SERT and NET ($\mathrm{K}_{\mathrm{i}}=1.9$ and 13.5 nM , respectively), and further pharmacological characterization is in progress for its evaluation as a antidepressant

Introduction

Depression is a common psychiatric disorder and one of the most frequent illnesses in the world affecting people of all gender, ages, and backgrounds. The causes of depression are complex and differ widely among individuals, but they are thought to involve brain biochemistry, inherited genes, social environment, and upbringing. In studying brain, the dysfunction of the norepinephrine (NE), serotonin (5-HT), and dopamine (DA) neurotransmitter systems known as monoamine hypothesis ${ }^{1}$ is the most widely accepted basis for depression. In the past, tricyclic antidepressant (TCA) compounds and monoamine oxidase inhibitors (MAOIs) represented the major pharmacological treatments for this illness. These classical antidepressants are thought to act by increasing 5-HT and NE levels at neuronal synapses. The down side with the use of these drugs is their low selectivity and interaction with several other types of receptors, inside as well as outside the brain, causing unwanted side effects. F urthermore, the monoamine hypothesis does not fully explain the therapeutic action of antidepressants nor does it clarify the pathophysiology of depression and cannot justify the slow onset of action, because 4-6 weeks are required to establish therapeutic efficacy. ${ }^{2}$ Despite these shortcomings, the monoamine hypothesis has provided the rationale for the development of new generations of antidepressants with a broader range of efficacy and safety in depression treatment. In this regard, one of the major advances has been the introduction of the

[^0]sel ective serotonin reuptake inhibitors ${ }^{3}$ (SSRIs, Chart 1) which have a lower side-effect profile and ease of clinical management. Unfortunately, SSRIs do not improve the slow onset of action, a behavior which is in sharp contrast with their fast inhibition of 5-HT uptake after acute treatment. Over the past decade a third generation of antidepressants has been developed. Thus, one approach to the treatment of depression has involved the development of selective NE reuptake inhibitors (NARIs) such as nisoxetine ${ }^{4}$ and reboxetine ${ }^{5,6}$ (Chart 1). The last one has recently been marketed and has refocused attention on the role of the NE system in depression. Neuroanatomical connections among NE, $5-\mathrm{HT}$, and DA systems support the hypothesis that these functional interactions could be an important anatomical substrate for the therapeutic action of antidepressants. ${ }^{7}$ Dual action antidepressants that modify only both central serotonergic and noradrenergic functions may be superior to treat depression. ${ }^{8}$ The new generation of 5-HT and NE reuptake inhibitors (SNRIs) is an example of such agents. One of them, venlafaxine ${ }^{9,10}$ (Chart 1), shows a faster onset of action and increased efficacy. ${ }^{11}$ Another approach is the use of the noradrenergic and specific serotonergic antidepressant (NSSA) mirtazapine ${ }^{12}$ (Chart 1), which increases noradrenergic and serotonergic transmission through blockade of central α_{2}-adrenoceptors as well as some $5-\mathrm{HT}$ receptor subtypes ($5-\mathrm{HT}_{2}$ and $5-\mathrm{HT}_{3}$). Compared with SSRIs, mirtazapine is reported to have a slightly faster onset of action and fewer side effects. ${ }^{12}$ To date, a complete and convincing proof of early onset of action has not been demostrated for any single antidepressant drug. ${ }^{13}$

Chart 1. Antidepressant Structures

(S)-Fluoxetine (SSRI)

Nisoxetine (NARI)

Reboxetine (NARI)
(R,S)-Paroxetine (SSRI)

(S)-Duloxetine (SSRI)

Venlafaxine (SNRI)

MK-869 (NK ${ }_{1}$ antagonist)

M ore recently, nonmonoaminergic approaches such as corticotropin-releasing factor (CRF) ${ }^{14,15}$ and neurokinin $1\left(\mathrm{NK}_{1}\right)$ receptors ${ }^{16}$ have been involved in the pathophysiology of depression.

As mentioned above, the common problem in current antidepressant therapies is their slow onset of action. It has been suggested that the delayed onset in the clinical action of SSRIs might be explained by the time required for desensitization of somatodendritic $5-\mathrm{HT}_{1 \mathrm{~A}}$ autoreceptors, ${ }^{17}$ which are located on the cell bodies and dendrites of 5-HT neurons in the dorsal raphe nucleus (DRN). The 5-HT excess in the extracellular space of the DRN, obtained after acute treatment with a SSRI antidepressant, activates $5-\mathrm{HT}_{1 A}$ autoreceptors and reduces the neuronal activity releasing 5-HT by nerve terminals in forebrain. However, chronic administration of SSRI s for 3-4 weeks leads to functional desensitization of somatodendritic $5-\mathrm{HT}_{1 \mathrm{~A}}$ autoreceptors, with the result that $5-\mathrm{HT}$ release is increased in the prefrontal cortex. The time necessary to obtain these adaptive changes is consistent with the delayed onset of action of SSRIs in major depression. ${ }^{18}$ Given the lack of selective $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor antagonists for human use, early attempts to prove this hypothesis were carried out using the β-adrenoceptor and $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor ligand (\pm)-pindolol, ${ }^{19}$ which enhances the clinical action of antidepressant drugs, although it appears to have more limited effect in treating resistant depression. ${ }^{20}$ On the basis of the experimental evidence that $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptor ligands increase the neurochemical and behavioral effects of SSRIs, there has been considerable interest to find compounds with both properties to bring a more inmediate and complete antidepressant effect. ${ }^{21}$

Our research program toward new, efficient, and fastacting antidepressant drugs has been aimed at the discovery of compounds with a dual binding profile showing 5-HT and/or NE reuptake inhibition and affinity for different 5-HT receptor subtypes (5-HT ${ }_{1 A}$ or $\left.5-\mathrm{HT}_{2 \mathrm{~A}}\right)$. With this aim, we have designed the series of compounds showed in Chart 2 based on coupling structural moieties related to serotonin transporter (SERT) and norepinephrine transporter (NET) inhibition to different fragments that may provide 5-HT receptor
affinity ($5-\mathrm{HT}_{1 A}$ or $5-\mathrm{HT}_{2 A}$ antagonism). We have considered the chemical structures of fluoxetine ${ }^{22}$ (SSRI, Chart 1), nisoxetine ${ }^{4}$ (NARI, Chart 1), and reboxetine ${ }^{5,6}$ (NARI, Chart 1) as a starting point for our design.

Chemistry

We have prepared new compounds of general formula 1 (Chart 2) having an (aryl)(aryloxy)methyl moiety linked directly or through a methylene chain to different substituted and unsubstituted cycles (isoquinoline, piperazine, piperidine, cyclopentane, or tetrahydropyran) that could provide affinity for different 5-HT receptor subtypes. As some marketed antidepressants (Chart 1), compounds of series I-V (Chart 2) have a nitrogen atom while compounds 18 and $\mathbf{2 1}$ (series VI) lack it. In series IV, V, and VI (Chart 2) the (aryl)(aryloxy)methyl moiety is linked directly or through one methylene group to pi peridine, cycl opentane, or tetrahydropyran cycles, resulting in compounds with a more rigid structure. We herein report the synthesis of these compounds and the determination of their binding affinities for SERT, NET, DAT (dopaminetransporter), and 5-HT receptors ($5-\mathrm{HT}_{1 \mathrm{~A}}, 5-\mathrm{HT}_{2 \mathrm{~A}}$).

Compounds of series I and II (Table 1) were synthesized by following the routes depicted in Scheme 1. Reduction of halo ketones $\mathbf{2 a}$ and $\mathbf{2 b}$ with sodium borohydride followed by reaction with different phenols under Mitsunobu conditions ${ }^{23}$ yielded 3a-e. Alkylation of (4-fluorophenyl)piperidin-4-ylmethanone, ${ }^{24}$ 3-(pip-erazin-1-yl)benzo[d]isoxazole, ${ }^{25}$ and 3-(piperazin-1-yl)benzo[d]isothiazole ${ }^{25}$ with properly substituted halides $\mathbf{3 a}-\mathbf{e}$ afforded 4a-I. Compounds 4m,n were prepared by reaction of $3 f$ with conveniently substituted phenols. Halide 3 f was obtained by alkylation of 3-(piper-azin-1-yl)benzo[d]isothiazole ${ }^{25}$ with halo ketone 2a, reduction of resulting ketone with sodium borohydride, and treatment of corresponding alcohol with thionyl chloride.

Compounds of series III (Table 2) were prepared according to procedures described in Scheme 2. Thus, $\mathbf{7 a}-\mathbf{h}\left(\mathrm{R}_{3}=\mathrm{H}, \mathrm{OCH}_{3}\right)$ were synthesized by alkylation of conveniently substituted isoquinolines $\mathbf{5 a}, \mathbf{b}$ with 3-chloropropiophenone and later reduction of the ketone with sodium borohydride to give alcohols $\mathbf{6 a , b}$, which reacted with thionyl chloride, affording the corresponding chlorides. Reaction of these chlorides with adequately substituted phenols yielded compounds $\mathbf{7 a}-\mathbf{h}$. Alternatively, $\mathbf{7 i}-\mathbf{I}\left(\mathrm{R}_{3}=\mathrm{OH}\right)$ were prepared by demethylation of $\mathbf{5 b}$ to give 5,6-dihydroxyisoquinoline, which was alkylated with 3-chloropropiophenone. Protection of hydroxyl groups with acetyl chloride followed by hydrogenation gave alcohol 6c. Finally, reaction of alcohol 6c with properly substituted phenols under Mitsunobu conditions ${ }^{23}$ and deprotection provided compounds $7 \mathbf{7 i}-\mathbf{I}$.

Compounds 10a-j (Series IV, Table 3) were prepared from commercially available piperidine-3-carboxylic acid ethyl ester (Scheme 3). Thus, protection of nitrogen atom with benzyl bromide and hydrolysis of the ester group followed by treatment with thionyl chloride afforded the acyl chloride, which reacted with 4-fluorobenzene under Friedel-Crafts acylation conditions. ${ }^{26}$ The nitrogen atom of the resulting ketone was deprotected by treatment with ethyl chloroformate followed

Chart 2. General Formula and Series of Synthesized Compounds

Table 1. Compounds of Series I and II (4a-n)

compd	R_{1}	R_{2}	Z ${ }^{\text {b }}$	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\text {a }}$		
				$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT
4a	2-F	H	C	70.2	5.3	>1000 ${ }^{\text {c }}$
4b	2-F	H	B	117.7	17.2	> $1000{ }^{\circ}$
4c	$3-\mathrm{CF}_{3}$	H	C	> 1000 ${ }^{\text {c }}$	28.2	> $1000{ }^{\text {c }}$
4d	$4-\mathrm{OCH}_{3}$	H	C	69.7	10.2	> $1000{ }^{\text {c }}$
4 e	$4-\mathrm{OCH}_{3}$	H	B	182.0	18.9	> 1000°
4 f	$4-\mathrm{NO}_{2}$	H	B	254.3	53.3	> $1000{ }^{\circ}$
4 g	2-F	H	A	37.8	8.0	> $1000{ }^{\circ}$
4h	$4-\mathrm{OCH}_{3}$	H	A	93.6	53.8	$>1000^{\circ}$
$4 i$	$4-\mathrm{NO}_{2}$	H	A	$>1000{ }^{\text {c }}$	23.0	> $1000{ }^{\text {c }}$
4j	$4-\mathrm{NO}_{2}$	4-F	A	> 1000 ${ }^{\text {c }}$	55.1	> $1000{ }^{\text {c }}$
4k	$4-\mathrm{NH}_{2}$	4-F	A	> 1000 ${ }^{\text {c }}$	14.4	> $1000{ }^{\text {c }}$
41	$4-\mathrm{NH}_{2}$	H	A	107.8	16.4	> $1000^{\text {c }}$
4 m	$2-\mathrm{CF}_{3}$	H	C	445.6	24.1	> $1000{ }^{\text {c }}$
4 n	$4-\mathrm{CF}_{3}$	H	C	33.7	40.2	> $1000{ }^{\text {c }}$
8-OH-DPAT				1.2	> $1000{ }^{\circ}$	> $1000{ }^{\circ}$
mirtazapine				> 1000 ${ }^{\text {c }}$	14.8	$>1000^{\circ}$
fluoxetine				$>1000{ }^{\text {c }}$	> $1000{ }^{\text {c }}$	30.8
paroxetine				> 1000 ${ }^{\text {c }}$	> 1000 ${ }^{\circ}$	0.7

${ }^{\text {a }}$ SEM less than $15 \% .{ }^{\text {b }}$ Z: A, (4-fluorophenyl)piperidin-4-ylmethanone; ${ }^{25} \mathrm{~B}$, 3-(piperazin-1-yl)benzo[d]isoxazole; ${ }^{26} \mathrm{C}$, 3-(pip-erazin-1-yl)benzo[d]isothiazole. ${ }^{26} \quad{ }^{\mathrm{c}} \mathrm{IC}_{50}(\mathrm{nM})$.
by glacial acetic acid and aqueous HBr to give 8 . Reaction with (Boc) ${ }_{2} \mathrm{O}$ followed by reduction with sodium borohydride afforded alcohols 9, which underwent Mitsunobu reaction ${ }^{23}$ with conveniently substituted phenols, yielding compounds 10a-j as a mixture of diastereomers.

Alcohols 14a-k were the key intermediates in the synthesis of racemic mixtures of compounds 15a-au ${ }^{27}$ (series V, Table 4), as shown in Scheme 4. Thus, al cohols
14a-k were prepared from 1-acetylpiperidine-4-carboxylic acid, ${ }^{24} 4$-cyanopiperidine-1-carboxylic acid tertbutyl ester 12, ${ }^{28}$ or (1-acetylpiperidin-4-yl) acetic acid 13 by following known procedures. Treatment of 1-acetylpi-peridine-4-carboxylic acid ${ }^{24}$ with thionyl chloride gave the corresponding acyl chloride that after FriedelCrafts acylation with conveniently substituted benzenes and deprotection with aqueous HCl solution afforded
ketones 11a-c. Protection of ketones 11a-c,f as tertbutyl carbamateand reduction with sodium borohydride yielded al cohols 14a-c,f. Reduction of ketone 11a with sodium borohydride gave alcohol 14j. Reaction of 11a with formic acid/formaldehyde afforded ketone 11i, which by reduction with sodium borohydride yielded alcohol $\mathbf{1 4 h}$. I sonipecotamide was treated with thionyl chloride followed by $(\mathrm{BOC})_{2} \mathrm{O}$ to afford $\mathbf{1 2 ,}{ }^{28}$ which by reaction with the conveniently substituted Grignard reagents ${ }^{24}$ gave ketones 11f,g. Reduction of ketones 11f,g with sodium borohydride yiel ded al cohols $\mathbf{1 4 i}$ and 14k. Treatment of 1-acetylpi peridine-4-carboxylic acid ${ }^{24}$ with thionyl chloride gave corresponding acyl chloride that reacted under Friedel-Crafts acylation conditions with fluorobenzene to afford ketone 11h, which was treated with sodium borohydride to yield alcohol $\mathbf{1 4 g}$. Alcohols 14d,e were prepared from ketones 11d,e by reduction with sodium borohydride, and these ketones were obtained from (1-acetylpiperidin-4-yl)acetic acid 13 as is shown in Scheme 4. Preparation of $\mathbf{1 3}$ started from 1-benzyl pi peridin-4-one that was subjected to Wittig-Horner-E mmons reaction, reduction of the conjugated double bond, and deprotection of the nitrogen atom to give an intermediate compound which after protection of the amine group and hydrolysis of the ester afforded 13. Racemic mixtures of compounds $\mathbf{1 5 a - a u}{ }^{27}$ (series V, Table 4) were obtained from racemic alcohols 14a-k by standard procedures, either Mitsunobu ${ }^{23}$ (method A) or aromatic nudeophilic substitution (method B) reactions, ${ }^{29}$ followed if necessary by deprotection of the amine group. Enantiomers $\mathbf{1 5 2 7}$ (series V, Table 6) were obtained either by fractional crystallization of diastereomeric dibenzoyltartrates (method C) or from enantioenriched al cohols (+)- or ($-\mathbf{)} \mathbf{- 1 4 \mathbf { j } , \mathbf { k } (m e t h o d ~ D) . ~ T h e s e ~}$ alcohols (+)- or (-)-14j,k were prepared from ketones 11a,f by reduction with (+) or (-)-B-chlorodiisopinocampheylborane ${ }^{30}((+)$ or $(-)$-DIPCI).

As is shown in Scheme 5, compounds 18 and 21 (series VI, Table 5) were obtained by aromatic nucleophilic substitution ${ }^{29}$ from corresponding secondary alcohols $\mathbf{1 7}$ and 20. Thus, $\mathbf{1 7}$ was prepared from commercially available cyclopentanecarboxylic acid following known procedures, and $\mathbf{2 0}$ was prepared from acid 19^{31} by treatment with thionyl chloride followed by Friedel -

Scheme 1. a General Synthesis of Series I and II

${ }^{\text {a }}$ Reagents: (i) NaBH_{4}, methanol; (ii) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{DEAD}, \mathrm{Ph} 3$ P, THF; (iii) A-H or B-H or $\mathrm{C}-\mathrm{H}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$; (iv) (a) C-H, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}$, (b) NaBH_{4}, methanol, (c) $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$; (v) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF.

Table 2. Compounds of Series III (7a-I)

compd	R_{1}	R_{3}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\text {a }}$		
			$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT
7a	2-F	H	$>1000{ }^{\text {b }}$	$>1000{ }^{\text {b }}$	$>1000^{\text {b }}$
7b	$2-\mathrm{CF}_{3}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$
7c	$4-\mathrm{Cl}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$
7d	4 - CH_{3}	H	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	$>1000^{\text {b }}$
7e	2-F	OCH_{3}	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	207.1
7 f	$2-\mathrm{CF}_{3}$	OCH_{3}	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	134.3
7g	$4-\mathrm{Cl}$	OCH_{3}	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$
7h	$4-\mathrm{CH}_{3}$	OCH_{3}	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	324.7
7i	2-F	OH	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$
7j	$2-\mathrm{CF}_{3}$	OH	$>1000^{\mathrm{b}}$	$>1000{ }^{\text {b }}$	$>1000{ }^{\text {b }}$
7k	$4-\mathrm{CH}_{3}$	OH	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	$>1000{ }^{\text {b }}$
71	$4-\mathrm{Cl}$	OH	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$
8-OH-DPAT			1.2	$>1000^{\text {b }}$	$>1000^{\text {b }}$
mirtazapine			> $1000{ }^{\text {b }}$	14.8	$>1000^{\text {b }}$
fluoxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	30.8
paroxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.7

a SEM less than 15%. ${ }^{\text {b }} \mathrm{IC}_{50}$ (nM).
Crafts acylation conditions and reduction of the resulting ketone.

Biological Results and Discussion

Compounds of series I-VI were evaluated for their affinities for $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors and SERT from rat brain using radioligand binding assays. Compounds that displayed good affinity for SERT were evaluated for their affinities for NET, DAT, and α_{2} receptor to complete their binding profiles as potential antidepressants. Details of the performed binding assays are described in the Experimental Section. Structure and binding data of the compounds are shown in Tables 1-6.
(4-Fluorophenyl)piperidin-4-ylmethanone, 3-(piperazin1 -yl)benzo[d]isoxazole, and 3-(piperazin-1-yl)benzo[d]-
isothiazole derivatives $\mathbf{4 a - n}$ (series I and II, Table 1) have shown low to moderate affinity values for $5-\mathrm{HT}_{1 \mathrm{~A}}$ ($\mathrm{IC}_{50}>1000 \mathrm{nM}$ to $\mathrm{K}_{\mathrm{i}}=33.7 \mathrm{nM}$) and moderate to high values for $5-\mathrm{HT}_{2 \mathrm{~A}}\left(\mathrm{~K}_{\mathrm{i}}=55.1-5.3 \mathrm{nM}\right)$ receptors but neither of them exhibited significant affinity for SERT $\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$. The affinities for the $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor showed by compounds $\mathbf{4 a}-\mathbf{n}$ seem to be independent of the aryloxy substituents and could be associated with the heterocydic moieties (4-fluorophenyl)piperidin-4ylmethanone, 3 -(piperazin-1-yl)benzo[d]isoxazole, and 3-(piperazin-1-yl)benzo[d]isothiazole present in several compounds described as $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptor ligands. ${ }^{25,32}$ Tetrahydroisoquinoline derivatives 7a-I (series III, Table 2) lack significant affinities for $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ ($1 \mathrm{C}_{50}>1000 \mathrm{nM}$) receptors and 6,7-dimethoxy-substituted derivatives $\mathbf{7 e}, \mathbf{7 f}$, and $\mathbf{7 h}$ displayed low affinity values for SERT ($\mathrm{K}_{\mathrm{i}}=207.1,134.3$, and 324.7 nM , respectively) that are much lower than that of fluoxetine ($\mathrm{K}_{\mathrm{i}}=30.8 \mathrm{nM}$). The common structural feature of all these compounds (series I, II and III, Chart 2) was the (aryl)(aryloxy)methyl moiety linked through a chain of two methylene groups to different substituted heterocycles, piperidine, piperazine, or isoquinoline, with a tertiary amine group instead of the secondary amine group present in fluoxetine and reboxetine. Since neither of the previously tested compounds showed good affinity for SERT, series I-III were not further pursued and our interest was focused on the synthesis of compounds of series IV-VI. In series IV, the (aryl)(aryloxy)methyl moiety was linked directly to a pi peridine ring at the 3 -position while in series \mathbf{V} that moiety was attached directly or through a methylene group to the 4 -position of a piperidine ring. Thus, most compounds of both series have a secondary amine group as in fluoxetine and reboxetine. However, in series VI the (aryl)(aryloxy)methyl moiety was linked to cycles without any amine group. 3-Piperidine derivatives 10a-j (series IV, Table 3), synthesized as diastereomeric mixtures and with an aryl group substituted at the 4 -position with a fluoro atom, showed high affinity values for SERT ($\mathrm{K}_{\mathrm{i}}=40.6$ to 4.2 nM) and lack of

Scheme 2. a General Synthesis of Series III

a Reagents: (i) 3-chloropropiophenone, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$; (ii) NaBH_{4}, methanol; (iii) (a) $45 \% \mathrm{HBr}$, (b) 3-chloropropiophenone, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{CH}_{3} \mathrm{CN}$; (iv) (a) $\mathrm{CH}_{3} \mathrm{COCl}, \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$, (b) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, ethanol; (v) (a) $\mathrm{SOCl}_{2}, \mathrm{CHCl}_{3}$, (b) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$; (vi) (a) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$, DEAD, $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{THF}$, (b) 3 N HCl , methanol.

Table 3. Compounds of Series IV (10a-j)

compd	R_{1}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\text {a }}$		
		$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT
10a	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	40.6
10b	4-F	$>1000^{\text {b }}$	$>1000^{\text {b }}$	23.4
10c	$4-\mathrm{Cl}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	13.9
10d	$4-\mathrm{CF}_{3}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	26.2
10e	$4-\mathrm{CH}_{3}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	22.6
10f	$4-\mathrm{OCH}_{3}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	20.8
109	4-CN	$>1000^{\text {b }}$	$>1000^{\text {b }}$	40.0
10h	$3,4-\mathrm{Cl}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	32.2
10i	$\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	4.2
10] ${ }^{\text {c }}$		$>1000^{\text {b }}$	$>1000^{\text {b }}$	21.5
8-OH-DPAT		1.2	$>1000^{\text {b }}$	> $1000^{\text {b }}$
mirtazapine		> $1000{ }^{\text {b }}$	14.8	$>1000^{\text {b }}$
fluoxetine		$>1000^{\text {b }}$	$>1000^{\text {b }}$	30.8
paroxetine		$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.7

${ }^{\text {a }}$ SEM less than 15%. ${ }^{\mathrm{b}}$ IC50 (nM). ${ }^{\mathrm{c}} \mathbf{1 0} \mathbf{j}$: the aryloxy group is 1-naphthyloxy.

Scheme 3. ${ }^{\text {a }}$ General Synthesis of Series IV

a Reagents: (i) (a) benzyl bromide, $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, (b) 20% aq HCl ; (ii) (a) SOCl_{2}, (b) 4 -fluorobenzene, AICl_{3}, dichloroethane; (iii) (a) $\mathrm{CICO}_{2} \mathrm{Et}$, benzene, (b) glacial acetic acid, 48% aq HBr ; (iv) (Boc) $)_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$; (v) $\mathrm{NaBH}_{4}, \mathrm{H}_{2} \mathrm{O}$, methanol; (vi) (a) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ (for 10j: 1-naphthol), DEAD, $\mathrm{Ph}_{3} \mathrm{P}$ or $\mathrm{Ph}_{2} \mathrm{PyP}$, THF, (b) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
affinity for $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$ receptors. Compounds 10a-j presented affinity values for SERT lower than that showed by paroxetine ($\mathrm{K}_{\mathrm{i}}=$ 0.7 nM) but in the same range than fluoxetine or even better. The hydrophobic, electronic, and steric effects of aryloxy substitution seem to be ineffectual as the moderate to high affinity values found at SERT binding assay for all tested compounds suggest. 4-Piperidine

Table 4. Compounds of Series V (racemic mixtures 15a-au ${ }^{27}$)

compd	R_{1}	R_{2}	R_{3}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\mathrm{a}}$			
				n	5-HT ${ }_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT
15a	H	H	H	0	> $1000^{\text {b }}$	$>1000^{\text {b }}$	2.3
15b	2-F	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	6.3
15c	$2-\mathrm{CF}_{3}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	124.2
15d	2-CN	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	105.0
15e	2-phenyl	H	H	0	$>1000^{\text {b }}$	149.1	> $1000^{\text {b }}$
15f	$2-\mathrm{Cl}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	8.2
15g	3-1	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	3.7
15h	$3-\mathrm{Br}$	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	10.0
15i	$3-\mathrm{CF}_{3}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	9.0
15j	3-F	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	1.0
15k	$3-\mathrm{CN}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.0
151	$3-\mathrm{Cl}$	H	H		$>1000^{\text {b }}$	$>1000^{\text {b }}$	2.6
15m	$4-\mathrm{NO}_{2}$	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	2.4
15n	4-1	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	20.6
150	4-phenyl	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	> $1000^{\text {b }}$
15p	4-F	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.1
15q	$4-\mathrm{CF}_{3}$	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	17.1
15r	$4-\mathrm{Br}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	2.0
15s	H	4-Cl	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	19.4
15t	2-F	3-F	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	9.3
15u	3-F	3-F	H		$>1000^{\text {b }}$	$>1000^{\text {b }}$	16.1
15v	3-F	$4-\mathrm{CH}_{3}$	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	14.1
15x	4-F	3-F	H	0	$>1000^{\text {b }}$	360.2	5.8
15y	4-F	$4-\mathrm{Cl}$	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	7.5
$15 z$	4-F	4-F	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	0.9
15ab	$4-\mathrm{OCH}_{3}$	4-F	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.9
15ac	$2-\mathrm{CH}_{3}, 3-\mathrm{F}$	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	5.3
15ad	$2-\mathrm{CH}_{3}, 3-\mathrm{Cl}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	12.2
15ae	$2-\mathrm{CH}_{3}, 5-\mathrm{Cl}$	H	H		$>1000^{\text {b }}$	$>1000^{\text {b }}$	15.6
15af	$3-\mathrm{Cl}, 4-\mathrm{CN}$	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	3.9
15ag	$3-\mathrm{Cl}, 4-\mathrm{Cl}$	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	9.9
15ah	$3-\mathrm{F}, 5-\mathrm{OCH}_{3}$	H	H	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.9
15ai	3-F, 5-CN	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	2.6
15aj	3,5-diF	H	H	0	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	3.4
15ak	4-F	H	H		$>1000^{\text {b }}$	139.9	78.3
15al	$4-\mathrm{OCH}_{3}$	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	47.0
15am	4-F	4-F	H		$>1000^{\text {b }}$	193.5	67.7
15an	$4-\mathrm{CN}$	4-F	H	1	$>1000^{\text {b }}$	$>1000^{\text {b }}$	16.9
15ao	$\mathrm{CH}_{3} \mathrm{O}$	4-F	$\mathrm{CH}_{3} \mathrm{CO}$	0	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$
15ap	H	4-F	$\mathrm{CH}_{3} \mathrm{CO}$		$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$
15aq	4-F	H	CH_{3}	0	$>1000^{\text {b }}$	44.4	$>1000^{\text {b }}$
15ar	2-OH, 3-F	H	H		$>1000^{\text {b }}$	$>1000^{\text {b }}$	15.5
15as	3-F, 4-OH	H	H		$>1000^{\text {b }}$	$>1000^{\text {b }}$	21.3
15at	3-OH, 5-F	H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	2.0
$15 a^{\text {c }}$		H	H		$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	8.3
8-OH-DPAT					1.2	$>1000^{\text {b }}$	> $1000^{\text {b }}$
mirtazapine					> $1000{ }^{\text {b }}$	14.8	> $1000^{\text {b }}$
fluoxetine					> $1000{ }^{\text {b }}$	$>1000^{\text {b }}$	30.8
paroxetine					> $1000{ }^{\text {b }}$	> $1000{ }^{\text {b }}$	0.7

${ }^{\text {a }}$ SEM less than $15 \%{ }^{\text {b }}$ IC C_{50} (nM). ${ }^{\mathrm{c}}$ 15au: the aryloxy group is 1-naphthyloxy.
derivatives 15a-au ${ }^{27}$ (series \mathbf{V}, Table 4) prepared as racemic mixtures displayed in most of the cases the

Scheme 4. a General Synthesis of Series V

(+)- or (-)-14],k
${ }^{\text {a }}$ Reagents: (i) (a) SOCl_{2}, (b) $\mathrm{R}_{2} \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{AlCl}_{3}$, dichloroethane; (ii) 6 N HCl ; (iii) (a) SOCl_{2}, (b) (Boc$)_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$; (iv) (a) $\mathrm{R}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{MgX}$, ether, (b) 10% aq HCl , methanol; (v) NaH , ($(\mathrm{EtO})_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Et}$, benzene; (vi) (a) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}$, ethanol, (b) ammonium formate, ethanol, (c) $\mathrm{Ac}_{2} \mathrm{O}$; (vii) $\mathrm{HCOOH}, \mathrm{HCHO}$; (viii) (a) ($\mathrm{Boc}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{H}_{2} \mathrm{O}$, (b) NaBH_{4}, methanol; (ix) NaBH_{4}, methanol, $\mathrm{H}_{2} \mathrm{O}$; (x) NaBH_{4}, methanol or (+) or (-)-DIPCI, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; (xi) method A [(a) $\mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}, \mathrm{Ph} 2 \mathrm{PyP}, \mathrm{DEAD}, \mathrm{THF}$, (b) 10% aq HCl, methanol] or method B [(a) $\mathrm{NaH}, \mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$, potassium benzoate, DMSO, (b) 10% aq HCl , methanol] (xii) method C [(a) D- or L-dibenzoyltartaric acid, ethanol, methanol, (b) 10% aq $\mathrm{NaOH}]$; (xiii) method D [(a) (Boc$)_{2} \mathrm{O}$, methanol, (b) $\mathrm{NaH}, \mathrm{R}_{1} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}$ (for 15au, 1-fluoronaphthalene), potassium benzoate, DMSO, (c) 10% aq HCl , methanol, (d) d- or L-dibenzoyltartaric acid, ethanol, (e) 10% aq NaOH].
same affinity profile as compounds 10a-j with moderate to very high affinity values for SERT ($\mathrm{K}_{\mathrm{i}}=124.4-$ $0.9 \mathrm{nM})$ and lack of affinity for $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors. Several compounds of series \mathbf{V} showed much higher affinity for SERT than fluoxetine and approximately equal to paroxetine. As affinity profiles of series IV and \mathbf{V} were similar, our interest was concentrated on compounds of series \mathbf{V}, because they were racemic mixtures of enantiomers that could be resolved easier than diastereomeric mixtures of series IV. According to data shown in Table 4, most of the compounds $\mathbf{1 5 a} \mathbf{- a u}{ }^{27}$ are potential antidepressants because they showed high affinity for SERT. However, there are some remarkable structural facts worth noting. In general, compounds having a substituent at the 2-position of the aryloxy group showed decreased affinity for SERT compared to parent compound 15a ($\mathrm{K}_{\mathrm{i}}=2.3 \mathrm{nM}$), while substitution at the 3- or 4-position seems to maintain or even slightly increase the affinity for SERT. Thus, 3-fluoro (15j), 3-cyano (15k), 3-chloro (15l), 3-iodo (15g), 4-fluoro (15p), 4-nitro (15m), and 4-bromo (15r) substituted aryloxy compounds exhibited K_{i} values from 1.0 to 3.7 nM . The introduction of a second substituent on the aryloxy group of 15j and 15I did not improve and in some cases decreased the binding to SERT as showed by the more substituted compounds 15ac-ad, 15af-aj, 15ar, and

Table 5. Compounds of Series VI

Compound	$K_{\mathrm{i}}(\mathrm{nM})^{a}$		
	$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT
 18	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	$>1000^{\text {b }}$
	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$
8-OH-DPAT	1.2	$>1000^{\text {b }}$	$>1000^{\text {b }}$
mirtazapine	$>1000^{\text {b }}$	14.8	$>1000^{\text {b }}$
fluoxetine	$>1000^{\text {b }}$	$>1000^{\text {b }}$	30.8
paroxetine	$>1000^{\text {b }}$	$>1000{ }^{\text {b }}$	0.7

a SEM less than 15%. ${ }^{\text {b }} \mathrm{IC}_{50}(\mathrm{nM})$.

Table 6. Compounds of Series V (Enantiomers $\mathbf{1 5}^{\mathbf{2 7} \text {) }}$

compd	R_{1}	R_{2}	$\mathrm{K}_{\mathrm{i}}(\mathrm{nM})^{\text {a }}$					NET/SERT
			$5-\mathrm{HT}_{1 \mathrm{~A}}$	$5-\mathrm{HT}_{2 \mathrm{~A}}$	SERT	NET	DAT	
(-)-15b	2-F	H	$>1000{ }^{\text {b }}$	$>1000{ }^{\text {b }}$	4.2	22.5	> $1000{ }^{\text {b }}$	5.4
(+)-15b	2-F	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	28.5	41.4	520.3	1.4
(-)-15j	3-F	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.9	13.5	461.3	6.9
(+)-15j	3-F	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	7.3	98.3	163.0	13.5
(-)-15k	$3-\mathrm{CN}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.7	86.9	110.5	51.7
(+)-15k	$3-\mathrm{CN}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.4	179.9	$>1000^{\text {b }}$	125.8
(-)-151	$3-\mathrm{Cl}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	3.0	55.8	$>500^{\circ}$	18.6
(+)-151	$3-\mathrm{Cl}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.5	44.0	$>1000^{\text {b }}$	29.4
(-)-15m	$4-\mathrm{NO}_{2}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.6	$>500^{\text {b }}$	$>1000^{\text {b }}$	
(+)-15m	$4-\mathrm{NO}_{2}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	15.1	$>1000^{\text {b }}$	> $1000{ }^{\text {b }}$	
(-)-15p	4-F	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	45.9	$>1000^{\text {b }}$	253.4	
(+)-15p	4-F	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.4	111.4	821.0	247.6
(-)-15q	$4-\mathrm{CF}_{3}$	H	$n t^{\text {c }}$	$n t^{\text {c }}$	34.8	$>1000^{\text {b }}$	$>1000^{\mathrm{b}}$	
(+)-15q	$4-\mathrm{CF}_{3}$	H	$\mathrm{nt}^{\text {c }}$	nt ${ }^{\text {c }}$	14.9	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
(-)-15r	$4-\mathrm{Br}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	5.7	$>500^{\text {b }}$	$>1000^{\text {b }}$	
(+)-15r	$4-\mathrm{Br}$	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	23.2	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
(-)-15t	2-F	3-F	$>1000^{\text {b }}$	$>1000^{\text {b }}$	4.3	19.1	$>500^{\text {b }}$	4.4
(+)-15t	2-F	3-F	$>1000^{\text {b }}$	$>1000^{\text {b }}$	27.6	48.1	376.7	1.7
(-)-15u	3-F	3-F	$>1000^{\text {b }}$	$>1000^{\text {b }}$	10.0	127.8	112.8	12.8
(+)-15u	3-F	3-F	$>1000^{\text {b }}$	$>1000^{\text {b }}$	2.8	17.5	$>500^{\text {b }}$	6.2
(-)-15aj	3,5-F2	H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	1.4	24.8	$>1000^{\text {b }}$	17.7
(+)-15aj	$3,5-F_{2}$	H	$>1000^{\mathrm{b}}$	$>1000^{\mathrm{b}}$	7.1	385.9	$>500^{\text {b }}$	54.4
$(-)-15 a u^{\text {d }}$		H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	28.1	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
(+)-15aud		H	$>1000^{\text {b }}$	$>1000^{\text {b }}$	20.1	416.6	$>1000^{\mathrm{b}}$	20.7
8-OH-DPAT			1.2	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
mirtazapine			$>1000^{\text {b }}$	14.8	$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
fluoxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	30.8	$>1000^{\text {b }}$	$>1000^{\text {b }}$	
paroxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	0.7	659.6	$>1000^{\text {b }}$	942.3
reboxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	$>500^{\text {b }}$	13.7	$>1000^{\text {b }}$	
nisoxetine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	>500 ${ }^{\text {b }}$	9.9	$>500^{\text {b }}$	
venlafaxine			$>1000^{\text {b }}$	$>1000^{\text {b }}$	52.0	719.0	$>1000^{\text {b }}$	15.7
mazindol			$>1000^{\text {b }}$	$>1000^{\text {b }}$	247.5	0.8	44.3	$309.4^{\text {e }}$

${ }^{\text {a }}$ SEM less than $15 \% .{ }^{\mathrm{b}}$ IC $\mathrm{C}_{50}(\mathrm{nM}) .{ }^{\mathrm{c}}$ Not tested. ${ }^{\mathrm{d}}$ 15au: the aryloxy group is 1-naphthyloxy. ${ }^{\text {e SERT/NET. }}$

Scheme 5a General Synthesis of Series VI

a Reagents: (i) 85% phosphoric acid, $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}$, benzene; (ii) NaBH_{4}, methanol, $\mathrm{H}_{2} \mathrm{O}$; (iii) (a) $\mathrm{NaH}, 1,3$-difluorobenzene, potassium benzoate, DMSO , (b) 10% aq HCl ; (iv) (a) SOCl_{2}, (b) AICl_{3}, benzene

15as with K_{i} values ranging from 1.9 to 21.3 nM . It seems that hydrophobic, electronic, and hydrogen-bonding properties of the second substituent do not affect the affinity for SERT too much. Analogues 15ak-an in which the (aryl)(aryloxy)methyl moiety was linked through a methylene to the piperidine ring exhibited moderate to high affinity values for SERT ($\mathrm{K}_{\mathrm{i}}=78.3-$ $16.9 \mathrm{nM})$. The distance from the piperidine nitrogen to the (aryl)(aryloxy)methyl group does not seem to be
critical, but affinity values were lower than those of compounds with the (aryl)(aryloxy)methyl moiety directly linked to the piperidine ring. Compounds 15s-ab ($\mathrm{K}_{\mathrm{i}}=19.4$ to 0.9 nM) with electron-withdrawing $(-\mathrm{F},-\mathrm{Cl})$ or electron-donating $\left(-\mathrm{CH}_{3}\right)$ substituents at the aryl group displayed affinities that were in the same range as those showed by most of compounds of series V. Taking these findings into account it seems that binding to SERT does not depend on the electronic properties of the aryl group substitution. As is shown in Table 4, the introduction of aryloxy groups with extended conjugation leads to very divergent results of binding to SERT as in derivatives 15au ($\mathrm{K}_{\mathrm{i}}=8.3 \mathrm{nM}$), $\mathbf{1 5 e}\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$, and $\mathbf{1 5 0}\left(\mathrm{IC}_{50}>1000 \mathrm{nM}\right)$. Thus, while affinity for SERT is retained in the naphthyloxy derivative 15au, the introduction of a relatively bulky 2- or 4-phenyl substituent onto the aryloxy group (compounds 15e and 150) resulted in lack of affinity. This could signify that 5-HT uptake sites are sensitive to bulky substitution at the aryloxy group. Another interesting feature to point out is that the introduction of an acetyl or a methyl group on the piperidine nitrogen has a deleterious effect to affinity for SERT. Thus, derivatives 15ao ($\mathrm{IC}_{50}>1000 \mathrm{nM}$), 15ap ($\mathrm{IC}_{50}>1000$ $\mathrm{nM})$, and 15aq ($\mathrm{IC}_{50}>1000 \mathrm{nM}$) do not bind to SERT and it seems that binding to SERT of compounds of series \mathbf{V} needs the presence of a secondary amine. This

Figure 1. Competition for [${ }^{3} \mathrm{H}$]paroxetine binding sites (SERT) in rat brain cortex by compound (-)-15j and antidepressant drugs.
is supported by the finding that compounds $\mathbf{1 8}$ and $\mathbf{2 1}$ (series VI, Table 5), which have cyclopentane or tetrahydropyran ring respectively instead of a piperidine ring, do not bind to SERT. Also, this fact could explain the Iow affinity for SERT of series I, II, and III. The resolution of some racemic mixtures of series \mathbf{V} afforded enantiomers $\mathbf{1 5}^{27}$ (Table 6), which were evaluated for their affinities for $5-\mathrm{HT}_{1 A}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors and SERT. These compounds displayed lack of affinity for $5-\mathrm{HT}_{1 A}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors and very high affinity for SERT with K_{i} values from 45.9 to 0.4 nM . M ost of them bound with significant enantioselectivity to SERT, the highest ratio being ($\left.\mathrm{K}_{\mathrm{i}}(-)-\mathbf{1 5 p} / \mathrm{K}_{\mathrm{i}}(+)-15 p\right)$ 115-fold. To extend their binding profile, enantiomers 15^{27} were tested for their affinities for NET, DAT, and α_{2} receptor. As showed in Table 6, they displayed low to high affinity values for NET (IC $\mathrm{C}_{50}>1000 \mathrm{nM}$ to $\mathrm{K}_{\mathrm{i}}=13.5 \mathrm{nM}$), low to moderate affinity for DAT (IC $\mathrm{E}_{50}>1000 \mathrm{nM}$ to $\mathrm{K}_{\mathrm{i}}=$ 110.5 nM) and did not exhibited affinity for the α_{2} receptor (data not shown, $\mathrm{IC}_{50}>1000 \mathrm{nM}$). Thus, several of these enantiomers [i.e., (-)-15m, ($-\mathbf{)} \mathbf{- 1 5 q}$, (+)-15q, (-)-15r, (-)-15au] showed binding profiles such as fluoxetine with very high affinity values for SERT and resulted in lack of affinity for NET, DAT, and α_{2} receptor. Most of the compounds of Table 6 exhibited affinity values for NET lower than those of reboxetine ($\mathrm{K}_{\mathrm{i}}=13.7 \mathrm{nM}$) and nisoxetine ($\mathrm{K}_{\mathrm{i}}=9.9 \mathrm{nM}$) and higher than those of venlafaxine ($\mathrm{K}_{\mathrm{i}}=719.0 \mathrm{nM}$). Levorotatory enantiomers displayed the higher affinities. However, a group of these enantiomers, ($-\mathbf{)} \mathbf{- 1 5 b}$ $\left(K_{i}=22.5 \mathrm{nM}\right),(-)-15 \mathrm{j}\left(\mathrm{K}_{\mathrm{i}}=13.5 \mathrm{nM}\right),(-)-15 \mathrm{t}\left(\mathrm{K}_{\mathrm{i}}=\right.$ $19.1 \mathrm{nM})$, and (+)-15u ($\mathrm{K}_{\mathrm{i}}=17.5 \mathrm{nM}$), exhibited affinities for NET in the same range as reboxetine and nisoxetine. Unlike these two compounds, which are selective for NET, this group of enantiomers showed a dual binding profile with a ratio NET/SERT < 10 and affinities with $\mathrm{K}_{\mathrm{i}}<25 \mathrm{nM}$ for SERT and NET and very Iow for DAT. Enantiomers (-)-15b, (-)-15j, (-)-15t, and (+)-15u displayed dual binding profiles with affinity values higher than those of venlafaxine (SERT $\mathrm{K}_{\mathrm{i}}=52.0 \mathrm{nM}$, NET $\mathrm{K}_{\mathrm{i}}=719.0 \mathrm{nM}$, NET/SERT = 15.7) (Table6). Figures 1 and 2 illustrate the dual SERT and NET binding profile of compound (-)-15j. Figure 1 shows competition of compound $(-)-15 j$ for $[3 \mathrm{H}]$ paroxetine SERT binding sites in rat brain cortex compared with those of paroxetine, venlafaxine, and fluoxetine.

Figure 2. Competition for $[3 \mathrm{H}]$ nisoxetine binding sites (NET) in rat brain cortex by compound (-)-15j and antidepressant drugs.

Figure 2 shows competition of compound (-)-15j for $\left[{ }^{3} \mathrm{H}\right]$ nisoxetine NET binding sites in rat brain cortex compared with those of reboxetine, venlafaxine, and nisoxetine.

Conclusion

We have synthesized series of new [(aryl)(aryloxy)methyl]piperidine, piperazine, isoquinoline, cyclopentane, and tetrahydropyran derivatives to find novel antidepressant drugs with faster onset of action and greater efficacy and safety than the current marketed antidepressants. M ost of the synthesized compounds of series IV and V showed good affinity for SERT. A remarkable and common structural feature of compounds of these series is the presence of a secondary amine group, which seems to be critical for binding to SERT. This finding correlates with the fact that compounds of series I, II, III, and VI devoid of such a secondary amine lack affinity for SERT. Other factors such as the distance from the secondary amine to the (aryl)(aryloxy)methyl group and the nature of substituents on the aryl and aryloxy rings of compounds of series IV and V seem to affect slightly their affinity values for SERT. On the other hand, an important detail is that the introduction of a relatively bulky substituent onto the aryloxy group resulted in lack of affinity as occurs in compounds of series \mathbf{V} and could signify that 5-HT uptake sites are sensitive to this type of substitution at the aryloxy group. Enantiomers of series \mathbf{V} with high affinity for SERT were tested for their affinities for NET, DAT, and α_{2} receptor. Among these compounds (-)-15b, (-)-15j, (-)-15t, and (+)-15u displayed dual SERT and NET binding profiles with values of $\mathrm{K}_{\mathrm{i}}<25 \mathrm{nM}$. From them (-)-15j was selected on the basis of its binding profile and antidepressant-like activity in different animal models of depression. ${ }^{33}$ Further pharmacological characterization of (-)-15j (coded as F-98214-TA for these studies) as antidepressant is in progress.

Experimental Section

Chemistry. Flash column chromatography ${ }^{34}$ was performed on silica gel, particle size $60 \AA$, mesh $=230-400$ (Merck). Melting points were determined in open capillary tubes on a Büchi B-540 apparatus and are uncorrected. Elemental analyses are within $\pm 0.4 \%$ of the theorical values. IR-FT spectra were taken on a Perkin-Elmer Spectrum One instrument on

KBr plates. The enantiomeric excess was determinated by HPLC using a Waters LC Module I Plus instrument with chiral columns (Chiralcel OD-R, Daicel or Lichro Cart 250-4/ Chiradex, Merck). Optical rotations were obtained on a PerkinElmer 341 polarimeter. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded on a Bruker AC-200 spectrometer; chemical shifts (δ) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS), which was used as an internal standard. Spectral data are consistent with assigned structures.

General Procedure for Preparation of Compounds 3a-e. 1-(3-Chloro-1-(4-fluorophenyl)propoxy)-4-nitrobenzene (3e). NaBH_{4} ($7.6 \mathrm{~g}, 0.2 \mathrm{~mol}$) was added portionwise to a solution of 3-chloro-1-(4-fluorophenyl)propan-1-one ($15.0 \mathrm{~g}, 80$ $\mathrm{mmol})$ in methanol (200 mL) over a period of 20 min at $0^{\circ} \mathrm{C}$. The mixture was stirred for 6 h until the IR carbonyl absorption band disappeared. Methanol was removed under reduced pressure and the residue partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, yielding the al cohol as an oil which was used without further purification. To a mixture of previously prepared alcohol ($8.0 \mathrm{~g}, 42$ $\mathrm{mmol})$, 4-nitrophenol ($5.9 \mathrm{~g}, 42 \mathrm{mmol}$), and $\mathrm{Ph}_{3} \mathrm{P}(11.0 \mathrm{~g}, 42$ mmol) in THF (anhydrous, 100 mL) at $0^{\circ} \mathrm{C}$ was added dropwise a solution of diethyl azodicarboxylate (DEAD) (7.3 $\mathrm{g}, 6.6 \mathrm{~mL}, 42 \mathrm{mmol}$) in THF (anhydrous, 50 mL). The reaction was stirred at room temperaturefor 2 days. THF was removed and the dark residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane (1:1). The organic sol vents were evaporated and the crude was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$:hexane 1:1) to provide $\mathbf{3 e}(7.9 \mathrm{~g}, 55 \%)$ as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.20-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.97-6.82(\mathrm{~m}, 2 \mathrm{H}), 5.67-$ $5.45(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.57-$ $2.41(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.15(\mathrm{~m}, 1 \mathrm{H})$.

The following compounds were prepared analogously.
1-(3-Chloro-1-phenylpropoxy)-2-fluorobenzene (3a): oil; yield 72\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.41-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.10-6.95$ $(\mathrm{m}, 1 \mathrm{H}), 6.88-6.75(\mathrm{~m}, 3 \mathrm{H}), 5.48-5.36(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.78(\mathrm{~m}$, 1H), 3.63-3.52 (m, 1H), 2.58-2.43 (m, 1H), 2.30-2.19(m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.1(\mathrm{~d}, \mathrm{~J}=245.6 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 145.8(\mathrm{~d}, \mathrm{~J}$ $=10.5 \mathrm{~Hz}), 140.3,128.7,128.1,126.0,124.1(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz})$, $121.6(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}), 117.3,116.2(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}) 78.4,41.2$, 41.1.

1-(3-Chloro-1-phenylpropoxy)-3-trifluoromethylbenzene (3b): oil; yield 56\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.39-6.92$ (m, $9 \mathrm{H}), 5.46-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.49(\mathrm{~m}, 1 \mathrm{H})$, 2.5-2.4 (m, 1H), 2.22-2.10 (m,1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.0$, $140.0,131.7(q, J=32.2 \mathrm{~Hz}), 129.9,128.9,128.2,125.9,123.9$ $(q, J=272.3 \mathrm{~Hz}), 118.8(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}), 117.6(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz})$, 113.3 ($\mathrm{q}, \mathrm{J}=3.9 \mathrm{~Hz}$), 77.2, 41.1, 41.0.

1-(3-Chloro-1-phenylpropoxy)-4-methoxybenzene (3c): oil; yield 52%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H})$, $6.80-6.64(\mathrm{~m}, 4 \mathrm{H}), 5.27-5.21(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.52(\mathrm{~m}, 2 \mathrm{H}), 3.70$ $(\mathrm{s}, 3 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.9,151.9,141.0,128.6,127.7,125.9,117.1,114.4$, 77.7, 55.5, 41.3.

1-(3-Chloro-1-phenylpropoxy)-4-nitrobenzene (3d): colorless oil; yield 70%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}$, 2H), 7.36-7.24 (m, 5H), $6.91(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.53-5.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.42(\mathrm{~m}$, 1H), 2.32-2.18 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (CDCl $)^{2} \delta 162.5,141.5,138.9$, 129.0, 128.4, 125.70, 125.66, 115.7, 77.5, 40.9, 40.8.

Preparation of 3-[4-[3-Chloro-3-phenylpropyl]piper-azin-1-yl]benzo[d]isothiazole (3f). A mixture of 3-chloro-1-phenylpropan-1-one 2a ($4.1 \mathrm{~g}, 24 \mathrm{mmol}$), 3-(piperazin-1yl) benzo[d]isothiazol e ($5.0 \mathrm{~g}, 24 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(4.0 \mathrm{~g}, 28 \mathrm{mmol})$ in acetonitrile (200 mL) was heated overnight at $90^{\circ} \mathrm{C}$. The solvent was removed, the residue partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: methanol $98: 2$) and the obtained product ($6.0 \mathrm{~g}, 17 \mathrm{mmol}$) dissolved in methanol (100 mL). The solution was cooled with an ice bath, treated with $\mathrm{NaBH}_{4}(1.6 \mathrm{~g}, 43 \mathrm{mmol})$, and stirred

5 h at room temperature. The sol vent was removed, the residue partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 98: 2$), yiel ding the al cohol (5.6 $\mathrm{g}, 16 \mathrm{mmol})$ which was dissolved in $\mathrm{Cl}_{3} \mathrm{CH}(25 \mathrm{~mL})$ and treated dropwise with a solution of $\mathrm{SOCl}_{2}(2.3 \mathrm{~mL}, 32 \mathrm{mmol})$ in $\mathrm{Cl}_{3} \mathrm{CH}(25 \mathrm{~mL})$. The mixture was stirred overnight, affording 3 f as a white solid (87% yield) after addition of $\mathrm{Et}_{2} \mathrm{O}$ and filtration: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ one drop of $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.94-$ $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.26(\mathrm{~m}, 7 \mathrm{H}), 5.12(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ $3.81(\mathrm{~m}, 4 \mathrm{H}), 3.76-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.18(\mathrm{~m}, 4 \mathrm{H}), 2.84-$ $2.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 164.0,152.1,142.5,139.8$, 132.2, 128.5, 128.2, 127.9, 126.9, 123.8, 120.4, 61.0, 54.3, 52.9, 52.8, 50.0, 37.4 .

General Procedure for Preparation of Compounds 4a-j,m,n. 3-[4-[3-(2-Fluorophenoxy)-3-phenylpropyl]pip-erazin-1-yl]benzo[d]isothiazole Hydrochloride (4a). A mixture of $3 \mathrm{Ba}(1.3 \mathrm{~g}, 4.9 \mathrm{mmol}$), 3-(piperazin-1-yl)benzo[d]isothiazol e ($1.0 \mathrm{~g}, 4.9 \mathrm{mmol}$), and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.8 \mathrm{~g}, 5.8$ mmol) in acetonitrile (50 mL) was refluxed over 48 h . The solvent was removed, the residue partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic layer washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The crude was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$: $\mathrm{MeOH} 99: 1)$. The purified product was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and treated with a saturated solution of $\mathrm{HCl}(\mathrm{g})$ in $\mathrm{Et}_{2} \mathrm{O}$ to give the hydrochloride 4a as a white solid ($1.4 \mathrm{~g}, 58 \%$): mp 170-172 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.90-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.21(\mathrm{~m}, 7 \mathrm{H})$, 7.10-6.98 (m, 1H), 6.97-6.79 (m, 3H), 5.38-5.26 (m, 1H), 3.6$3.55(\mathrm{~m}, 4 \mathrm{H}), 2.7-2.6(\mathrm{~m}, 6 \mathrm{H}), 2.40-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.18-1.98$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.9,153.2(\mathrm{~d}, \mathrm{~J}=245.2 \mathrm{~Hz}$, C-F), 152.7, 146.1 (d, J = 10.4 Hz), 141.3, 128.5, 128.0, 127.7, 127.4, 126.1, 124.0, 123.8 (d, J = 2.4 Hz), 121.3 (d, J $=7 \mathrm{~Hz}$), $120.5,117.4$ (d, J = 1.3 Hz), 116.1 (d, J $=18.5 \mathrm{~Hz}$), 80.1, 54.4, 52.9, 50.1, 35.7. Anal. ($\left.\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~F} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.
3-[4-[3-(2-Fluorophenoxy)-3-phenylpropyl]piperazin-1-yl]benzo[d]isoxazole hydrochloride (4b): white solid; $\mathrm{mp} 183-185^{\circ} \mathrm{C}$; yield $53 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.72-7.60$ (d , $\mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.10(\mathrm{~m}, 8 \mathrm{H}), 7.10-7.0(\mathrm{~m}, 1 \mathrm{H}), 6.92-$ $6.77(\mathrm{~m}, 3 \mathrm{H}), 5.37-5.23(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 4 \mathrm{H}), 2.70-$ $2.58(\mathrm{~m}, 6 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.98(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.9,161.3,153.2(\mathrm{~d}, \mathrm{~J}=245.2 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 146.1$ (d, J = 10.4 Hz), 141.3, 129.4, 128.6, 127.8, 126.1, 124.0 (d, J $=3.8 \mathrm{~Hz}), 122.2,122.1,121.3(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 117.4,116.17$, 116.16 (d, J $=18.5 \mathrm{~Hz}$), 110.4, 80.1, 54.4, 52.5, 48.3, 35.7. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{FN}_{3} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3-[4-[3-Phenyl-3-(3-trifluoromethylphenoxy)propyl]-piperazin-1-yl]benzo[d]isothiazole hydrochloride (4c): yellow solid; mp 191-194 ${ }^{\circ} \mathrm{C}$; yield 37%; ${ }^{1} \mathrm{H}$ NMR (CD ${ }_{3} \mathrm{OD}$) δ $8.06-8.02(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.93-7.89(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.54-7.11 (m, 11H), 5.58-5.50 (m, 1H), 4.20-4.10 (m, 2H), 3.76-3.71 (m, 2H), 3.52-3.40 (m, 6H), 2.60-2.38 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}$) $\delta 163.4,159.0,154.2,140.9,132.6$ ($\mathrm{q}, \mathrm{J}=$ $32.1 \mathrm{~Hz}), 131.3,130.0,129.5,129.3,128.5,127.2,125.7,125.3$ $(\mathrm{q}, \mathrm{J}=271.4 \mathrm{~Hz}), 124.8,121.7,120.6,118.7(\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz})$, 114.1 ($\mathrm{q}, \mathrm{J}=3.8 \mathrm{~Hz}$), 78.7, 55.3, 52.9, 48.3, 33.9. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3-[4-[3-(4-Methoxyphenoxy)-3-phenylpropyl]piperazin-1-yl]benzo[d]isothiazole hydrochloride (4d): white solid; $\mathrm{mp} 135^{\circ} \mathrm{C}(\mathrm{dec})$; yield 45%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.93-7.81$ (d, $\mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.65(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.20$ (m, 7H), 6.80-6.68 (m, 4H), 5.20-5.10 (m, 1H), $3.65(\mathrm{~s}, 3 \mathrm{H})$, $3.55-3.45(\mathrm{~m}, 4 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 6 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H})$, 2.10-1.90 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 163.7, 153.6, 152.5, 152.2, 141.9, 128.3, 127.8, 127.3, 125.9, 123.7, 123.68, 120.3, 116.9, 115.2, 114.3, 79.0, 55.3, 54.5, 52.8, 50.0, 35.8. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[4-[3-(4-Methoxyphenoxy)-3-phenylpropyl]piperazin-1-yl]benzo[d]isoxazole hydrochloride (4e): white solid; $\mathrm{mp} 186-188^{\circ} \mathrm{C}$; yield 60%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.75-7.61(\mathrm{~d}$, $\mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.18(\mathrm{~m}, 8 \mathrm{H}), 6.80-6.63(\mathrm{~m}, 4 \mathrm{H}), 5.20-$ $5.10(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.55(\mathrm{~m}$,
$6 \mathrm{H}), 2.30-1.90(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 163.9,161.3,153.8$, 152.3, 142.0, 129.4, 128.5, 127.5, 126.0, 122.2, 122.1, 117.0, 116.2, 114.4, 110.4, 79.2, 55.6, 54.7, 52.5, 48.3, 35.9. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[4-[3-(4-Nitrophenoxy)-3-phenylpropyl]piperazin-1yl]benzo[d]isoxazole hydrochloride (4f): white solid; mp $153{ }^{\circ} \mathrm{C}$ (dec); yield 49\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.07$ (d, J $=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.77-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.16(\mathrm{~m}, 8 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 5.43-5.36 (m, 1H), 3.62-3.45 (m, 4H), 2.70-2.50 $(\mathrm{m}, 6 \mathrm{H}), 2.38-2.05(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 163.6, 163.0, 161.0, 141.0, 140.0, 129.2, 128.6, 127.9, 125.6, 125.4, 122.0, 121.9, 115.9, 115.5, 110.1, 78.8, 54.0, 52.2, 48.0, 35.4. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-[3-(2-Fluorophenoxy)-3-phenylpropyl]piperidin-4-yl]-(4-fluorophenyl)methanone hydrochloride (4g): white solid; mp $145-147{ }^{\circ} \mathrm{C}$; yield 44%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.03-$ $7.95(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.40(\mathrm{~m}, 11 \mathrm{H}), 5.37-5.24(\mathrm{~m}, 1 \mathrm{H}), 3.24-$ $2.85(\mathrm{~m}, 3 \mathrm{H}), 2.58-1.78(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ 201.0, 165.5 (d, J $=254.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 153.1 ($\mathrm{d}, \mathrm{J}=245.4 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), $146.1(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 141.3,132.4(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 130.8(\mathrm{~d}$, $\mathrm{J}=9.3 \mathrm{~Hz}), 128.5,127.7,126.0,123.9(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}), 121.2$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}), 117.3(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}), 116.2,115.9,115.4,80.0$, 54.5, 53.3, 53.0, 43.7, 35.8, 28.8. Anal. ($\left.\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~F}_{2} \mathrm{NO}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}$, H, N.
(4-Fluorophenyl)-[1-[3-(4-methoxyphenoxy)-3-phenyl-propyl]piperidin-4-yl]methanone hydrochloride (4h): white solid; $\mathrm{mp} 181{ }^{\circ} \mathrm{C}$ (dec); yield 32%; ${ }^{1} \mathrm{H}$ NMR (acetone d_{6}) $\delta 8.18-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.18(\mathrm{~m}, 7 \mathrm{H}), 6.85-6.62(\mathrm{~m}, 4 \mathrm{H})$, $5.48-5.41(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.79-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.72$ $(\mathrm{s}, 3 \mathrm{H}), 3.57-3.08(\mathrm{~m}, 5 \mathrm{H}), 2.59-2.35(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}$) $199.9,168.9(\mathrm{~d}, \mathrm{~J}=256.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 155.0,152.5$, $142.3,133.0,132.2(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}), 129.3,128.6,127.1,118.1$, 116.5 (d, J = 21.8 Hz), 115.1, 78.9, 55.7, 54.9, 52.5, 52.0, 41.7, 33.2, 28.6, 26.6. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FNO}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(4-F luorophenyl)-[1-[3-(4-nitrophenoxy)-3-phenylpro-pyl]piperidin-4-yl]methanone hydrochloride (4i): white solid; $\mathrm{mp} 117^{\circ} \mathrm{C}(\mathrm{dec})$; yield 44%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.10-$ $7.95(\mathrm{~m}, 4 \mathrm{H}), 7.38-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.97-$ 6.83 (d, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.45-5.27 (m, 1H), 3.26-3.17 (m, $2 \mathrm{H}), 3.06-2.90(\mathrm{~m}, 3 \mathrm{H}), 2.56-2.42(\mathrm{~m}, 3 \mathrm{H}), 2.39-1.87(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.9,165.4(\mathrm{~d}, \mathrm{~J}=254.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 163.2$, $141.1,140.3,132.3(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 130.7(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}), 128.7$, 127.9, 125.8, 125.6, 115.6, $115.59(\mathrm{~d}, \mathrm{~J}=22 \mathrm{~Hz}), 79.1,54.2$, 53.1, 53.0, 43.5, 35.7, 28.7, 28.6. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}$, H,N.
(4-F luorophenyl)-[1-[3-(4-fluorophenyl)-3-(4-nitrophe-noxy)propyl]piperidin-4-yl]methanone hydrochloride (4j): brown solid; mp $92{ }^{\circ} \mathrm{C}$ (dec); yield 49%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.15-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.20-6.85(\mathrm{~m}, 6 \mathrm{H})$, 5.44-5.35 (m, 1H), 3.30-3.10 (m, 1H), 3.02-2.87 (m, 2H), 2.58-1.7 (m, 10H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 200.9,165.5(\mathrm{~d}, \mathrm{~J}=$ $246.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 163.0, 162.2 (d, J $=246.5 \mathrm{~Hz}$), 141.2, 136.1 $(\mathrm{d}, \mathrm{J}=3.2 \mathrm{~Hz}), 132.3(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 130.7(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz})$, $127.6(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 125.6,115.63,115.64(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz})$, $115.62(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 78.4,54.0,53.1,43.4,35.6,28.6$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[4-[3-Phenyl-3-(2-trifluoromethylphenoxy)propyl]-piperazin-1-yl]benzo[d]isothiazole hydrochloride (4m): white solid; $\mathrm{mp} 170-173{ }^{\circ} \mathrm{C}$; yield 30%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.05(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-$ $7.30(\mathrm{~m}, 9 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.22-$ $4.10(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.40(\mathrm{~m}, 8 \mathrm{H}), 2.58-2.43(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (Acetone-d ${ }_{6}$) δ 162.4, 155.2, 152.8, 140.0, 133.6, 128.8, 128.4, 128.1, 128.0, 126.6 (q, J = 5.2 Hz), 126.1, 124.4, 123.9, 120.8, $120.3,118.2(q, J=30.6 \mathrm{~Hz}), 114.8,77.3,53.6,51.6,50.7,46.5$, 32.2. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[4-[3-Phenyl-3-(4-trifluoromethylphenoxy)propyl]-piperazin-1-yl]benzo[d]isothiazole hydrochloride (4n): white solid; mp 195-198 ${ }^{\circ} \mathrm{C}$; yield 38%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.89(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-$ $7.24(\mathrm{~m}, 7 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.33$ (dd, J $=7.9,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59-3.46(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 6 \mathrm{H}), 2.33-2.00(\mathrm{~m}$, $2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 163.9, 160.6, 152.7, 141.0, 128.7, $128.5,128.0,127.8,126.8,126.74,126.66,123.8,122.5(q, \mathrm{~J}=$
$30.5 \mathrm{~Hz})$, 120.5, 115.7, 78.6, 54.4, 53.0, 50.1, 35.8. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for Preparation of Compounds 4k,l. [1-[3-(4-Aminophenoxy)-3-(4-fluorophenyl)propyl]-piperidin-4-yl](4-fluorophenyl)methanone Hydrochloride (4k). A vigorously stirred solution of $4 \mathbf{j}(2.1 \mathrm{~g}, 4.1 \mathrm{mmol})$ in ethanol (5.1 mL) was heated to reflux and treated with 10% aqueous NaOH solution (5.1 mL). Zinc dust (2.5 g) was added in portions to maintain the gentle reflux. Once the addition was completed, the reaction mixture was filtered and the filtrate poured into water and extracted with EtOAc. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by flash chromatography ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH} 95: 5$), yielding an oil ($1.4 \mathrm{~g}, 79 \%$ yield) which by treatment with a saturated solution of $\mathrm{HCl}(\mathrm{g})$ in $\mathrm{Et}_{2} \mathrm{O}$ afforded the hydrochloride $\mathbf{4 k}$ as a white solid: mp 80 ${ }^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.05-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.26(\mathrm{~m}$, 2H), 7.19-6.90 (m, 4H), 6.75-6.60 (d, J = 8.7 Hz, 2H), 6.576.47 (d, 2H), 5.15-5.02 (m, 1H), 3.60-3.10 (bs, 1H), 3.09-2.90 $(\mathrm{m}, 2 \mathrm{H}), 2.56-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.30-1.72(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 201.1,165.6(\mathrm{~d}, \mathrm{~J}=254.5 \mathrm{~Hz}), 162.0(\mathrm{~d}, \mathrm{~J}=245.5$ $\mathrm{Hz}), 151.0,140.2,138.0(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 132.4(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz})$, $130.8(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}), 127.8(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 117.4,116.1,115.7$ $(\mathrm{d}, \mathrm{J}=22 \mathrm{~Hz}), 115.2(\mathrm{~d}, \mathrm{~J}=22 \mathrm{~Hz}), 78.8,54.7,53.2,53.1,43.7$, 35.9, 28.8. Anal. ($\left.\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compound was prepared analogously.
[1-[3-(4-Aminophenoxy)-3-phenylpropyl]piperidin-4-yl](4-fluorophenyl)methanone hydrochloride (4I): white solid; mp $178{ }^{\circ} \mathrm{C}(\mathrm{dec})$; yield 50%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.15-$ $8.08(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.20(\mathrm{~m}, 9 \mathrm{H}), 7.07-7.02(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 5.55-5.49(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.67(\mathrm{~m}, 3 \mathrm{H})$, 3.48-3.23(m,5H), 2.51-2.43 (m, 2H), 2.16-1.99 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 200.9, 167.1 (d, J $=253.8 \mathrm{~Hz}$), 158.8, 140.9, 132.9 ($\mathrm{d}, \mathrm{J}=2.7$ $\mathrm{Hz}), 132.6(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}), 129.8,129.3,127.2,125.2,124.7$, $118.3,116.8(\mathrm{~d}, \mathrm{~J}=22.1 \mathrm{~Hz}), 78.6,55.2,53.1,41.5,33.7,27.3$. Anal. ($\left.\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for Preparation of Compounds 6a,b. 3-(3,4-Dihydro-1H-isoquinolin-2-yl)-1-phenylpropanol (6a). A mixture of 5 a ($6.7 \mathrm{~g}, 50 \mathrm{mmol}$), 3-chloropropiophenone ($8.4 \mathrm{~g}, 50 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(14.0 \mathrm{~g}, 100$ mmol), and acetonitrile (250 mL) was stirred at room temperature for 16 h and the solvent removed under reduced pressure. The residue was treated with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give 3-(3,4-dihydro-1H-isoquinolin-2-yl)-1-phenylpropanone as an oil in quantitative yield. $\mathrm{NaBH}_{4}(3.8 \mathrm{~g}, 100 \mathrm{mmol})$ was added portionwise to a well stirred solution of 3-(3,4-dihydro-1H-isoquinolin-2-yl)-1-phenylpropanone ($11.7 \mathrm{~g}, 40 \mathrm{mmol}$) in methanol (100 mL) over a period of 20 min at $0^{\circ} \mathrm{C}$. The stirring was continued for 16 h and methanol removed under reduced pressure. The residue was partitioned between water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated affording in quantitative yield 6 a as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.45-$ $7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.03(\mathrm{~m}, 4 \mathrm{H}), 5.06-4.92(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}$, $\mathrm{J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.68(\mathrm{~m}$, $6 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 144.9,133.9,128.5$, 128.1, 126.8, 126.4, 126.3, 125.7, 125.5, 75.3, 56.6, 56.1, 50.6, 34.0, 28.8.

Compound 6b was prepared analogously.

3-(6,7-Dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)-1phenylpropanol (6b): oil; yield quantitative; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 5.04-$ $4.95(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=16.9,1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=$ $16.9,1 \mathrm{H}), 2.94-2.62(\mathrm{~m}, 6 \mathrm{H}), 1.95-1.87(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 147.6, 147.2, 144.9, 128.1, 126.8, 125.8, 125.6, 125.4, 111.2, 109.3, 75.4, 56.5, 55.8, 55.6, 50.7, 33.9, 28.4.

General Procedure for Preparation of Compounds 7a-h. 2-[3-(2-Fluorophenoxy)-3-phenylpropyl]-1,2,3,4tetrahydroisoquinoline Fumarate (7a). Thionyl chloride ($2.4 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise to a solution of $\mathbf{6 a}$ (6.7 $\mathrm{g}, 25 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$. The mixture was stirred at room temperature for 16 h . The reaction mixture was filtered,
the solid treated with 10% aqueous NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, yiel ding 2-(3-chloro-3-phenyl propyl)-1,2,3,4-tetrahydroisoquinoline ($4.4 \mathrm{~g} 62 \%$). A mixture of 2 -(3-chloro-3-phenylpropyl)-1,2,3,4-tetrahydroi soquinol ine ($1.2 \mathrm{~g}, 4 \mathrm{mmol}$), 2-fluorophenol $(0.6 \mathrm{~g}, 5 \mathrm{mmol})$, anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.1 \mathrm{~g}, 8 \mathrm{mmol})$, and DMF (20 mL) was stirred at $60^{\circ} \mathrm{C}$ for 4 h and then poured into water $(100 \mathrm{~mL})$. The aqueous solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer washed with brine and concentrated. The residue was purified by flash chromatography on silica gel ($\mathrm{Cl}_{2} \mathrm{CH}_{2}: \mathrm{MeOH} 98: 2$) to give $7 \mathrm{a}(1.2 \mathrm{~g}, 84 \%)$ as an oil that was converted into the fumarate salt: mp $168-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.92-6.75$ $(\mathrm{m}, 3 \mathrm{H}), 5.35-5.25(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 2 \mathrm{H})$, 2.75-2.60 (m, 4H), 2.45-2.30 (m, 1H), 2.15-2.00 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.2(\mathrm{~d}, \mathrm{~J}=241.2 \mathrm{~Hz}) 146.2(\mathrm{~d}, \mathrm{~J}=$ 10 Hz), 141.4, 134.9, 134.4, 128.6, 127.7, 126.5, 126.1, $126.0,125.5,124.0(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 121.2(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 117.4$, $116.2(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}), 80.0,56.1,54.3,51.0,36.1,29.3$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FNO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.
2-[3-Phenyl-3-(2-trifluoromethylphenoxy)propyl]-1,2,3,4tetrahydroisoquinoline fumarate (7b): white solid; mp $145-147^{\circ} \mathrm{C}$; yield 91%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.58-7.50(\mathrm{~m}, 1 \mathrm{H})$, 7.40-6.75 (m, 12 H$), 5.55-5.40(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.95-$ $2.85(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.40-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ $2.05(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.2(\mathrm{q}, \mathrm{J}=1.7 \mathrm{~Hz}), 141.1$, $134.8,134.3,132.9,128.7,128.6,127.7,126.8(\mathrm{q}, \mathrm{J}=4.8 \mathrm{~Hz})$, $126.5,126.0,125.8,121.1,119.7(q, J=31.2 \mathrm{~Hz}), 118.6,114.1$, 78.2, 56.1, 54.0, 50.9, 36.3, 29.2. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ C, H, N

2-[3-(4-Chlorophenoxy)-3-phenylpropyl]-1,2,3,4-tetrahydroisoquinoline fumarate (7c): white solid; $\mathrm{mp} 133-135$ ${ }^{\circ} \mathrm{C}$; yield 60%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-$ $6.95(\mathrm{~m}, 6 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=10 \mathrm{~Hz}, 2 \mathrm{H}), 5.35-5.20(\mathrm{~m}, 1 \mathrm{H}), 3.60$ $(\mathrm{s}, 2 \mathrm{H}), 2.95-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.18(\mathrm{~m}$, 1H), 2.15-1.93 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) δ 156.8, 141.5, 134.8, $134.3,129.1,128.6,127.7,126.5,126.1,126.0,125.6,117.3$, 78.7, 56.1, 54.3, 51.1, 36.3, 29.3. Anal. ($\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{CINO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$) C, H, N

2-[3-Phenyl-3-(4-methylphenoxy)propyl]-1,2,3,4-tetrahydroisoquinoline fumarate (7d): white solid; mp 106 -108 ${ }^{\circ} \mathrm{C}$; yield 56.5%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$) $7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 7.15-$ $7.05(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.33-5.15(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.55$ $(\mathrm{m}, 4 \mathrm{H}), 2.36-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 156.6, 142.1, 134.8, 134.3, 129.8, 129.6, 128.5, 128.4, 127.3, $126.5,125.9,125.5,115.8,78.3,56.1,54.4,51.0,36.3,29.2,20.3$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-(2-Fluorophenoxy)-3-phenylpropyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline fumarate (7e): white solid; $\mathrm{mp} 152-154{ }^{\circ} \mathrm{C}$; yield 94%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.25(\mathrm{~m}$, 5H), 7.15-7.00 (m, 1H), 6.92-6.75 (m, 3H), 6.60 (s, 1H), 6.52 ($\mathrm{s}, 1 \mathrm{H}$), $5.45-5.35(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.82-$ $2.67(\mathrm{~m}, 6 \mathrm{H}), 2.52-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.3(\mathrm{~d}, \mathrm{~J}=245.4 \mathrm{~Hz}) 147.4,147.1,146.1(\mathrm{~d}, \mathrm{~J}=$ 10.4 Hz), 141.4, 128.5, 127.7, 126.7, 126.2, 126.0, 124.0 (d, J $=3.8 \mathrm{~Hz}), 121.2(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}), 117.3,116.1(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz})$, 111.3, 109.4, 79.9, 55.8, 55.6, 54.1, 51.0, 36.1, 28.8. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{FNO}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6,7-Dimethoxy-2-[3-phenyl-3-(2-trifluoromethylphe-noxy)propyl]-1,2,3,4-tetrahydroisoquinoline fumarate (7f): white solid; mp $128{ }^{\circ} \mathrm{C}$ (dec); yield 80%; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}\right)$ $\delta 7.55(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.25(\mathrm{~m}, 6 \mathrm{H}), 6.95-6.80(\mathrm{~m}$, $2 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 5.53-5.44(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 6 \mathrm{H})$, 3.57 (s, 2H), 2.80-2.60 (m, 6H), 2.53-2.36 (m, 1H), 2.20-2.05 $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.7(\mathrm{q}, \mathrm{J}=1.7 \mathrm{~Hz}), 147.4,147.1$, $141.1,132.8,128.6,127.6,126.7$ ($q, \mathrm{~J}=4.7 \mathrm{~Hz}$), 126.6, 126.2, $125.8,119.5,119.3$ ($\mathrm{q}, \mathrm{J}=31.2 \mathrm{~Hz}$), 114.0, 111.3, 109.4, 78.2, 55.8, 55.7, 53.9, 51.0, 36.3, 28.8. Anal. ($\left.\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{NO}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-(4-Chlorophenoxy)-3-phenylpropyl]-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline fumarate (7g): white solid;
mp 129-133 ${ }^{\circ} \mathrm{C}$; yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.25(\mathrm{~m}$, $5 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~s}$, $1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 5.34-5.20(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H})$, 2.78-2.55 (m, 6H), 2.35-2.19 (m, 1H), 2.15-2.00 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 156.7,147.4,147.1,141.4,129.0,128.5,127.6$, $126.5,126.1,125.9,125.2,117.2,111.3,109,78.6,55.8,55.6$, 54.1, 51.0, 36.2, 28.7. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClNO}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6,7-Dimethoxy-2-[3-phenyl-3-(4-methylphenoxy)propyl]-1,2,3,4-tetrahydroisoquinoline fumarate (7h): white solid; $\mathrm{mp} 172-174{ }^{\circ} \mathrm{C}$; yield 66%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.40-7.16$ (m, $5 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}$, $1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.26-5.10(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H})$, 2.85-2.64 (m, 6H), 2.35-2.06 (m, 2H), 2.24 (s, 3H); ${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.0,147.4,147.1,142.1,129.7,129.6,128.4,127.3$, $126.6,126.2,125.9,115.8,111.3,109.4,78.3,55.8,55.7,54.4$, 51.0, 36.4, 28.7, 20.3. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NO}_{3} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Preparation of 2-(3-Hydroxy-3-phenylpropyl)-1,2,3,4-tetrahydroisoquinoline-6,7-diyl Diacetate (6c). A mixture of 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochl oride $(6.0 \mathrm{~g}, 25 \mathrm{mmol})$ and $45 \% \mathrm{HBr}(75 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$ for 2 h and then allowed to cool to room temperature. Filtration and drying afforded in quantitative yield 6,7-dihydroxy-1,2,3,4tetrahydroisoquinoline hydrobromide as a solid. A mixture of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline hydrobromide (6.1 $\mathrm{g}, 25 \mathrm{mmol})$, 3-chloropropiophenone ($4.2 \mathrm{~g}, 25 \mathrm{mmol}$), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(5.6 \mathrm{~g}, 40 \mathrm{mmol})$, and acetonitrile (150 mL) was stirred at room temperature for 16 h . Filtration, washing with water, and drying yielded 3-(6,7-dihydroxy-3,4-dihydro-1H-isoquinolin-2-yl)-1-phenylpropanone as a yellow solid (6.3 g , 85%). Acetyl chloride ($10.5 \mathrm{~mL}, 150 \mathrm{mmol}$) was added dropwise to a stirred solution of 3-(6,7-dihydroxy-3,4-dihydro-1H-iso-quinolin-2-yl)-1-phenylpropanone ($7.5 \mathrm{~g}, 25 \mathrm{mmol}$) in acetic acid (100 mL). The reaction mixture was heated at $70^{\circ} \mathrm{C}$ for 2 h and the solvent removed under reduced pressure to give 2-(3-oxophenylpropyl)-1,2,3,4-tetrahydroisoquiniline-6,7-diyl diacetate hydrochloride ($10 \mathrm{~g}, 96 \%$) as a solid which was washed with $\mathrm{Et}_{2} \mathrm{O}$ and filtered. A solution of previously prepared ketone ($10 \mathrm{~g}, 24 \mathrm{mmol}$) in methanol (200 mL) was treated with 10% palladium/carbon (0.5 g) and the reaction mixture hydrogenated at room temperature (40 psi) for 5 h . The reaction mixture was filtered to remove the palladium catalyst, the solvent distilled under reduced pressure, and the residue treated with 10% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with brine and concentrated. The residue was chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 98: 2\right)$, affording $\mathbf{6 c}$ as an oil ($6.0 \mathrm{~g}, 65.3 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.60-7.45(\mathrm{~m}, 5 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H})$, $4.98-4.85(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, \mathrm{~J}=16.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92-2.71(\mathrm{~m}, 6 \mathrm{H}), 2.30(\mathrm{~s}, 6 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 168.4,144.7,140.2,139.8,132.6,132.5$, $128.1,126.8,125.4,123.0,121.0,75.2,56.3,55.4,50.0,34.0$, 28.3, 20.5.

General Procedure for Preparation of Compounds 7i-I. 2-[3-Phenyl-3-(2-trifluoromethylphenoxy)propyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diol Hydrochloride (7J). A mixture of $\mathbf{6 c}(2.2 \mathrm{~g}, 5.9 \mathrm{mmol})$ and 2-trifluoromethylphenol $(0.9 \mathrm{~g}, 5.9 \mathrm{mmol})$ in THF (40 mL) was stirred at room temperature and triphenyl phosphine ($1.5 \mathrm{~g}, 5.9 \mathrm{mmol}$) added. A solution of DEAD ($0.9 \mathrm{~mL}, 5.9 \mathrm{mmol}$) in THF (10 mL) was added dropwise, the reaction temperature being kept below $20^{\circ} \mathrm{C}$. After stirring for 24 h , the mixture was concentrated in vacuo and the yellow oily residue extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with 1 N aqueous HCl solution $(3 \times 50 \mathrm{~mL})$. The aqueous layer was treated with 10% aqueous NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give 2-[3-phenyl-3-(2-trifluoromethyl phenoxy)propyl]-1,2,3,4-tetrahydroisoquinoline-6,7-diyl diacetate (2.3 g). A mixture of previously prepared ester (1.2 g), 3 N aqueous HCl solution (2.5 mL), and $\mathrm{MeOH}(25 \mathrm{~mL}$) was refluxed for 2 h . After cooling to room temperature the solvent was removed under reduced pressure and the residue chromatographed on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right.$) to give 0.6 g of $7 \mathrm{j}\left(\mathrm{mp} 128-131{ }^{\circ} \mathrm{C}\right.$, 65\%): ${ }^{2} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.75-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.25(\mathrm{~m}$,
$6 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.80-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.42$ (s, 1H), 5.56-5.40 (m, 1H), 3.85 (bs, 2H), 3.35-2.66 (m, 8H). Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.
2-[3-(2-Fluorophenoxy)-3-phenylpropyl]-1,2,3,4-tetrahy-droisoquinoline-6,7-diol hydrochloride (7i): white solid; $\mathrm{mp} 117^{\circ} \mathrm{C}$ (dec); yield 58\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.45-7.22$ (m, 5H), 7.12-6.96 (m, 1H), 6.85-6.70 (m, 3H), 6.50-6.35 (2 bs, 2H), 5.35-5.20 (m, 1H), 3.75 (bs, 2H), 3.20-2.60 (m, 8H). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{FNO}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-Phenyl-3-(4-methylphenoxy)propyl]-1,2,3,4-tetrahy-droisoquinoline-6,7-diol hydrochloride (7k): yellow solid; mp $152-155{ }^{\circ} \mathrm{C}$; yield $62 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.46-7.18$ $(\mathrm{m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 6.50 (bs, 2H), 5.35-5.10 (m, 1H), 3.76 (bs, 2H), 3.25-2.57 (m, $8 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[3-Phenyl-3-(4-chlorophenoxy)-propyl]-1,2,3,4-tetrahy-droisoquinoline-6,7-diol hydrochloride (7I): white solid; mp $125{ }^{\circ} \mathrm{C}$ (dec); yield $40 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.21$ $(\mathrm{m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=9,5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.10-4.93(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{bs}, 2 \mathrm{H})$, 3.28-2.45 (m, 8H). Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClNO}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Preparation of (4-Fluorophenyl)piperidin-3-yImethanone (8). A mixture of piperidine-3-carboxylic acid ethyl ester ($10 \mathrm{~g}, 63.6 \mathrm{mmol}$), benzyl bromide ($10.8 \mathrm{~g}, 7.5 \mathrm{~mL}, 65.9 \mathrm{mmol}$), anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}(8.5 \mathrm{~g}, 80.2 \mathrm{mmol})$, and acetonitrile (80 mL) was refluxed for 15 h , then acetonitrile was removed under reduced pressure. The residue was treated with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give 1-benzyl-piperidine-3-carboxylic acid ethyl ester as an oil in quantitative yield. Recently prepared oil ($15.7 \mathrm{~g}, 63.6$ mmol) was treated with 20% aqueous HCl solution (100 mL) and refluxed for 4 h . The reaction was concentrated to dryness to obtain 1-benzylpiperidine-3-carboxylic acid as a white solid. A mixture of acid ($40 \mathrm{~g}, 0.16 \mathrm{~mol}$) and $\mathrm{SOCl}_{2}(50 \mathrm{~mL})$ was stirred at room temperature for 1 h and then SOCl_{2} removed under reduced pressure. The residue was dissolved in 1,2dichloroethane (50 mL) and the solution added dropwise to a mixture of fluorobenzene ($70 \mathrm{~mL}, 0.75 \mathrm{~mol}$), 1,2-dichloroethane $(50 \mathrm{~mL})$), and $\mathrm{AICl}_{3}(50 \mathrm{~g}, 0.37 \mathrm{~mol})$ cooled in an ice bath. The reaction mixture was refluxed for 2.5 h , cooled, and poured onto ice-water. After stirring for 30 min , the mixture was extracted with chloroform and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give the hydrochloride salt of (1-benzylpiperidin-3-yl)(4fluorophenyl)methanone as a white solid in 75% yield. To a solution of (1-benzylpiperidin-3-yl)(4-fluorophenyl)methanone ($24 \mathrm{~g}, 0.08 \mathrm{~mol}$) in benzene (220 mL) was added dropwise ethyl chloroformate ($12 \mathrm{~mL}, 0.10 \mathrm{~mol}$). The reaction mixture was refluxed for 3 h , cooled to room temperature, and washed with 10% aqueous HCl solution and brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered and the solvent removed under vacuum. Purification by flash chromatography on silica gel $\left(\mathrm{Cl}_{3} \mathrm{CH}\right.$ and $\mathrm{Cl}_{3} \mathrm{CH}: \mathrm{Et}_{2} \mathrm{O}$ 9:1) gave 3-(4-fluoroben-zoyl)piperidine-1-carboxylic acid ethyl ester as an oil in 88\% yield. The carbamate ($8 \mathrm{~g}, 28.0 \mathrm{mmol}$) was refluxed with glacial acetic acid (347 mL) and $48 \% \mathrm{HBr}(78 \mathrm{~mL})$ for 1.5 h . The mixture was allowed to cool to room temperature and evaporated to dryness. The residue was treated with water, cooled in an ice bath, treated with solid sodium hydroxide ($\mathrm{pH}>10$), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give 8 as an oil (97% yield): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.04-7.96$ (m, 2H), 7.19-7.09 (m, 2H), 3.51-3.38 (m, 1H), 3.25-3.19 (m, $1 \mathrm{H}), 3.10-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.62(\mathrm{~m}, 2 \mathrm{H})$, 2.06-1.98 (m, 1H), 1.86-1.57 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 200.7, $165.5(\mathrm{~d}, \mathrm{~J}=254.6 \mathrm{~Hz}), 132.2(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}), 130.7(\mathrm{~d}, \mathrm{~J}$ $=9.5 \mathrm{~Hz}), 115.6(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 48.8,46.2,44.6,27.8,25.3$.

Preparation of 3-[(4-Fluorophenyl)hydroxymethyl]-piperidine-1-carboxylic Acid tert-Butyl Ester (9). A mixture of 8 ($1.1 \mathrm{~g}, 5.3 \mathrm{mmol}$), sodium bicarbonate ($1.5 \mathrm{~g}, 17.7$ mmol), and water (15 mL) was treated with (BoC$)_{2} \mathrm{O}(1.5 \mathrm{~g}$, 6.9 mmol) and stirred for 20 h at room temperature. The
reaction mixture was extracted with CHCl_{3} and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\left.\mathrm{Et}_{2} \mathrm{O} 9.5: 0.5\right)$ gave 3-(4-fluorobenzoyl)piperidine-1-carboxylic acid tert-butyl ester as an oil (90% yield). 3-(4-Fluorobenzoyl)piperidine-1-carboxylic acid tert-butyl ester ($5.9 \mathrm{~g}, 19.3 \mathrm{mmol}$) was dissolved in methanol (75 mL), and the solution was cooled in an ice bath and treated with $\mathrm{NaBH}_{4}(0.5 \mathrm{~g})$ in water $(8.5 \mathrm{~mL})$. The mixture was heated in an oil bath $\left(50-55^{\circ} \mathrm{C}\right)$ for 2 h and cooled, and methanol was removed under reduced pressure. The residue was treated with water/brine and extracted with CHCl_{3}. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered and the sol vent evaporated under vacuum to give in quantitative yield 9 as an oil: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta$ 7.32-7.24 (m, 2H), 7.07-6.98 (m, 2H), 4.48-4.37 (m, 1H), 3.92-3.50 (m, 2H), 3.08 (m, 1H), 2.85-2.33 (m, 2H), 1.92$1.57(\mathrm{~m}, 4 \mathrm{H}), 1.45$ and $1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.2$ (d, J = 248.4 Hz, C-F), 154.9, 138.5 (d, J $=3.2 \mathrm{~Hz}$), 128.2 (d, $\mathrm{J}=8.0 \mathrm{~Hz}$) and $128.0(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 115.2(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz})$, 79.6 and 79.3, 75.5, 47.2, 44.6, 42.9, 28.4 and 28.3, 27.7, 23.8.

General Procedure for Preparation of Compounds 10a-j. 3-[(4-Fluorophenyl)(phenoxy)methyl]piperidine Hydrochloride (10a). A mixture of 9 ($1.1 \mathrm{~g}, 3.5 \mathrm{mmol}$) and phenol ($0.3 \mathrm{~g}, 3.7 \mathrm{mmol}$) in anhydrous THF (12 mL) was stirred at room temperature and $\mathrm{Ph}_{3} \mathrm{P}(1.1 \mathrm{~g}, 4.1 \mathrm{mmol})$ was added. A solution of DEAD ($0.8 \mathrm{~mL}, 5.0 \mathrm{mmol}$) in THF (2.5 mL) was dropwise added to keep the temperature of the reaction mixture bel ow $20^{\circ} \mathrm{C}$. After stirring for 3 h , the mixture was concentrated in vacuo and the obtained yellow oily residue was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer washed with cold 6 $\mathrm{N} \mathrm{HCl}(3 \times 50 \mathrm{~mL})$ and 10% aqueous NaOH solution and the solvent removed under reduced pressure. The resulting yellow oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 mL), a solution of trifluoroacetic acid (2.0 mL) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ dropwise added, and the mixture stirred for 15 h at room temperature. Then, it was washed with 10% aqueous NaOH solution and brine and the organic layer concentrated and purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{Et}_{2} \mathrm{O}\right.$:isopropilamine 8:2:0.5 to 8:2:1) to yield an oil (57% yield) which was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and treated with a saturated hydrogen chloride solution in $\mathrm{Et}_{2} \mathrm{O}$ to obtain hydrochloride 10a: $\mathrm{mp} 86{ }^{\circ} \mathrm{C}$ (dec); ${ }^{1} \mathrm{H}$ NMR (DMSO-d 6) δ 9.38-9.15 (m, 2H), 7.38-7.18 (m, 7H), 6.95-6.86 (m, 2H). 5.34-5.21 (m, 1H), 3.59-2.56 (m, 4H), 2.37-2.16 (m, 1H), 1.85-1.23 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d 6) $\delta 161.5(\mathrm{~d}, \mathrm{~J}=244.6$ Hz), 157.3, 134.5 and $134.4(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}), 129.5,128.6(\mathrm{~d}, \mathrm{~J}$ $=8.3 \mathrm{~Hz})$ and $128.5(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}), 121.3,117.6,117.5$ and $117.4(\mathrm{~d}, \mathrm{~J}=21.8 \mathrm{~Hz}), 79.5$ and 78.7, 44.9, 43.4, 24.1, 23.2, 20.9. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.

3-[(4-F luorophenoxy)(4-fluorophenyl)methyl]piperidine hydrochloride (10b): mp $78{ }^{\circ} \mathrm{C}$ (dec); yield 56%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $9.60-9.20(\mathrm{~m}, 2 \mathrm{H}), 7.45-6.85(\mathrm{~m}, 8 \mathrm{H}), 5.36$ and $5.21(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}$ and d, $\mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-2.22(\mathrm{~m}$, 5H), 1.83-1.14 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 161.7(\mathrm{~d}, \mathrm{~J}=244.3$ Hz), $156.6(\mathrm{~d}, \mathrm{~J}=236.6 \mathrm{~Hz}), 153.5,134.7(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz})$ and $134.6(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}), 128.9(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz})$ and $128.8(\mathrm{~d}, \mathrm{~J}=$ $4.6 \mathrm{~Hz}), 117.4(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$) and $117.0(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}), 115.8$ $(\mathrm{d}, \mathrm{J}=17.9 \mathrm{~Hz}$) and $115.4(\mathrm{~d}, \mathrm{~J}=16.3 \mathrm{~Hz}), 80.3$ and 79.4 , 44.7, 43.2 and 43.1, 39.3, 24.5, 23.8, 21.1. Anal. ($\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}$ HCl) C, H, N.

3-[(4-Chlorophenoxy)(4-fluorophenyl)methyl]piperidine hydrochloride (10c): mp $106{ }^{\circ} \mathrm{C}$ (dec); yield 35%; ${ }^{1 \mathrm{H}}$ NMR (DMSO-d ${ }_{6}$) $\delta 9.26-9.03(m, 2 H), 7.40-7.15(m, 6 H)$, $6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 5.35$ and $5.25(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$ and $\mathrm{J}=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.37-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.18(\mathrm{~m}$, 1H), 1.89-1.30 (m, 4H); ${ }^{13}$ C NMR (DMSO-d ${ }_{6}$) $\delta 161.7(\mathrm{~d}, \mathrm{~J}=$ 244.2 Hz), 156.04 and 155.98, 134.4 and $134.3(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}$), $129.2,128.9(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz})$ and $128.8(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}), 124.8$ and 124.7, 117.7 and $117.6,115.5(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 79.9$ and 79.1, 44.7, 43.2, 24.5, 23.7, 21.1. Anal. ($\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{CIFNO} \cdot \mathrm{HCl}$) C, H, N.

3-[(4-F luorophenyl)(4-trifluoromethylphenoxy)methyl]piperidine hydrochloride (10d): $\mathrm{mp} 94^{\circ} \mathrm{C}$ (dec); yield
$68 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.75-9.51(\mathrm{~m}, 2 \mathrm{H}), 7.55-6.82(\mathrm{~m}, 8 \mathrm{H})$, 5.20 and $5.03(\mathrm{~d}, \mathrm{~J}=4.6$ and $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.25(\mathrm{~m}, 2.5 \mathrm{H})$, $2.87-2.54(\mathrm{~m}, 2.5 \mathrm{H}), 1.89-1.36(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $162.2(\mathrm{~d}, \mathrm{~J}=241.6 \mathrm{~Hz}), 158.7,133.7$ and $133.6(\mathrm{~d}, \mathrm{~J}=2.7$ $\mathrm{Hz}), 128.8(\mathrm{q}, \mathrm{J}=3.1 \mathrm{~Hz}), 128.4(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz})$ and $128.3(\mathrm{~d}$, $J=8.3 \mathrm{~Hz}), 123.6(\mathrm{q}, \mathrm{J}=36.2 \mathrm{~Hz}), 120.9,119.4(\mathrm{q}, \mathrm{J}=261$ $\mathrm{Hz}), 118.3,118.2,118.0,117.9,116.2,80.5$ and 79.7, 46.3, 45.1, 43.4, 40.1, 27.6, 24.2, 21.1, 21.0. Anal. ($\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{4} \mathrm{NO} \cdot \mathrm{HCl}$) C, H, N.

3-[(4-F luorophenyl)(4-methylphenoxy)methyl]piperidine hydrochloride (10e): mp $86{ }^{\circ} \mathrm{C}$ (dec); yield 42\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.75-9.38(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.03-$ $6.93(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.81$ and $4.74(\mathrm{~d}, \mathrm{~J}=$ 6.5 and $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.38(\mathrm{~m}, 1.5 \mathrm{H}), 2.95-2.43(\mathrm{~m}, 1.5$ $\mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.23(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 162.3$ $(\mathrm{d}, \mathrm{J}=247.2 \mathrm{~Hz}), 155.2,134.0$ and $133.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 130.7$ and 130.6, 129.8, 128.1 (d, J $=16.3 \mathrm{~Hz}$), $115.5(\mathrm{~d}, \mathrm{~J}=21.2$ $\mathrm{Hz})$ and $114.7(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 80.9$ and $79.5,46.2,45.3,44.1$, 40.2, 40.1, 25.6, 23.1, 21.8, 21.6, 20.4. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO} \cdot \mathrm{HCl}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(4-F luorophenyl)(4-methoxyphenoxy)methyl]piperidine hydrochloride (10f): mp $78{ }^{\circ} \mathrm{C}$ (dec); yield 39%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 9.78-9.42(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 4 \mathrm{H}), 5.07(\mathrm{bs})$ and $4.85(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.4(\mathrm{~m}, 0.5 \mathrm{H}), 2.95-2.30(\mathrm{~m}, 1.5 \mathrm{H}), 1.95-$ $1.23(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 162.6(\mathrm{~d}, \mathrm{~J}=247.5 \mathrm{~Hz})$, 155.60 and $155.64,153.5,134.1$ and $133.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 128.7$ $(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}), 118.7,118.1,116.3(\mathrm{~d}, \mathrm{~J}=22.3 \mathrm{~Hz}), 114.4$, 82.3 and 80.9, 57.4, 46.3, 45.6, 44.2, 40.5, 26.7, 22.6, 21.3. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Fluorophenyl)(piperidin-3-yl)methoxy]benzonitrile fumarate (10g): mp 210-213 ${ }^{\circ} \mathrm{C}$; yield 35%; ${ }^{1} \mathrm{H}$ NMR
 $5.38(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18-2.59(\mathrm{~m}, 4 \mathrm{H}), 2.22-1.32(\mathrm{~m}$, 5 H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d $6+$ methanol $\left.-\mathrm{d}_{4}\right) \delta 163.4(\mathrm{~d}, \mathrm{~J}=250$ Hz), 162.3, 159.2, 141.4, 133.7, 128.7, 128.6, 119.3, 117.6, 116.5, 116.1, 103.8, 80.6, 44.8, 42.9, 25.1, 23.2. Anal. ($\mathrm{C}_{19} \mathrm{H}_{19}{ }^{-}$ $\left.\mathrm{FN}_{2} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(3,4-Dichlorophenoxy)(4-fluorophenyl)methyl]piperidine hydrochloride (10h): mp $86{ }^{\circ} \mathrm{C}$ (dec); yield 58%; ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 9.76-9.52(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 3 \mathrm{H})$, $7.19-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.67-6.59(\mathrm{~m}, 1 \mathrm{H}), 5.06$ and $4.93(\mathrm{~d}, \mathrm{~J}=$ 4.7 Hz and $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-3.35(\mathrm{~m}, 1.5 \mathrm{H}), 2.82-2.29$ $(\mathrm{m}, 3.5 \mathrm{H}), 1.88-1.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.5(\mathrm{~d}, \mathrm{~J}$ $=248.1 \mathrm{~Hz}$), 156.11 and $156.08,132.84,132.8(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz})$ and $132.5(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 130.6,128.2(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 124.83$, $124.80,118.0,117.8,116.0(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz})$ and $115.5(\mathrm{~d}, \mathrm{~J}=$ $25.7 \mathrm{~Hz}), 81.5$ and $80.1,45.8,45.2,44.1,44.0,25.2,23.2,21.5$, 21.3. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{FNO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-[(Benzo[1,3]dioxol-5-yloxy)(4-fluorophenyl)methyl]piperidine hydrochloride (10i): mp $128{ }^{\circ} \mathrm{C}$ (dec); yield 40\%; ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.56$ (dd, J $=8.4 \mathrm{~Hz}, \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{~J}=1$ $0.74 \mathrm{~Hz}, 1 \mathrm{H}), 6.22-6.16(\mathrm{~m}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H}), 4.98$ and 4.78 $(\mathrm{d}, \mathrm{J}=4.8 \mathrm{~Hz}$ and $\mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.42(\mathrm{~m}, 1.5 \mathrm{H}), 2.85-$ $2.41(\mathrm{~m}, 1.5 \mathrm{H}), 1.98-1.28(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 162.3$ $(\mathrm{d}, \mathrm{J}=252 \mathrm{~Hz}), 152.7$ and $152.6,148.0,142.0(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz})$, $133.8,128.2(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 115.9$ and $115.5(\mathrm{~d}, \mathrm{~J}=26.0 \mathrm{~Hz})$, 107.8 and 107.4, 101.1, 99.2 and 98.9, 82.1 and 80.6, 46.2, 45.5, 44.1, 40.2, 25.5, 23.2, 21.8, 21.6. Anal. ($\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{FNO}_{3} \cdot \mathrm{HCl}$) C, H, N.

3-[(4-F luorophenyl)(naphthalen-1-yloxy)methyl]piperidine fumarate (10j): mp $70{ }^{\circ} \mathrm{C}$ (dec); yield 47\%. Free base: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 8.45-8.39(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.77(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.13(\mathrm{~m}, 6 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.50(\mathrm{~m}, 1 \mathrm{H})$, 5.14 and $5.06((d, J=5.8 \mathrm{~Hz}$ and $\mathrm{J}=7.3 \mathrm{~Hz}), 3.51-3.46(\mathrm{~m}$, $0.5 \mathrm{H}), 3.07-2.95(\mathrm{~m}, 1.5 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.24(\mathrm{~m}$, $5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.3(\mathrm{~d}, \mathrm{~J}=249.3 \mathrm{~Hz}), 153.4,136.7$, 136.5, 135.2, 128.7, 128.6, 128.4, 126.5, 126.3, 126.2, 125.4, $122.5,120.7,115.8,115.2,107.4,82.3,81.8,49.3,49.2,46.3$, 43.3, 28.4, 26.3, 25.1. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{FNO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

General Procedure for Preparation of Compounds 11a-e. 1-Phenyl-2-(piperidin-4-yl)ethanone (11d). Thionyl chloride (15 mL) was stirred at room temperature and 13 (4.7
$\mathrm{g}, 25.6 \mathrm{mmol}$) was added portionwise. The mixture was stirred at room temperature for 4 h and concentrated under reduced pressure. The oily residue was dissolved in 1,2-dichloroethane and added portionwise to a stirred suspension of $\mathrm{AlCl}_{3}(7.0 \mathrm{~g}$, 52 mmol) in dry benzene (30 mL). The reaction mixture was refluxed 2 h , cooled to room temperature, and poured into crushed ice. The aqueous mixture was extracted with CHCl_{3} and the organic layer washed with brine and concentrated to an oil. The oil was stirred and refluxed 6 h with $6 \mathrm{~N} \mathrm{HCl}(80$ $\mathrm{mL})$. After cooling, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the aqueous layer was treated with 10% aqueous NaOH solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine and concentrated to afford 3.1 g (60% yield) of 11d as a yellowish oil: ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~m}, 2 \mathrm{H})$, 7.57-7.42 (m, 3H), $3.06(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65$ $(\mathrm{m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 199.3,137.0,132.7,128.3,127.8,46.4,45.5$, 33.4, 32.6.

The following compounds were prepared analogously.
Phenyl(piperidin-4-yl)methanone (11a): $\mathrm{mp} 49-51^{\circ} \mathrm{C}$; yield 83\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.98-7.42(\mathrm{~m}, 5 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H})$, 3.24-3.14 (m, 2H), $2.77(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 202.00,135.5,132.4,128.2,127.7,45.7,43.6$, 29.30.
(4-Chlorophenyl)(piperidin-4-yl)methanone (11b): mp $60-63{ }^{\circ} \mathrm{C}$; yield 48%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.43(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.34(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 3.16$ $(\mathrm{m}, 1 \mathrm{H}), 2.76(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.54(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 201.0, 139.0, 134.1, 129.5, 128.7, 45.9, 43.9, 29.5.
(4-Fluorophenyl)(piperidin-4-yl)methanone hydrochloride (11c): $\mathrm{mp} 222-224^{\circ} \mathrm{C}$; yield 84\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.95(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.48-3.15$ (m, 4H), $2.78(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.58(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 200.5,165.6(\mathrm{~d}, \mathrm{~J}=251 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 132.0(\mathrm{~d}, \mathrm{~J}=$ $2.6 \mathrm{~Hz}), 131.9(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}), 116.4(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 42.7$, 40.3, 25.3.

1-(4-Fluorophenyl)-2-(piperidin-4-yl)ethanone (11e): oil; yield 60\%; ${ }^{1} \mathrm{H} N M R\left(\mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, \mathrm{J}=8.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.09-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.84(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~m}$, $2 \mathrm{H}), 2.11(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.12(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 197.7,165.5(\mathrm{~d}, \mathrm{~J}=253 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 133.5(\mathrm{~d}, \mathrm{~J}$ $=3.2 \mathrm{~Hz}), 130.5(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}), 115.4(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 46.2$, 45.4, 33.1, 32.6.

General Procedure for Preparation of Compounds 11f,g. (3-Fluorophenyl)(piperidin-4-yl)methanone (11f). A suspension of Mg turnings (0.5 g) in anhydrous $\mathrm{Et}_{2} \mathrm{O}$ (22 mL) was prepared and treated with a 1-bromo-3-fluorobenzene ($2.1 \mathrm{~mL}, 19.4 \mathrm{mmol}$) solution in anhydrous $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$ and an iodine crystal. The mixture was heated until a smooth reflux was observed and the color disappeared. The reaction mixture was refluxed for 1.5 h and allowed to cool to room temperature. A solution of $\mathbf{1 2}(2.7 \mathrm{~g}, 12.8 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ was added dropwise and the reaction refluxed for 3 h . A saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous NaCl sol ution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (EtOAc:hexane 2:8) gave 4-(3-fluorobenzoyl)piperidine-1-carboxylic acid tert-butyl ester as a yellowish oil. A mixture of 4-(3-fluorobenzoyl)piperidine-1-carboxylic acid tert-butyl ester ($7.2 \mathrm{~g}, 23.4 \mathrm{mmol}$), methanol (130 mL), and 10% aqueous HCl solution (130 mL) was refluxed for 2 h . Methanol was removed under reduced pressure and the residue was treated with water. The aqueous mixture was cooled with an ice bath, treated with solid KOH ($\mathrm{pH}>10$), and extracted with $\mathrm{Cl}_{3} \mathrm{CH}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to give $11 f$ as an oil (57% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.75-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 1 \mathrm{H})$, 7.33-7.20 (m, 1H), 3.41-3.13 (m, 3H), 2.83-2.69 (m, 2H), 1.88-1.55 (m, 4H); ${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 201.1(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz})$, $162.8(\mathrm{~d}, \mathrm{~J}=248.2 \mathrm{~Hz}), 138.0(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}), 130.2(\mathrm{~d}, \mathrm{~J}=$ $8.0 \mathrm{~Hz}), 123.8(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 119.7(\mathrm{~d}, \mathrm{~J}=21.7 \mathrm{~Hz}), 114.9(\mathrm{~d}$, $\mathrm{J}=21.7 \mathrm{~Hz}), 45.9,44.2,29.5$.

Compound $\mathbf{1 1 g}$ was prepared analogously.

(4-Methylphenyl)(piperidin-4-yl)methanone (11g): oil; yield 60%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ $(\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.44-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 2 \mathrm{H})$, 2.82-2.68 (m, 2H), $2.40(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.55(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 202.0, 143.4, 133.2, 129.1, 128.2, 46.0, 43.8, 29.7.

Preparation of 1-[4-(4-F luorobenzoyl)piperidin-1-yl]ethanone (11h). 1-Acetyl-piperidine-4-carboxylic acid ${ }^{24}$ (6.5 $\mathrm{g}, 38.0 \mathrm{mmol})$ was added to $\mathrm{SOCl}_{2}(40 \mathrm{~mL})$ and the resulting suspension stirred for 1 h . Hexane (100 mL) was added, and the white solid filtered, dried, and added portionwise to a mixture of $\mathrm{AlCl}_{3}(9.3 \mathrm{~g}, 70 \mathrm{mmol})$ and fluorobenzene (60 mL). The mixture was refluxed for 2 h , cooled at room temperature, treated with ice-water, and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, yielding 6.4 g of $\mathbf{1 1 h}$ as a colorless oil (68% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.01-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.20-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~m}, 1 \mathrm{H}), 3.46(\mathrm{~m}, 1 \mathrm{H}), 3.22$ $(\mathrm{m}, 1 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.54(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 199.8,168.6,165.4(\mathrm{~d}, \mathrm{~J}=254.5 \mathrm{~Hz}), 131.8(\mathrm{~d}, \mathrm{~J}=$ $3.2 \mathrm{~Hz}), 130.6(\mathrm{~d}, \mathrm{~J}=9.6 \mathrm{~Hz}), 115.6(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}), 45.4$, 42.7, 40.6, 28.2, 21.2.

Preparation of (1-Methylpiperidin-4-yl)phenylmethanone (11i). To ketone 11a ($10 \mathrm{~g}, 52.8 \mathrm{mmol}$) and formic acid (9 mL) was added a $35-40 \%$ aqueous solution of formaldehyde (6.4 mL). The mixture was heated for 3 h with an oil bath at $55-60^{\circ} \mathrm{C}$, cooled to room temperature, and treated with water and NaOH to $\mathrm{pH}>10$. Brine was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $\mathbf{1 1 i}$ as an oil in 89% yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.96-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.60-$ $7.40(\mathrm{~m}, 3 \mathrm{H}), 3.22(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.18-$ $1.70(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 202.2,135.8,132.6,128.3$, 127.9, 55.0, 46.2, 42.8, 28.5.

Preparation of 4-Cyanopiperidine-1-carboxylic Acid tert-Butyl Ester (12). ${ }^{28}$ Thionyl chloride (35 mL) was added dropwise to piperidine-4-carboxylic acid amide (10 g, 78.1 mmol) with stirring and cooling (ice-water bath). The heterogeneous reaction mixture was heated to reflux for 3 h . The obtained solution was cooled to $40-50^{\circ} \mathrm{C}$ and the excess of thionyl chloride eliminated under vacuum. The residue was treated with ice (300 g) under vigorous stirring, and sol id KOH was added until pH 9. A small amount of a brownish solid was obtained and filtered. The filtrate was extracted with $\mathrm{CHCl}_{3}(4 \times 100 \mathrm{~mL})$, and the organic layers were combined, washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to yield 7.4 g of piperidine-4-carbonitrile (86%) as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.15-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.84-$ $2.70(\mathrm{~m}, 3 \mathrm{H}), 1.98-1.70(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 121.5$, 44.0, 29.1, 26.1. Piperidine-4-carbonitrile ($16.4 \mathrm{~g}, 0.15 \mathrm{~mol}$) was added to a stirred solution of $\mathrm{NaHCO}_{3}(41.5 \mathrm{~g})$ in 400 mL of water. Then, $(\mathrm{BOC})_{2} \mathrm{O}(35.8 \mathrm{~g})$ was added portionwise, and the homogeneous reaction mixture was stirred at room temperature for 20 h , extracted with CHCl_{3}, and washed with brine. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford $\mathbf{1 2}$ as an oil which crystallized as pale yellow needles: mp $45-48{ }^{\circ} \mathrm{C}$; yield $25 \mathrm{~g}(79 \%)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.75-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}, 1 \mathrm{H})$, $1.95-1.78(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{33} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 154.2$, 120.8, 79.8, 41.5, 28.2, 28.1, 26.0.

Preparation of (1-Acetylpiperidin-4-yl)acetic Acid (13). A suspension of $\mathrm{NaH}(50-60 \%, 10.5 \mathrm{~g})$ in anhydrous benzene (170 mL) was treated dropwise with triethyl phosphonoacetate ($39.5 \mathrm{~g}, 176.2 \mathrm{mmol}$) and stirred for 1 h .1 -Benzylpiperidin-4one ($32.6 \mathrm{~g}, 170 \mathrm{mmol}$) was added dropwise to keep the reaction mixture temperature $<15^{\circ} \mathrm{C}$. Then, the mixture was refluxed for 30 min , cool ed, and treated with 20% aqueous HCl solution. A 10% aqueous solution of NaOH was added to the aqueous layer until $\mathrm{pH}>9$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give an oil $(41 \mathrm{~g})$ which was dissolved in ethanol (300 mL), treated with $10 \% \mathrm{Pd} / \mathrm{C}(9$ g), and hydrogenated at 3 atm . After 48 h ethanol (200 mL) and an aqueous solution of ammonium formate ($28 \mathrm{~g} / 40 \mathrm{~mL}$
of $\mathrm{H}_{2} \mathrm{O}$) were added. The mixture was gently refluxed for 2.5 h, cooled, and filtrated. The filtrate was concentrated and the residue treated with $\mathrm{Et}_{2} \mathrm{O}$ and 10% aqueous NaOH solution until $\mathrm{pH}>12$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, the combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered, and the solvent was distilled at 760 mmHg to give the ester as a yellow oil (19.5 g). A solution of ester ($6.5 \mathrm{~g}, 37.9 \mathrm{mmol}$) in acetic anhydride (70 mL) was stirred at $100^{\circ} \mathrm{C}$ for 3 h . The mixture was evaporated under reduced pressure and the oil was stirred at room temperature for 1 h with 5% aqueous NaOH sol ution (50 mL). $\mathrm{HCl}(6 \mathrm{~N})$ was added until pH 3 and the mixture was again concentrated under reduced pressure. The oil was extracted with refluxing THF to yield $\mathbf{1 3}(3.5 \mathrm{~g}, 50 \%)$ as a white solid: $\mathrm{mp} 117-120^{\circ} \mathrm{C} ;{ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.59(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 1 \mathrm{H})$, $3.05(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.11(\mathrm{~s}$, 3H), $2.05(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) $\delta 173.6,168.5,46.3,41.3,40.6,32.6,32.0,31.3$.
General Procedure for Preparation of Compounds 14a-e. 4-(2-Hydroxy-2-phenylethyl)-piperidine-1-carboxylic Acid tert-Butyl Ester (14d). To a stirred mixture of 11d ($3.0 \mathrm{~g}, 15 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(4 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$ was added $(\mathrm{BoC})_{2} \mathrm{O}(4 \mathrm{~g}, 18.3 \mathrm{mmol})$. After stirring for 20 h at room temperature, the mixture was extracted with CHCl_{3} and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2}-$ SO_{4}, and concentrated to yield 4 g of a pale yellow oil which was dissolved in methanol (60 mL) and treated dropwise with a solution of $\mathrm{NaBH}_{4}(0.4 \mathrm{~g}, 10.6 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was stirred for 1 h at $45-50^{\circ} \mathrm{C}$, cooled at room temperature, and concentrated under reduced pressure. The residue was treated with $\mathrm{H}_{2} \mathrm{O}$ and extracted with CHCl_{3}. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford 4 g (86\%) of 14d, as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38$ $7.31(\mathrm{~m}, 5 \mathrm{H}), 4.78(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~m}, 2 \mathrm{H}), 1.98-$ $1.48(\mathrm{~m}, 6 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.05(\mathrm{~m}, 2 \mathrm{H})$; $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}\right)$ $\delta 154.7,145.1,128.3,127.2,126.61,79.1,71.3,45.8,43.7,32.5$, 32.4, 31.5, 28.3.

The following compounds were prepared analogously.
4-(Hydroxyphenylmethyl)piperidine-1-carboxylic acid tert-butyl ester (14a): mp 77-80 ${ }^{\circ} \mathrm{C}$; yield 90%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$ (m, 2H), $2.61(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.36-$ $1.09(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.6,143.0,128.1,127.4$, 126.4, 79.2, 78.1, 43.3, 28.3, 28.2, 28.1.

4-[(4-Chlorophenyl)hydroxymethyl]piperidine-1-carboxylic acid tert-butyl ester (14b): mp 110-112 ${ }^{\circ} \mathrm{C}$; yield $99 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.21(\mathrm{~m}, 4 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J})=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.44$ (s, 9H), 1.41-1.08 (m, 2H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 154.7, 141.5, 133.2, 128.3, 127.9, 79.3, 77.5, 43.5, 43.3, 28.4, 28.2, 28.0.

4-[(4-Fluorophenyl)hydroxymethyl]piperidine-1-carboxylic acid tert-butyl ester (14C): mp $84-86^{\circ} \mathrm{C}$; yield 95%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.09-6.99(\mathrm{~m}, 2 \mathrm{H})$, 4.39-4.34 (m, 1H), 4.10 (m, 2H), 2.61 (m, 2H), 2.04-1.61 (m, $3 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.33-1.06(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}\right) \delta 162.1}$ (d, J = $243.5 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 154.7, $138.8(\mathrm{~d}, \mathrm{~J}=3.2 \mathrm{~Hz}), 128.0(\mathrm{~d}$, $\mathrm{J}=7.9 \mathrm{~Hz}), 115.01(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}), 79.3,77.6,77.2,43.5,43.4$, 28.3, 28.1.

4-[2-(4-F luorophenyl)-2-hydroxyethyl]piperidinecarboxylic acid tert-butyl ester (14e): oil; yield 98\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.78$ (m, 1H), 4.06 (m, 2H), 2.67 (m, 2H), 1.81-1.51 (m, 6H), 1.45 (s, 9H), 1.42-1.14 (m, 2H).
Preparation of 4-[(3-F luorophenyl)hydroxymethyl]-piperidine-1-carboxylic Acid tert-Butyl Ester (14f). A suspension of Mg turnings (0.5 g) in anhydrous $\mathrm{Et}_{2} \mathrm{O}(22 \mathrm{~mL}$) was prepared and treated with a 1-bromo-3-fluorobenzene (2.1 $\mathrm{mL}, 19.4 \mathrm{mmol}$) solution in anhydrous $\mathrm{Et}_{2} \mathrm{O}(16 \mathrm{~mL})$ and an iodine crystal. The mixture was heated until a smooth reflux was observed and the col or disappeared. The reaction mixture was refluxed for 1.5 h and allowed to cool to room temperature. A solution of $\mathbf{1 2}(2.7 \mathrm{~g}, 12.8 \mathrm{mmol})$ in anhydrous $\mathrm{Et}_{2} \mathrm{O}(27 \mathrm{~mL})$ was added dropwise and the reaction refluxed for 3 h . A
saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) was added and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with saturated aqueous NaCl solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. Purification by flash chromatography on silica gel (EtOAc:hexane 2:8) gave 4-(3-fluorobenzoyl)piperidine-1-carboxylic acid tert-butyl ester as a yellowish oil. A suspension of $\mathrm{NaBH}_{4}(0.2 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(3.5 \mathrm{~mL})$ was added to a solution of 4-(3-fluorobenzoyl)piperidine-1carboxylic acid tert-butyl ester ($2.4 \mathrm{~g}, 7.8 \mathrm{mmol}$) in methanol $(30 \mathrm{~mL}$) and the mixture heated for 2 h in an oil bath (50-60 ${ }^{\circ} \mathrm{C}$). After concentration of methanol, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum, yielding $\mathbf{1 4 f}$ as a very dense yellowish oil (61\% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.34-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.91(\mathrm{~m}$ 3 H), $4.35(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.79(\mathrm{~d}, \mathrm{~J}=$ $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.49(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.45$ $(\mathrm{m}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.07(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 162.8 (d, J $=246.0 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 154.7, 145.8 (d, J $=6.4 \mathrm{~Hz}$), 129.7 (d, J $=8.0 \mathrm{~Hz}$), 122.1 ($\mathrm{d}, \mathrm{J}=2.4 \mathrm{~Hz}$), $114.3(\mathrm{~d}, \mathrm{~J}=20.9$ Hz), 113.3 (d, J = 21.3 Hz), 79.4, 77.6, 43.4, 28.3, 28.2, 27.9.

General Procedure for Preparation of Compounds 14 g-k. (4-Methylphenyl)(piperidin-4-yl)methanol (14i). A suspension of $\mathrm{NaBH}_{4}(0.4 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added to a solution of $\mathbf{1 1 g}(1.2 \mathrm{~g}, 5.9 \mathrm{mmol})$ in methanol (74 mL) and the mixture was heated for 2 h in an oil bath $\left(40^{\circ} \mathrm{C}\right)$. After concentration of methanol, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum, yielding 14 i as a white solid: $\mathrm{mp} 139-140^{\circ} \mathrm{C}$; 95% yield; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.21-7.08(\mathrm{~m}, 5 \mathrm{H}), 4.22(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.18-2.86 (m, 2H), 2.58-2.21 (m, 5H), 2.07-1.85 (m, 1H), $1.78-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.25-1.01(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 140.5, 137.0, 128.8, 126.5, 78.5, 46.3, 43.5, 29.6. 29.5, 21.0.

The following compounds were prepared anal ogously.
1-[4-[(4-Fluorophenyl)hydroxymethyl]piperidin-1-yl]ethanone (14g): col orless oil; yield 98\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.30-7.23 (m, 2H), 7.08-6.99 (m, 2H), $4.64(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~m}$, 1H), $3.81(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 1.5 \mathrm{H})$, 2.04 (s, 1.5 H), 2.01-1.25 (m, 6H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.7$, $168.6,161.6$ ($\mathrm{d}, \mathrm{J}=245 \mathrm{~Hz}$), 138.9 ($\mathrm{d}, \mathrm{J}=3.6 \mathrm{~Hz}$), $138.8,127.8$ $(\mathrm{d}, \mathrm{J}=9 \mathrm{~Hz}), 114.6(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}), 76.6,46.2,46.1,43.1,41.3$, 41.2, 28.5, 28.2, 27.8, 27.5, 20.9.
(1-Methyl-piperidin-4-yl)phenylmethanol (14h): mp $152-154{ }^{\circ} \mathrm{C}$; yield 90%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.36-7.20(\mathrm{~m}, 5 \mathrm{H})$, $4.33(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.08-$ $1.17(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 143.8,128.1,127.3,126.6$, 78.4, 55.5, 55.4, 46.0, 42.5, 28.6, 28.3.

Phenyl(piperidin-4-yl)methanol (14j): white solid; mp $164-166{ }^{\circ} \mathrm{C}$; yield 90%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }^{2}$) $\delta 7.36-7.16$ (m, $5 \mathrm{H}), 4.18(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 1 \mathrm{H}), 2.30$ $(\mathrm{m}, 2 \mathrm{H}), 1.70(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) 144.8, 127.9, 126.8, 77.2, 46.2, 46.1, 44.0 29.6, 29.1
(3-Fluorophenyl)(piperidin-4-yl)methanol (14k): white solid; mp $136-138{ }^{\circ} \mathrm{C}$; yield 95%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.13-6.87(\mathrm{~m}, 3 \mathrm{H}), 4.35(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.15-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.20(\mathrm{~m}, 4 \mathrm{H}), 1.92-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.23-1.10 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.8(\mathrm{~d}, \mathrm{~J}=245.7$ $\mathrm{Hz}, \mathrm{C}-\mathrm{F}), 146.4(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}), 129.5(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 122.2$ $(\mathrm{d}, \mathrm{J}=3 \mathrm{~Hz}), 114.1(\mathrm{~d}, \mathrm{~J}=20.9 \mathrm{~Hz}), 113.4(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz})$, 46.2, 46.1, 43.5, 29.3, 29.1.

General Procedure for Preparation of Compounds (+)- or (-)-14j,k. (+)-Phenyl(piperidin-4-yl)methanol ((+)14j). To a solution of (+)-DIPCI ($6.8 \mathrm{~g}, 21.2 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ cooled to $3-4^{\circ} \mathrm{C}$ was added 11a ($2.0 \mathrm{~g}, 10.6$ mmol) and the mixture stirred for 72 h . Acetal dehyde (2.0 mL) was added dropwise, and the mixture was warmed to room temperature and stirred for 3 h . A 6 N aqueous NaOH solution $(24 \mathrm{~mL})$ was added and the mixture extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The dextrorotatory alcohol $\left[84 \%\right.$ ee, $[\alpha]_{546}+36$ (c =
$0.121, \mathrm{CHCl}_{3}$)] was obtained in a 90% yield as a white solid ($\mathrm{mp} 64-66^{\circ} \mathrm{C}$).

The following compounds were prepared analogously.
(-)-Phenyl(piperidin-4-yl)methanol ((-)-14j): white solid; $\mathrm{mp} 48-50{ }^{\circ} \mathrm{C}, 86 \%$ ee, $[\alpha]_{546}-36\left(\mathrm{c}=0.106, \mathrm{CHCl}_{3}\right.$); yield 85%.
(-)-(3-Fluorophenyl)(piperidin-4-yl)methanol ((-)14k): yellow solid; $\mathrm{mp} 125-127^{\circ} \mathrm{C}$, 84.6% ee, $[\alpha]_{436}-62$ (c $=$ $0.05, \mathrm{CHCl}_{3}$); yield 80%.
(+)-(3-F luorophenyl)(piperidin-4-yl)methanol ((+)14k): yellow solid; $\mathrm{mp} 57^{\circ} \mathrm{C}$ (dec), 83.6% ee, $[\alpha]_{436}+42$ (c $=$ $0.089, \mathrm{CHCl}_{3}$); yield 83%.

Preparation of Cyclopentylphenylmethanol (17). A mixture of cyd opentanecarboxylic acid ($6.0 \mathrm{~g}, 52.6 \mathrm{mmol}$), 85\% phosphoric acid (3.6 mL), and trifluoromethanesulfonic anhydride ($30.6 \mathrm{~g}, 105.4 \mathrm{mmol}$) was treated with anhydrous benzene (12 mL) and heated 4 h with an oil bath at $80^{\circ} \mathrm{C}$. The reaction mixture was cooled to room temperature, treated with water, and extracted with CHCl_{3}. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to afford an oil. A sol ution of previously prepared oil (8.5 g) in methanol (50 mL) was treated dropwise with a solution of $\mathrm{NaBH}_{4}(1.2 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ and heated 1 h at 40 ${ }^{\circ} \mathrm{C}$, then methanol was removed under reduced pressure. The residue was treated with water and brine and extracted with CHCl_{3}. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated, affording 17 as a slightly colored oil in 77% yield: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 4.39$ $(\mathrm{d}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.15(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 144.4, 128.1, 127.3, 126.4, 78.5, 47.5, 29.4, 29.3, 25.4, 25.3.

Preparation of Phenyl(tetrahydropyran-4-yl)methanol (20). A solution of acid $19^{31}(6.8 \mathrm{~g}, 52.6 \mathrm{mmol})$ in SOCl_{2} (6 mL) was refluxed for 45 min and then concentrated under reduced pressure. The resulting yel low oil was added dropwise to a mixture of anhydrous $\mathrm{AlCl}_{3}(13 \mathrm{~g}, 97.5 \mathrm{mmol})$ in anhydrous benzene (50 mL). After 1 h at $70-75^{\circ} \mathrm{C}$ the reaction mixture was cooled to room temperature, poured into ice-water, and extracted with CHCl_{3}. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was chromatographed on silica gel (hexane:EtOAc $8: 2$), affording the ketone as colorless needles ($\mathrm{mp} 48-50^{\circ} \mathrm{C}$) in 62% yield. A solution of recently prepared ketone (6.0 g , 31.5 mmol) in methanol (35 mL) was treated dropwise with a solution of $\mathrm{NaBH}_{4}(0.8 \mathrm{~g})$ in $\mathrm{H}_{2} \mathrm{O}(7 \mathrm{~mL})$. The mixture was heated for 1 h at $40^{\circ} \mathrm{C}$ and the solvent removed under reduced pressure, yielding 20 as a yellow oil (90% yield): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.39-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.33(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{~m}, 1 \mathrm{H}), 3.87$ $(\mathrm{m}, 1 \mathrm{H}), 3.41-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.10(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 142.9, 128.1, 127.5, 126.5, 78.4, 67.7, 67.5, 42.2, 29.2, 29.0.

General Procedures for Preparation of Compounds 15a-au, ${ }^{27}$ 18, and 21. Method A: 4-[2-(4-Fluorophenoxy)-2-phenylethyl]piperidine Fumarate (15ak). To a mixture of $\mathbf{1 4 d}(2 \mathrm{~g}, 6.5 \mathrm{mmol})$ and 4 -fluorophenol ($0.7 \mathrm{~g}, 6.7 \mathrm{mmol}$) in THF (anhydrous, 40 mL) was added diphenyl-2-pyridylphosphine ($1.7 \mathrm{~g}, 6.5 \mathrm{mmol}$) and the mixture stirred at room temperature. A solution of DEAD ($1.0 \mathrm{~mL}, 6.6 \mathrm{mmol}$) in THF (anhydrous, 5 mL) was added dropwise to keep the reaction mixture temperature below $20^{\circ} \mathrm{C}$. After stirring for 3 h the mixture was concentrated and the yellow oily residue extracted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with cold 6 N aqueous HCl solution (3 $\times 50 \mathrm{~mL}$). The organic layer was washed with 10% aqueous NaOH solution and the solvent removed under reduced pressure. The yellow oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and trifluoroacetic acid (2.1 mL) added. The mixture was stirred for 15 h at room temperature and washed with 10% aqueous NaOH solution and brine. The organic layer was concentrated to yield 1.4 g (70\%) of $\mathbf{1 5 a}$ as a pale yellow oil. To a sol ution of the crude product (1.2 g) in $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ was added fumaric acid ($0.5 \mathrm{~g}, 4.0 \mathrm{mmol}$) and the mixture stirred at $20^{\circ} \mathrm{C}$ for 15 h , collecting a white solid which was washed with $\mathrm{Et}_{2} \mathrm{O}$: yield of fumarate salt, $1.1 \mathrm{~g}(70 \%)$; mp $154-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.91-6.71(\mathrm{~m}, 4 \mathrm{H}), 5.10(\mathrm{~m}, 1 \mathrm{H}), 3.12$
(m, 2H), $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.15(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSOd_{6}, fumarate salt) $\delta 168.3,156.4$ (d, J $=235 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 153.8 (d, J = 2.3 Hz), 141.7, 135.2, 128.6, 127.6, 126.1, 115.5 (d, J = $19.8 \mathrm{~Hz}), 111.2(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 76.9,44.5,42.7,30.4,28.9,28.1$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.
4-[(Phenyl)(phenoxy)methyl]piperidine hydrochloride (15a): hygroscopic; yield 73%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.56-$ $6.77(\mathrm{~m}, 10 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 2 \mathrm{H}), 2.82(\mathrm{~m}$, 2H), $2.26(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.24(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 158.2, 139.8, 129.1, 129.0, 128.0, 127.2, 126.5, 120.3, 115.6, 114.2, 83.9, 46.1, 43.2, 29.2, 28.9. Anal. ($\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO} \cdot \mathrm{HCl}$) C, H , N.

4-[(4-Chlorophenyl)phenoxymethyl]piperidine hydrochloride (15s): $\mathrm{mp} 80^{\circ} \mathrm{C}$ (dec); yield 72%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.37-7.14(\mathrm{~m}, 6 \mathrm{H}), 6.87-6.76(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}$, 1H), 3.08 (m, 2H), $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.21$ $(\mathrm{m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 158.0, 138.5, 133.1, 130.1, 129.2, 128.4, 128.3, 128.1, 128.0, 120.7, 115.7, 83.3, 46.2, 43.2, 29.5, 29.3. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Chlorophenyl)(4-fluorophenoxy)methyl]piperidine hydrochloride (15y): hygroscopic; yield 54\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-6.65(\mathrm{~m}, 8 \mathrm{H}), 4.73(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.80$ $(\mathrm{m}, 1 \mathrm{H}), 3.68-1.20(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.1(\mathrm{~d}, \mathrm{~J}=$ $237 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 154.2(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, $), 138.3,133.23,128.5$, $128.1,116.9(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}), 115.6(\mathrm{~d}, \mathrm{~J}=22.6 \mathrm{~Hz}), 84.5,46.3$, 43.3, 29.4, 29.1. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{CIFNO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Fluorophenyl)(4-fluorophenoxy)methyl]piperidine hydrochloride (15z): mp $90^{\circ} \mathrm{C}$ (dec); yield 65%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.32-6.64(\mathrm{~m}, 8 \mathrm{H}), 4.76(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63-3.05(\mathrm{~m}, 3 \mathrm{H}), 2.97-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.26(\mathrm{~m}, 2 \mathrm{H})$, 2.05-1.45 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.2(\mathrm{~d}, \mathrm{~J}=245.4$ $\mathrm{Hz}, \mathrm{C}-\mathrm{F}), 157.1(\mathrm{~d}, \mathrm{~J}=237.8 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 153.5(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz})$, $134.3(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 128.3(\mathrm{~d}, \mathrm{~J}=8.15 \mathrm{~Hz}), 128.2(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}), 116.9(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}), 115.5(\mathrm{~d}, \mathrm{~J}=22.8 \mathrm{~Hz}), 115.2,115.1$, 115.0, 83.1, 43.6, 43.5, 41.0, 26.1, 25.8, 25.3, 25.0, 24.9. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Fluorophenyl)(4-methoxyphenoxy)methyl]piperidine fumarate (15ab): mp $139-142{ }^{\circ} \mathrm{C}$; yield 60%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.53-6.71(\mathrm{~m}, 8 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.88-3.81 (m, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.45(\mathrm{~m}$, $4 \mathrm{H}), 2.07-1.21(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 162.0(\mathrm{~d}, \mathrm{~J}=244$ $\mathrm{Hz}, \mathrm{C}-F)$, 153.7, 152.1, 135.7 (d, J $=3.2 \mathrm{~Hz}$), 128.3 (d, J $=8$ $\mathrm{Hz}), 116.9,115.2(\mathrm{~d}, \mathrm{~J}=21 \mathrm{~Hz}), 114.3,84.3,55.6,45.7,42.9$, 28.6, 26.1. Anal. ($\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}_{2} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$) C, H, N.

4-[2-(4-Methoxyphenoxy)-2-phenylethyl]piperidine fumarate (15al): $\mathrm{mp} 124-128{ }^{\circ} \mathrm{C}$; yield 83%; ${ }^{1 \mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.35-7.23(\mathrm{~m}, 6 \mathrm{H}), 6.81-6.62(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}$, $3 \mathrm{H}), 3.13(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.06(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}$) δ 168.0, 153.4, 151.5, 142.2, 135.1, 128.5, 127.4, 126.2, 116.9, 114.5, 76.9, 55.3, 44.6, 42.8, 30.4, 28.9, 28.1. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2} . \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[2-(4-Fluorophenoxy)-2-(4-fluorophenyl)ethyl]piperidine fumarate (15am): $\mathrm{mp} 130-134{ }^{\circ} \mathrm{C}$; yield 68%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $8.48-6.84(\mathrm{~m}, 10 \mathrm{H}), 5.38(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ 3.15 (m, 2H), 2.86-2.65 (m, 2H), 1.92-1.24 (m, 7H); ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }^{\text {}}$) $\delta 167.7,161.4(\mathrm{~d}, \mathrm{~J}=251 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}), 156.4(\mathrm{~d}, \mathrm{~J}=$ $270 \mathrm{~Hz}, \mathrm{C}-\mathrm{F}$), 137.8, 135.0, 131.2, 128.3 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}$), 117.3 $(\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}=22.4 \mathrm{~Hz}), 115.3(\mathrm{~d}, \mathrm{~J}=18.9 \mathrm{~Hz})$, 76.2, 44.3, 42.8, 30.3, 28.8, 28.1. Anal. ($\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}$. $\left.\mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[1-(4-Fluorophenyl)-2-(piperidin-4-yl)ethoxy]benzonitrile fumarate (15an): $\mathrm{mp} 98^{\circ} \mathrm{C}$ (dec); yield $71 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}_{6}\right) \delta 7.67(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.17$ $(\mathrm{t}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 5.61$ (m, 1H), $3.22(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.25(\mathrm{~m}, 7 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (DMSO-d $)$) $\delta 167.2,161.6(\mathrm{~d}, \mathrm{~J}=242 \mathrm{~Hz}$), 160.9, $137.0(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 134.7,134.1,128.3(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}), 119.0$, $116.8,115.5$ (d, J $=21.2 \mathrm{~Hz}$), 103.1, 76.0, 44.0, 42.8, 30.2, 28.7, 28.1. Anal. ($\left.\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{FN}_{2} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-[4-[(4-F luorophenyl)(4-methoxyphenoxy)methyl]-piperidin-1-yl]ethanone (15ao): oil; yield 39\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.29-6.97(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~s}, 4 \mathrm{H}), 4.74-4.61(\mathrm{~m}, 2 \mathrm{H})$, $3.89-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$,
2.15-1.90 (m, 4H), 1.52-1.22 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 168.5, 161.9 ($\mathrm{d}, \mathrm{J}=244.8 \mathrm{~Hz}$), 153.7, 151.9, 135.4, 128.2 (d , J $=7.9 \mathrm{~Hz}$), 116.8, 115.1 (d, J $=21.5 \mathrm{~Hz}), 114.2,83.8,83.5,55.3$, 46.2, 46.1, 43.1, 41.3, 41.2, 28.7, 28.5, 27.9, 27.5, 21.2. Anal.$\left(\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{FNO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-[4-[(4-Fluorophenyl)(phenoxy)methyl]piperidin-1yllethanone (15ap): oil; yield 52\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.30-$ $6.75(\mathrm{~m}, 9 \mathrm{H}), 4.83(\mathrm{t}, \mathrm{J}=10.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 3.95(\mathrm{t}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 3.86(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.18-1.15 (m, 8H); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 168.6,162.1(\mathrm{~d}, \mathrm{~J}=$ $244.6 \mathrm{~Hz}), 158.8,157.8(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 129.2,128.1(\mathrm{~d}, \mathrm{~J}=8$ $\mathrm{Hz}), 120.8,115.7,115.3(\mathrm{~d}, \mathrm{~J}=20.5 \mathrm{~Hz}), 114.3,82.8,82.6,68.4$, 67.3, 46.3, 46.2, 43.3, 43.2, 41.4, 41.3, 28.8, 28.5, 28.1, 28.0, 27.5, 21.3. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{FNO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Fluorophenoxy)(phenyl)methyl]-1-methylpiperidine (15aq): yellow solid, hygroscopic; yield 32%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.10(\mathrm{~m}, 5 \mathrm{H}), 6.85-6.70(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.35(\mathrm{~m}$, 7H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.9$ (d, J $=245 \mathrm{~Hz}$), 154.6, 139.9, $128.3,127.6,126.7,116.9(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}), 115.5(\mathrm{~d}, \mathrm{~J}=23$ $\mathrm{Hz})$, 84.9, 55.7, 55.6, 46.3, 42.5, 28.6, 28.4. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}\right)$ $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Method B: 4-[(3-Fluorophenoxy)phenylmethyl]piperidine Hemisulfate (15j). Compound 14a ($2.5 \mathrm{~g}, 8.7 \mathrm{mmol}$) was added portionwise to a stirred suspension of hexanewashed NaH ($0.5 \mathrm{~g}, 10.4 \mathrm{mmol}$, of a 50% oil dispersion) in 12 mL of anhydrous DMSO. The reaction was stirred at room temperaturefor 30 min , potassium benzoate (1.3 g) added, and stirring continued for 30 min . 1,3-Difluorobenzene ($1.2 \mathrm{~g}, 10.6$ mmol) was added, the reaction temperature being kept bel ow $20^{\circ} \mathrm{C}$ by means of a water bath. The reaction mixture was heated at $65^{\circ} \mathrm{C}$ for 15 h and then cool ed to room temperature. A mixture of water and brine was added and the oil extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was concentrated in vacuo, stirred, and refluxed for 1 h with $\mathrm{MeOH}(30 \mathrm{~mL})$ and 10% aqueous HCl solution (30 mL). After removing the solvent, the residue was partitioned between 10% aqueous HCl solution and CHCl_{3}. The aqueous acidic solution was treated with 5% NaOH until $\mathrm{pH}>8.5$, the oil that separates was extracted with CHCl_{3}, and the solvent was removed under reduced pressure to yield 1.6 g (66\%) of an amber oil. The crude product was stirred for 30 min with a solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(0.20 \mathrm{~mL})$ in water (10 mL). The white solid formed was filtered and washed with water to yield 1.0 g of $\mathbf{1 5 j}: \mathrm{mp} 72-76^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.03 (m, 6H), 6.61-6.50 (m, 3H), 4.78 (d, J $=6.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.27$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.4(\mathrm{~d}, \mathrm{~J}=243.4 \mathrm{~Hz}), 159.8(\mathrm{~d}$, $\mathrm{J}=10.5 \mathrm{~Hz}), 139.4,129.9(\mathrm{~d}, \mathrm{~J}=10.1 \mathrm{~Hz}), 128.3,127.6,126.7$, $111.5(\mathrm{~d}, \mathrm{~J}=2.95 \mathrm{~Hz}), 107.3(\mathrm{~d}, \mathrm{~J}=21.5 \mathrm{~Hz}), 103.5(\mathrm{~d}, \mathrm{~J}=$ 24.7 Hz), 84.6, 46.5, 46.4, 43.4, 29.6, 29.3. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}$. $1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

The following compounds were prepared analogously.
4-[(2-Fluorophenoxy)phenylmethyl]piperidine hemisulfate (15b): $\mathrm{mp} 76^{\circ} \mathrm{C}(\mathrm{dec}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{D}_{2} \mathrm{O}\right) \delta 7.33-$ $7.26(\mathrm{~m}, 5 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.67(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{~d}$, $\mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.49-$ $1.95(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.1(\mathrm{~d}$, $\mathrm{J}=243.4 \mathrm{~Hz}), 146.2(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}), 139.3,128.3,127.8,126.8$, $123.9(\mathrm{~d}, \mathrm{~J}=3.95 \mathrm{~Hz}), 121.1(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}), 117.1(\mathrm{~d}, \mathrm{~J}=2$ Hz), $116.1(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}), 85.8,45.9,43.0,28.9,28.8$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[Phenyl(2-trifluoromethylphenoxy)methyl]piperidine hemisulfate (15c): $\mathrm{mp} 110^{\circ} \mathrm{C}$ (dec); yield 72%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 6 \mathrm{H}), 6.87(\mathrm{t}$, $\mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 155.7(\mathrm{q}, \mathrm{J}=1.65 \mathrm{~Hz}), 139.0$, 132.8, 129.2, 128.4, 127.7, 126.9 ($\mathrm{q}, \mathrm{J}=4.9 \mathrm{~Hz}$), 126.6, 119.4, 118.8 (q, J $=30.35 \mathrm{~Hz}$), 113.7, 84.0, 46.5, 46.5, 43.5, 29.6, 29.0. Anal. ($\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

4-[Phenyl(piperidin-4-yl)methoxy]benzonitrile oxalate (15d): mp $105{ }^{\circ} \mathrm{C}$ (dec); yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.52$ $(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.31(\mathrm{~m}, 6 \mathrm{H}), 6.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.72(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, \mathrm{~J}=6.95 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$
(m, 2H), $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.26(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 159.8,138.4,133.8,133.4,128.4,127.9$, $126.6,120.5,116.4,113.9,102.2,85.4,46.2,46.1,43.1,29.2$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(Biphen-2-yloxy)phenylmethyl]piperidine hydrochloride (15e): mp $84-87^{\circ} \mathrm{C}$; yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.58 (d, J $=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47-7.13 (m, 9H), $7.05(\mathrm{t}, \mathrm{J}=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.85(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{~m}, 2 \mathrm{H}), 1.82-$ $1.67(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.08(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.9$, 139.7, 138.8, 131.5, 130.7, 129.7, 128.2, 128.1, 127.6, 127.4, 126.8, 126.7, 120.6, 114.1, 84.7, 46.4, 46.4, 43.4, 29.6, 29.1. Anal. ($\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO} \cdot \mathrm{HCl}$) C, H, N

4-[(2-Chlorophenoxy)phenylmethyl]piperidine hemisulfate (15f): $\mathrm{mp} 123-125{ }^{\circ} \mathrm{C}$; yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.33-7.26(\mathrm{~m}, 6 \mathrm{H}), 6.97(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{t}, \mathrm{J}=5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.5,139.2,130.0,128.2,127.6,127.2$, 126.6, 123.2, 120.9, 114.8, 85.0, 46.4, 46.4, 43.4, 29.5, 29.2 . Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(3-I odophenoxy)phenylmethyl]piperidine hemisulfate (15g): mp $127{ }^{\circ} \mathrm{C}$ (dec); yield 37\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.37-7.15 (m, 7H), 6.89-6.71 (m, 2H), 4.76 (d, J = 6.5 Hz, 1H), 3.08 (m, 2H), $2.54(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.9,139.2,130.4,129.6,128.3$, 127.6, 126.6, 125.3, 114.9, 94.1, 84.4, 46.4, 46.3, 43.4, 29.5, 29.2. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{INO} .1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$

4-[(3-Bromophenoxy)phenylmethyl]piperidine hemisulfate (15h): mp $98{ }^{\circ} \mathrm{C}$ (dec); yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 7.32-7.26 (m, 6H), 7.00-6.97 (m, 2H), 6.75-6.70 (m, 1H), 4.78 $(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 2 \mathrm{H})$, $1.42-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 158.8,138.9,129.8$, 127.9, 127.2, 126.2, 123.2, 122.1, 118.9, 113.9, 84.2, 46.0, 43.0, 29.2, 28.9. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

4-[Phenyl(3-trifluoromethylphenoxy)methyl]piperidine hydrochloride (15i): mp $58{ }^{\circ} \mathrm{C}$ (dec); yield 72%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38-6.87(\mathrm{~m}, 9 \mathrm{H}), 4.82(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.10(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.22(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} N \mathrm{NR}\left(\mathrm{CDCl}_{3}\right) \delta 158.4,139.1,131.5(\mathrm{q}, \mathrm{J}=32 \mathrm{~Hz}$), $129.7,128.4,127.7,126.6,123.8(q, J=270.6 \mathrm{~Hz}), 118.6$ (d, J $=1.3 \mathrm{~Hz}), 117.1(\mathrm{q}, \mathrm{J}=3.6 \mathrm{~Hz}), 113.0(\mathrm{q}, \mathrm{J}=4 \mathrm{~Hz}), 84.7$, 46.4, 46.4, 43.4, 29.6, 29.5, 29.3. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}$, H, N.

3-[Phenyl(piperidin-4-yl)methoxy]benzonitrile hydrochloride (15k): $\mathrm{mp} 82{ }^{\circ} \mathrm{C}$ (dec); yield 80%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.37-7.00(\mathrm{~m}, 9 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H})$, $2.55(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.8,137.6,130.3,129.0,128.7,126.5,124.9,120.7$, 119.1, 118.5, 113.1, 83.5, 43.9, 43.7, 41.3, 25.2, 25.1. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(3-Chlorophenoxy)phenylmethyl]piperidine hemisulfate (15I): mp 101-104 ${ }^{\circ} \mathrm{C}$; yield 90%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.08(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~m}, 2 \mathrm{H}), 6.70$ $(\mathrm{m}, 1 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H})$, 2.05-1.80 (m, 2H), 1.55-1.25 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 159.0, 139.2, 134.4, 129.8, 128.2, 127.5, 126.5, 120.6, 116.3, 113.8, 84.4, 46.2, 46.2, 43.2, 29.33, 29.1. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO}$ $\left.1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(4-Nitrophenoxy)phenylmethyl]piperidine hydrochloride (15m): $\mathrm{mp} 80^{\circ} \mathrm{C}$ (dec); yield 80%; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.08$ (d, J $=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.19(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~d}, \mathrm{~J}=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 4.90(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H})$, $1.97(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.3$, 141.1, 138.3, 128.5, 127.9, 126.5, 125.5, 115.5, 85.0, 46.2, 43.2, 29.3, 29.1. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(4-Iodophenoxy)phenylmethyl]piperidine hemisulfate (15n): $\mathrm{mp} 105{ }^{\circ} \mathrm{C}$ (dec); yield 57%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.41(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.59(\mathrm{~d}, \mathrm{~J}=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H})$, $1.97-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $158.2,139.3,137.9,128.3,127.6,126.6,118.2,84.4,82.6,46.4$, 46.4, 43.3, 29.5, 29.2. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{INO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

4-[(Biphen-4-yloxy)phenylmethyl]piperidine hydrochloride (150): $\mathrm{mp} 130{ }^{\circ} \mathrm{C}$ (dec); yield 82%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.49-7.22(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.84$ $(\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.9,140.6$, 139.9, 133.4, 128.5, 128.2, 127.8, 127.4, 126.6, 126.5, 126.4, 115.9, 84.3, 46.4, 46.4, 43.4, 29.6, 29.2. Anal. ($\left.\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO} \cdot \mathrm{HCl}\right)$ C, H, N.

4-[(4-Fluorophenoxy)phenylmethyl]piperidine hemisulfate (15p): mp 108-110 ${ }^{\circ} \mathrm{C}$; yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.38-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.84-6.68(\mathrm{~m}, 4 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.22-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.22(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.9(\mathrm{~d}, \mathrm{~J}=248 \mathrm{~Hz}), 154.7,139.6,128.3$, $127.6,126.7,116.9(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}), 115.5(\mathrm{~d}, \mathrm{~J}=20.7 \mathrm{~Hz}), 85.0$, 46.2, 46.1, 43.2, 29.1, 28.9. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.
4-[Phenyl(4-trifluoromethylphenoxy)methyl]piperidine hemisulfate (15q): mp $128^{\circ} \mathrm{C}$ (dec); yield 89%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.85(\mathrm{~d}$, $\mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.02(\mathrm{~m}, 2 \mathrm{H})$, $2.72-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.32(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 160.8,139.1,128.4,127.8,126.7(\mathrm{~d}, \mathrm{~J}=3.95$ $\mathrm{Hz}), 126.6(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}), 124.3(\mathrm{q}, \mathrm{J}=269.7 \mathrm{~Hz}), 122.6(\mathrm{q}, \mathrm{J}$ $=32 \mathrm{~Hz}$), 115.6, 84.5, 46.5, 46.5, 43.5, 29.6, 29.3. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
4-[(4-Bromophenoxy)phenylmethyl]piperidine hemisulfate (15r): mp 99-103 ${ }^{\circ} \mathrm{C}$; yield 75%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.38-7.18(\mathrm{~m}, 7 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, \mathrm{~J}=5.7 \mathrm{~Hz}$, 1H), $3.10(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.25$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 157.4,139.3,131.9,128.3,127.6$, 126.6, 117.6, 112.6, 84.5, 46.39, 46.36, 43.4, 29.5, 29.2. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(2-F luorophenoxy)(3-fluorophenyl)methyl]piperidine hydrochloride (15t): mp $90^{\circ} \mathrm{C}$ (dec); yield $62 \% ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.54-9.36(\mathrm{bs}, 2 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.12-$ $6.67(\mathrm{~m}, 7 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.43(\mathrm{~m}, 1 \mathrm{H})$, 2.92-2.44 (m, 4H), 2.10-1.72 (m,3H), 1.48-1.42 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left.\left(\mathrm{CDCl}_{3}\right) \delta 162.9(\mathrm{~d}, \mathrm{~J})=247.4 \mathrm{~Hz}\right), 153.1(\mathrm{~d}, \mathrm{~J}=245.8$ Hz), 145.3 (d, J $=10.5 \mathrm{~Hz}$), 141.1 (d, J $=6.4 \mathrm{~Hz}$), 130.3 (d, J $=8.1 \mathrm{~Hz}$), $124.1(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}), 122.4(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 117.5$ $(\mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}), 116.3(\mathrm{~d}, \mathrm{~J}=18.3 \mathrm{~Hz}), 115.5(\mathrm{~d}, \mathrm{~J}=21.0 \mathrm{~Hz})$, 113.7 ($\mathrm{d}, \mathrm{J}=22.2 \mathrm{~Hz}$), 84.3, 43.8, 43.6, 41.0, 25.5, 25.0. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}$) C, H, N.

4-[(3-Fluorophenoxy)(3-fluorophenyl)methyl]piperidine hemisulfate (15u): $\mathrm{mp} 158{ }^{\circ} \mathrm{C}$ (dec); yield 50%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.35-8.68$ (bs, 1H), 7.16-6.64 (m, 5H), 6.41-6.27 (m, 3H), 4.86 (bs, 1H), 3.15 (m, 2H), 2.86-2.43 (m, 2H), 1.98$1.42(\mathrm{~m}, 4 \mathrm{H}), 1.35-1.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.7(\mathrm{~d}$, $\mathrm{J}=245.1 \mathrm{~Hz}), 162.3(\mathrm{~d}, \mathrm{~J}=247.1 \mathrm{~Hz}), 158.6(\mathrm{~d}, \mathrm{~J}=11.6 \mathrm{~Hz})$, 141.2 (d, J = 10.5 Hz), $129.8(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}), 129.7(\mathrm{~d}, \mathrm{~J}=4.5$ $\mathrm{Hz}), 122.2,114.6(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz}), 113.1(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}), 111.1$ $(\mathrm{d}, \mathrm{J}=3.0 \mathrm{~Hz}), 107.4(\mathrm{~d}, \mathrm{~J}=21.1 \mathrm{~Hz}), 103.1(\mathrm{~d}, \mathrm{~J}=23.6 \mathrm{~Hz})$, 82.1, 43.2, 43.0, 40.3, 24.7, 24.5. Anal. ($\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$) C, H, N.

4-[(3-Fluorophenoxy)(4-methylphenyl)methyl]piperidine hydrochloride (15v): mp $88{ }^{\circ} \mathrm{C}$ (dec); yield 67%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 9.51-9.38(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.01(\mathrm{~m}, 5 \mathrm{H}), 6.60-$ $6.49(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.43(\mathrm{~m}, 2 \mathrm{H})$, $2.95-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 4 \mathrm{H}), 1.96-1.51(\mathrm{~m}, 3 \mathrm{H}), 1.45-1.26$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.2(\mathrm{~d}, \mathrm{~J}=244.9 \mathrm{~Hz}), 159.2$, 159.0, 138.0, 135.3, 129.9 (d, J = 10.3 Hz), 129.4, 126.4, 111.5 $(\mathrm{d}, \mathrm{J}=2.8 \mathrm{~Hz}), 107.7(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 103.6(\mathrm{~d}, \mathrm{~J}=24.9 \mathrm{~Hz})$, 83.2, 43.8, 43.7, 41.2, 25.2,25.1, 21.0. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO} \cdot \mathrm{HCl}\right)$ C, H, N.
4-[(4-F luorophenoxy)(3-fluorophenyl)methyl]piperidine hydrochloride (15x): mp $65{ }^{\circ} \mathrm{C}$ (dec); yield 30%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-6.62(\mathrm{~m}, 8 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.17-1.43(\mathrm{~m}, 5 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.9(\mathrm{~d}, \mathrm{~J}=247.4 \mathrm{~Hz}), 157.3(\mathrm{~d}, \mathrm{~J}=239.5$ $\mathrm{Hz}), 153.7(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 141.7(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}), 130.2(\mathrm{~d}, \mathrm{~J}=$ $8 \mathrm{~Hz}), 122.4(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}), 117.0(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 115.7(\mathrm{~d}, \mathrm{~J}$ $=23.3 \mathrm{~Hz}$), $115.1(\mathrm{~d}, \mathrm{~J}=21.0 \mathrm{~Hz}), 113.5(\mathrm{~d}, \mathrm{~J}=21.8 \mathrm{~Hz})$, 83.5, 44.3, 44.2, 41.6, 29.6, 26.0, 25.9. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right)$ C, H,N.

4-[(3-Fluoro-2-methylphenoxy)phenylmethyl]piperidine hemisulfate (15ac): $\mathrm{mp} 125{ }^{\circ} \mathrm{C}$ (dec); yield 80%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.35-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{t}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 3 \mathrm{H})$, 1.96-1.91 (m, 2H), 1.47-1.26 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $161.5(\mathrm{~d}, \mathrm{~J}=240.4 \mathrm{~Hz}), 157.1(\mathrm{~d}, \mathrm{~J})=8.7 \mathrm{~Hz}), 139.6,128.2$, $127.4,126.4,126.0(\mathrm{~d}, \mathrm{~J}=10.3 \mathrm{~Hz}), 114.0(\mathrm{~d}, \mathrm{~J}=16.6 \mathrm{~Hz}$), $108.2(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 107.1(\mathrm{~d}, \mathrm{~J}=23.0 \mathrm{~Hz}), 84.1,46.4,46.3$, $43.5,29.6,29.0,17.8(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}\right.$. $\left.1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(3-Chloro-2-methylphenoxy)phenylmethyl]piperidine hemisulfate (15ad): mp $130{ }^{\circ} \mathrm{C}$ (dec); yield 89%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.35-7.20(\mathrm{~m}, 5 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.50-$ $6.45(\mathrm{~m}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~m}$, $2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 156.4,139.1,134.5,127.9,127.2,126.1,125.9,124.9$, 120.5, 110.5, 83.8, 46.1, 46.0, 43.2, 29.3, 28.7, 12.5. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(5-Chloro-2-methylphenoxy)phenylmethyl]piperidine hemisulfate (15ae): mp $105{ }^{\circ} \mathrm{C}$ (dec); yield 77%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}$, $2 \mathrm{H}), 1.46-1.25(\mathrm{~m}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 156.5,139.2,131.4$, 131.0, 128.3, 127.6, 126.5, 125.4, 119.9, 112.9, 83.9, 46.4, 46.4, 43.5, 29.7, 29.0, 16.1. Anal. ($\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{CINO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

3-Chloro-4-[phenyl(piperidin-4-yl)methoxy]benzonitrile hydrochloride (15af): mp $125^{\circ} \mathrm{C}$ (dec); yield 70%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 5 \mathrm{H})$, $6.94(\mathrm{~d}, \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=$ $6.5 \mathrm{~Hz} 1 \mathrm{H}), 3.09(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H})$, $1.7-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 162.1, 138.0, 137.9, $134.8,128.7,128.2,126.5,117.5,116.3,114.7,104.8,85.3,46.3$, 43.3, 29.3, 29.2. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(3,4-Dichlorophenoxy)phenylmethyl]piperidine hemisulfate (15ag): mp $108^{\circ} \mathrm{C}$ (dec); yield 91%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11(\mathrm{~m}, 2 \mathrm{H}), 2.52(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.26(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 157.3,138.7,132.4,130.3,128.4$, 127.8, 126.5, 123.7, 117.9, 115.4, 84.8, 46.1, 43.1, 29.1, 28.9. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

4-[(3-Fluoro-5-methoxyphenoxy)phenylmethyl]piperidine hydrochloride (15ah): mp 200-203 ${ }^{\circ} \mathrm{C}$; yield 65%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.36-7.19(\mathrm{~m}, 5 \mathrm{H})$, 6.19-6.09 (m,3H), 4.74 $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H})$, 1.97-1.81 (m, 2H), 1.41-1.25 (m, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $163.5(\mathrm{~d}, \mathrm{~J}=241.1 \mathrm{~Hz}), 160.7(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}), 159.8(\mathrm{~d}, \mathrm{~J}=$ $13.5 \mathrm{~Hz}), 139.0,127.9,127.2,126.2,97.5(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}), 95.5$ $(\mathrm{d}, \mathrm{J}=24.9 \mathrm{~Hz}), 93.6(\mathrm{~d}, \mathrm{~J}=25.5 \mathrm{~Hz}), 84.2,54.9,46.0,46.0$, 42.9, 29.1, 28.8. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{FNO}_{2} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Fluoro-5-[phenyl(piperidin-4-yl)methoxy]benzonitrile hydrochloride (15ai): mp $70^{\circ} \mathrm{C}$ (dec); yield 76%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.38-7.23(\mathrm{~m}, 5 \mathrm{H}), 6.87-6.67(\mathrm{~m}, 3 \mathrm{H})$, 4.77 $(\mathrm{d}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.82(\mathrm{~m}$, $2 \mathrm{H}), 1.41-1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 162.7(\mathrm{~d}, \mathrm{~J}=247.3$ $\mathrm{Hz}), 159.9(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}), 137.9,128.5,128.1,126.5,117.4$, $115.4(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}), 113.5(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}), 111.1(\mathrm{~d}, \mathrm{~J}=$ $24.8 \mathrm{~Hz}), 108.5(\mathrm{~d}, \mathrm{~J}=24.4 \mathrm{~Hz}), 85.3,46.2,43.1,29.2,29.1$. Anal. ($\left.\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(3,5-Difluorophenoxy)phenylmethyl]piperidine hemisulfate (15aj): mp $206-208{ }^{\circ} \mathrm{C}$; yield 86%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 7.33-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.39-6.26(\mathrm{~m}, 3 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}$, 1H), $3.09(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.25$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.4(\mathrm{~d}, \mathrm{~J}=244.3 \mathrm{~Hz}), 160.2(\mathrm{t}$, $\mathrm{J}=13.5 \mathrm{~Hz}), 138.7,128.3,127.7,126.5,99.4(\mathrm{~d}, \mathrm{~J}=28.6 \mathrm{~Hz})$, 96.0 (t, J $=25.5 \mathrm{~Hz}$), 84.9, 46.3, 46.2, 43.2, 29.3, 29.1. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.

2-Fluoro-6-[phenyl(piperidin-4-yl)methoxy]phenol (15ar): yellow solid; $\mathrm{mp} 82^{\circ} \mathrm{C}(\mathrm{d})$; yield 18%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.35-7.22(\mathrm{~m}, 5 \mathrm{H}), 6.67-6.34(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.27-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.78-$
$1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.8(\mathrm{~d}, \mathrm{~J}=235.6 \mathrm{~Hz}), 148.4$ $(\mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}), 139.8,138.0(\mathrm{~d}, \mathrm{~J}=14.4 \mathrm{~Hz}), 128.2,127.7$, $126.9,116.4(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}), 113.4,109.3(\mathrm{~d}, \mathrm{~J}=19.2 \mathrm{~Hz})$, 85.9, 45.3, 45.2, 42.4, 29.6, 27.9, 27.4. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{2}$) C, H, N.

2-F luoro-4-[phenyl(piperidin-4-yl)methoxy]phenol (15as): white solid; mp $85{ }^{\circ} \mathrm{C}$ (d); yield 49%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.32-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.33(\mathrm{~m}, 2 \mathrm{H})$, $4.81(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.45(\mathrm{~m}, 2 \mathrm{H})$, 1.98-1.92 (m, 2H), 1.52-1.25 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ 156.1 (d, J $=235.3 \mathrm{~Hz}$), $145.5(\mathrm{~d}, \mathrm{~J}=9.9 \mathrm{~Hz}), 142.4(\mathrm{~d}, \mathrm{~J}=$ $2.5 \mathrm{~Hz}), 138.6,128.6,128.1,126.4,114.7(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}), 107.0$ $(\mathrm{d}, \mathrm{J}=22.5 \mathrm{~Hz}), 102.3(\mathrm{~d}, \mathrm{~J}=27.1 \mathrm{~Hz}), 85.4,46.0,42.7,29.7$, 28.8. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Fluoro-5-[phenyl(piperidin-4-yl)methoxy]phenol (15at): white solid; $\mathrm{mp} 103^{\circ} \mathrm{C}$; yield 23%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $7.32-7.24(\mathrm{~m}, 5 \mathrm{H}), 6.09-6.03(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, 1 H), $3.10(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.49-$ $1.25(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.5(\mathrm{~d}, \mathrm{~J}=248.0 \mathrm{~Hz}), 160.0$ (d, J = 14.9 Hz), 139.7, 128.3, 127.6, 126.9, 99.4 (d, J = 2.6 $\mathrm{Hz}), 95.4(\mathrm{~d}, \mathrm{~J}=23.8 \mathrm{~Hz}), 93.8(\mathrm{~d}, \mathrm{~J}=25.3 \mathrm{~Hz}), 83.1,45.4$, 42.6, 28.5. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-[(Naphthalen-1-yloxy)phenylmethyl]piperidine hemisulfate (15au): mp $152{ }^{\circ} \mathrm{C}$ (dec); yield 72%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 8.50(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.12(\mathrm{~m}, 9 \mathrm{H}), 6.56(\mathrm{~d}, \mathrm{~J}=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 2.90-1.96$ $(\mathrm{m}, 2 \mathrm{H}), 2.70-2.55(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.42(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 153.6,139.0,134.5,128.3,127.5,127.5,126.5,126.2$, 126.0, 125.7, 125.1, 122.1, 119.8, 106.5, 83.9, 46.7, 46.7, 43.9, 30.0, 29.2. Anal. ($\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.

1-[(Cyclopentyl)phenylmethoxy]-3-fluorobenzene (18): colorless oil; yield 58%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38-7.03$ $(\mathrm{m}, 5 \mathrm{H}), 6.68-6.53(\mathrm{~m}, 4 \mathrm{H}), 4.84(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-$ $2.28(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.76-0.84(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.4(\mathrm{~d}, \mathrm{~J}=243.0 \mathrm{~Hz}), 159.9(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}), 141.2$, 129.9 (d, J $=10.3 \mathrm{~Hz}$), 128.4, 127.5, 126.4, 111.7 (d, J $=3.2$ $\mathrm{Hz}), 107.2(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}), 103.6(\mathrm{~d}, \mathrm{~J}=24.6 \mathrm{~Hz}), 84.5,47.5$, 29.4, 29.2, 25.3. Anal. ($\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FO}$) C, H.

4-[(3-Fluorophenoxy)phenylmethyl]tetrahydropyran (21): yellow oil; yield 75\%; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 7.38$ $7.28(\mathrm{~m}, 5 \mathrm{H}), 7.22-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.49(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~d}$, $\mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.88(\mathrm{~m}$, $2 \mathrm{H}), 1.65-1.24(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 163.23(\mathrm{~d}, \mathrm{~J}=$ 243.3 Hz), 159.5 (d, J $=11.0 \mathrm{~Hz}), 139.0,128.9(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz})$, $128.3,127.7,126.5,111.4(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}), 107.3(\mathrm{~d}, \mathrm{~J}=21.5$ Hz), 103.4 ($\mathrm{d}, \mathrm{J}=24.7 \mathrm{~Hz}$), 84.2, 67.6, 67.4, 42.1, 29.0, 28.9. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{FO}_{2}\right) \mathrm{C}, \mathrm{H}$.
General Procedure for Resolution of Racemic Mixtures: Enantiomers 15. ${ }^{27}$ Method C: (-)-4-[(3-Chlorophenoxy)phenylmethylpiperidine Methanesulfonate ((-)$151)$ and (+)-4-[(3-Chlorophenoxy)phenylmethyl]piperidine Methanesulfonate ((+)-15I). I-Di benzoyltartaric acid $(3.3 \mathrm{~g}, 9.1 \mathrm{mmol})$ was added to a solution of $\mathbf{1 5 L}(5.5 \mathrm{~g}, 18.2$ mmol) in 96% ethanol (100 mL). The white sol id was filtered and washed with ethanol, taken up in methanol (300 mL), and the suspension was stirred for 2 h at room temperature and then filtered again. The solid was suspended in methanol (200 mL), stirred for 2 h at room temperature, filtered, suspended in 10% aqueous NaOH solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give a pale yellow oil. A solution of 1.1 g of the crude product $(3.6 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was treated with methanesulfonic acid ($0.3 \mathrm{~g}, 3.6 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, stirred for 15 min at room temperature, and concentrated in vacuo. The solid residue was crystallized from acetone to yield 1.1 g of (-)-15I as methanesulfonate: mp $200-202^{\circ} \mathrm{C} ; 99 \%$ ee; $[\alpha]^{22} 546-2^{\circ}$ (c $\left.=0.646, \mathrm{CHCl}_{3}\right)$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO} \cdot \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$. The ethanolic and methanolic filtrates were combined and concentrated in vacuo, and the residue was washed with 10% aqueous NaOH solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 2.0 g of yellow oil, which was taken with 96% ethanol (50 mL) and treated with D-di benzoyltartaric acid ($1.2 \mathrm{~g}, 3.3 \mathrm{mmol}$) in one portion. The white solid precipitate was collected, washed with ethanol, stirred with 10% aqueous NaOH solution, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extract was concentrated to an
oil ($1.1 \mathrm{~g}, 3.6 \mathrm{mmol}$) which was treated with methanesulfonic acid as above to yield 1.0 g of $(+) \mathbf{- 1 5 1}$ as methanesulfonate: $\mathrm{mp} 200-202{ }^{\circ} \mathrm{C} ; 99 \%$ ee; $[\alpha]^{22}{ }_{546} 1.7^{\circ}\left(\mathrm{c}=0.690, \mathrm{CHCl}_{3}\right.$). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{CINO} \cdot \mathrm{CH}_{3} \mathrm{SO}_{3} \mathrm{H}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

The following compounds were prepared analogously.
(-)-4-[(3-Fluorophenoxy)phenylmethyl]piperidine hemisulfate ((-)-15j): 99\% ee; $[\alpha]^{22}{ }_{546}-10.5^{\circ}\left(\mathrm{c}=0.980, \mathrm{CHCl}_{3}\right)$; mp 121-124 ${ }^{\circ} \mathrm{C}$. Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}$, N, S.
(+)-4-[(3-Fluorophenoxy)phenylmethyl]piperidine hemisulfate ((+)-15j): 98% ee; $[\alpha]^{22}{ }_{546} 10.4^{\circ}$ ($\mathrm{c}=0.842, \mathrm{CHCl}_{3}$); mp $121-124{ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$) C, H, N, S.
(-)-3-[Phenyl(piperidin-4-yl)methoxy]benzonitrile hydrochloride ((-)-15k): 98\% ee; $[\alpha]^{22} 546-11.1^{\circ}$ (c = 0.680, CHCl_{3}); mp $70^{\circ} \mathrm{C}$ (dec). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(+)-3-[Phenyl(piperidin-4-yl)methoxy]benzonitrile hydrochloride ((+)-15k): 94\% ee; $[\alpha]^{22}{ }_{546} 10.5^{\circ}$ (c = 0.600, CHCl_{3}); mp $70^{\circ} \mathrm{C}(\mathrm{dec})$. Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(-)-4-[(4-F luorophenoxy)phenylmethyl]piperidine ((-)-15p): 96% ee; $[\alpha]^{22}{ }_{546}-14.0^{\circ}\left(c=0.237, \mathrm{CHCl}_{3}\right) ;$ mp 102$104{ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}$) C, H, N.
(+)-4-[(4-Fluorophenoxy)methyl]piperidine ((+)15p): 98\% ee; $[\alpha]^{22}{ }_{546} 14.0^{\circ}\left(\mathrm{c}=0.259, \mathrm{CHCl}_{3}\right.$); mp 100-102 ${ }^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
(-)-4-[Phenyl(4-trifluoromethylphenoxy)methyl]piperidine hemisulfate ((-)-15q): 95\% ee; $[\alpha]^{22}{ }_{436}-4.0^{\circ}$ (c $\left.=0.508, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 75^{\circ} \mathrm{C}$ (dec). Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO} \cdot{ }^{1 / 2} \mathrm{H}_{2}-\right.$ $\left.\mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(+)-4-[Phenyl(4-trifluoromethylphenoxy)methyl]piperidine hemisulfate ((+)-15q): 96% ee; $[\alpha]^{22}{ }_{436} 5.7^{\circ}$ (C $=0.556, \mathrm{CHCl}_{3}$); mp $85^{\circ} \mathrm{C}$ (dec). Anal. $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$. $\left.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(-)-4-[(4-Bromophenoxy)phenylmethyl]piperidine ((-)-15r): 94\% ee; $[\alpha]^{22}{ }_{546}-32.5^{\circ}$ (c=1.048, CHCl_{3}); $\mathrm{mp} 128-$ $130^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}$) C, H, N.
(+)-4-[(4-Bromophenoxy)phenylmethyl]piperidine ((+)15r): 96% ee; $[\alpha]^{22}{ }_{546} 32.1^{\circ}$ (c = 1.012, CHCl_{3}); mp 129-131 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{BrNO}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(+)-4-[(3-F luorophenoxy)(3-fluorophenyl)methyl]piperidine hydrochloride ((+)-15u): 96% ee; $[\alpha]^{22}{ }_{546}$ $15^{\circ}\left(\mathrm{c}=0.183, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 75^{\circ} \mathrm{C}$ (dec); yield 37%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(-)-4-[(3-F luorophenoxy)(3-fluorophenyl)methyl]piperidine hydrochloride ((-)-15u): 95.4% ee; $[\alpha]^{22}{ }_{546}$ $-16^{\circ}\left(\mathrm{c}=0.170, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 78{ }^{\circ} \mathrm{C}$ (dec); yield 32%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(-)-4-[(3,5-Difluorophenoxy)phenylmethyl]piperidine hemisulfate ($(-)-15 \mathrm{aj})$: 96% ee; $[\alpha]^{22}{ }_{546}-12.7^{\circ}$ (c $=$ $\left.0.724, \mathrm{CHCl}_{3}\right)$; mp $78{ }^{\circ} \mathrm{C}$ (dec). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}^{1} /{ }^{1} \mathrm{H}_{2} \mathrm{SO}_{4}\right.$. $\left.2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{S}$.
(+)-4-[(3,5-Difluorophenoxy)phenylmethyl]piperidine hemisulfate ((+)-15aj): 98\% ee; $[\alpha]^{22} 54612.1^{\circ}$ (c = 0.800, $\left.\mathrm{CHCl}_{3}\right)$; mp $78{ }^{\circ} \mathrm{C}$ (dec). Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{SO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}$, H, N, S.

General Procedure for Preparation of Enantiomers 15^{27} from Enantioenriched Alcohols. Method D: (+)-4-[(4-Fluorophenoxy)phenylmethyl]piperidine ((+)-15p). To a solution of $(+)-14 \mathrm{j}(1.8 \mathrm{~g}, 9.6 \mathrm{mmol})$ in methanol (10 mL) at $0^{\circ} \mathrm{C}$ was added (Boc) $2_{2} \mathrm{O}(2.5 \mathrm{~g}, 11.3 \mathrm{mmol})$ dissolved in methanol (10 mL). The mixture was stirred at room temperature for 24 h and the methanol removed under reduced pressure. Water was added and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. Alcohol was obtained as a slightly colored oil in a 93% yield. A solution of previously prepared al cohol ($2.7 \mathrm{~g}, 9.3 \mathrm{mmol}$) in anhydrous DMSO (25 mL) was added to a stirred suspension of $\mathrm{NaH}(60 \%$ dispersion in mineral oil, 0.6 g) in anhydrous DMSO (5 mL). After 30 min at room temperature potassium benzoate ($1.5 \mathrm{~g}, 9.6 \mathrm{mmol}$) was added and the mixture stirred 30 min , then 1,4 -difluorobenzene ($1.3 \mathrm{~mL}, 11.9 \mathrm{mmol}$) was added. The mixture was heated ($70-75^{\circ} \mathrm{C}$ oil bath) for 20 h , cool ed to room temperature, poured into water and brine, and
extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. A solution of the resulting residue in methanol (40 mL) and 10% aqueous HCl solution (40 mL) was refluxed for 1 h and then allowed to cool to room temperature. Methanol was evaporated and the aqueous solution extracted with hexane/ $\mathrm{Et}_{2} \mathrm{O}$ and CHCl_{3}. The organic layer was washed with 10% aqueous NaOH solution and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated. The product was obtained as an oil in 54% yield. The treatment of the oil ($0.5 \mathrm{~g}, 1.7 \mathrm{mmol}$) prepared above with a solution of d-di benzoyltartaric acid (0.5 equiv) in ethanol ($96 \%, 30 \mathrm{~mL}$) provided a precipitate which was filtered ($\mathrm{mp} 198-199^{\circ} \mathrm{C}$). The resulting solid was treated with 10% aqueous NaOH solution and extracted with CHCl_{3}. The organic layer was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to yield the free base of (+)-15p as a white solid: mp $102-104{ }^{\circ} \mathrm{C}, 96 \%$ ee; $[\alpha]^{22} 5_{546}$ 15° ($\mathrm{c}=0.105, \mathrm{CHCl}_{3}$). Anal. ($\left.\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
The following compounds were prepared analogously.
(-)-4-[(2-Fluorophenoxy)phenylmethyl]piperidine hemisulfate ((-)-15b): 97.6% ee; $[\alpha]^{22} 546-31^{\circ}\left(\mathrm{c}=0.140, \mathrm{CHCl}_{3}\right)$; mp $90{ }^{\circ} \mathrm{C}$ (dec); yield 44%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot{ }^{1} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}\right) \mathrm{C}$, H, N.
(+)-4-[(2-Fluorophenoxy)phenylmethyl]piperidine hemisulfate ((+)-15b): 97.6% ee; $[\alpha]^{22} 54631^{\circ}\left(\mathrm{c}=0.081, \mathrm{CHCl}_{3}\right)$; mp $105{ }^{\circ} \mathrm{C}$ (dec); yield 38%. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO} \cdot{ }^{1} / 2 \mathrm{H}_{2} \mathrm{SO}_{4}$) C, H, N.
(-)-4-[(4-Nitrophenoxy)phenylmethyl]piperidine hydrochloride ((-)-15m): 98.7\% ee; $[\alpha]^{22}{ }^{436}-31^{\circ}(c=0.042$, ethanol); mp $59{ }^{\circ} \mathrm{C}$ (dec); yield 63%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}\right)$ C, H, N.
(+)-4-[(4-Nitrophenoxy)phenylmethyl]piperidine hydrochloride ((+)-15m): 96\% ee; $[\alpha]^{22} 43636^{\circ}$ (c = 0.045, ethanol); mp $55^{\circ} \mathrm{C}$ (dec); yield 50\%. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$) C, H, N.
(-)-4-[(4-F luorophenoxy)phenylmethyl]piperidine ((-)-15p): 96% ee; $[\alpha]^{22} 2_{546}-14^{\circ}\left(\mathrm{c}=0.200, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 102-$ $104{ }^{\circ} \mathrm{C}$; yield 64%. Anal. ($\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FNO}$) C, H, N.
(-)-4-[(2-Fluorophenoxy)(3-fluorophenyl)methyl]piperidine hydrochloride ((-)-15t): 98\% ee; $[\alpha]^{22}{ }_{436}$ -43° (c = 0.082, CHCl_{3}); mp $115{ }^{\circ} \mathrm{C}$ (dec); yield 35%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(+)-4-[(2-F luorophenoxy)(3-F luorophenyl)methyl]piperidine hydrochloride ((+)-15t): 98\% ee; $[\alpha]^{22}{ }_{436} 44^{\circ}$ ($\mathrm{C}=0.121, \mathrm{CHCl}_{3}$); mp $110{ }^{\circ} \mathrm{C}$ (dec); yield 60%. Anal. $\left(\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(-)-4-[(Naphthalen-1-yloxy)phenylmethyl]piperidine hydrochloride ((-)-15au): 98\% ee; $\left[\alpha{ }^{222546}-180^{\circ}\right.$ (c $=0.080, \mathrm{CHCl}_{3}$); mp $65{ }^{\circ} \mathrm{C}$ (dec); yield 57%. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(+)-4-[(Naphthalen-1-yloxy)phenylmethyl]piperidine hydrochloride ((+)-15au): 94\% ee; $[\alpha]^{22}{ }_{546} 156^{\circ}$ ($\mathrm{c}=0.128, \mathrm{CHCl}_{3}$); mp $115{ }^{\circ} \mathrm{C}$ (dec); yield 77%. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO} \cdot \mathrm{HCl}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Pharmacological Methods. Drugs. All drugs used in binding experiments were obtained from commercial sources, except paroxetine, reboxetine, and venlafaxine, which were extracted from marketed pharmaceutical specialities M otivan (Faes Farma, S. A.), Norebox (Pharmacia \& Upjohn), and Vandral (Wyeth), respectively.
(1) $5-\mathrm{HT}_{1 \mathrm{~A}}$ and 5-HT 2 A Receptor Binding Assays. Binding of derivatives and standards at serotonin $5-\mathrm{HT}_{1 A}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors was determined by radioligand assays following methods widely described for our group in other publications. ${ }^{35-37}$ Briefly, the affinity for $5-\mathrm{HT}_{1 \mathrm{~A}}$ receptors was determined by displacement of [3 H$]-8-\mathrm{OH}$-DPAT binding in membranes from rat hippocampus, using 400-500 $\mu \mathrm{g}$ of protein and $1.5 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]-8-\mathrm{OH}-\mathrm{DPAT}$. Nonspecific binding was determined in the presence of $10 \mu \mathrm{M}$ cold $5-\mathrm{HT}$. The incubation time was 30 min at $37^{\circ} \mathrm{C}$. Affinity for $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors was determined by displacement of $\left[{ }^{3} \mathrm{H}\right]$ ketanserin binding in membranes from rat prefrontal cerebral cortex, using 400$500 \mu \mathrm{~g}$ of protein and $0.8 \mathrm{nM}\left[{ }^{3} \mathrm{H}\right]$ ketanserin. Nonspecific
binding was determined in the presence of $1 \mu \mathrm{M}$ cold methysergide. The incubation time was 15 min at $37^{\circ} \mathrm{C}$.
(2) Serotonin Transporter (SERT) Binding Assay. ${ }^{38}$ Adult male Wistar rats weighing 220-280 g were used. Animals were killed by decapitation and the whole brain with the exception of the brainstem and cerebellum was quickly removed, and the various areas were dissected, weighed, and immediately frozen at $-70^{\circ} \mathrm{C}$. Cerebral cortex used for the binding experiments was homogenized with an Ultra-Turrax (setting 5 for 20 s) in 20 volumes of ice-cold 50 mM Tris- HCl (pH 7.4) buffer and centrifuged at 48000 g for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The resulting pellet was resuspended in 20 volumes of icecold 50 mM Tris- HCl buffer (pH 7.4), incubated at $37^{\circ} \mathrm{C}$ for 10 min , and then centrifuged once more at 48000 g for 10 min $\left(4^{\circ} \mathrm{C}\right)$. The final pellet was resuspended in 10 volumes of icecold 50 mM Tris- HCl buffer containing 120 mM NaCl and 5 mM KCl and was stored at $-70^{\circ} \mathrm{C}$ until use. At the time of the experiment, the membranes were diluted in the same icecold Tris-saline buffer (final dilution 1:100, wt/vol). Competition assays were performed in a final volume of 1 mL . To each assay tube were added the following: 0.1 mL of the displacer drug concentration (0.1 mL of vehicle if no competing drug was added) and 0.1 mL of $\left[{ }^{3} \mathrm{H}\right]$ paroxetine ($\mathrm{NEN}, 15 \mathrm{Ci} / \mathrm{mmol}$) in buffer (final concentration 0.2 nM). Nonspecific binding was determined using $10 \mu \mathrm{M}$ cold fluoxetine. The binding experiment was initiated by addition of 0.8 mL of membrane suspension (550-600 $\mu \mathrm{g}$ of protein). The incubation time was 60 min at $25^{\circ} \mathrm{C}$.
(3) Norepinephrine Transporter (NET) Binding Assay. ${ }^{4}$ Adult male Wistar rats weighing $220-280 \mathrm{~g}$ were used. Animals were killed by decapitation and the whole brain with the exception of the brainstem and cerebellum was quickly removed, and the various areas were dissected, weighed, and immediately frozen at $-70^{\circ} \mathrm{C}$. Cerebral cortex used for the binding experiments was homogenized with an Ultra-Turrax (setting 5 for 20 s) in 30 volumes of ice-cold 50 mM Tris-HCl (pH 7.4) buffer containing 120 mM NaCl and 5 mM KCl and centrifuged at 40000 g for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The resulting pellet was resuspended in 30 volumes of ice-cold 50 mM Tris- HCl saline buffer (pH 7.4), incubated at $37^{\circ} \mathrm{C}$ for 10 min , and then centrifuged once more at 40000 g for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The resuspension and centrifugation of the resulting pellet was repeated twice more under the same conditions. The final pellet was resuspended in 5 volumes of ice-cold 10 mM phosphate buffer containing 120 mM NaCl and 5 mM KCl and was stored at $-70^{\circ} \mathrm{C}$ until use. At the time of the experiment, the membranes were diluted in the same ice-col d phosphatesaline buffer (final dilution 1:70, wt/vol). Competition assays were performed in a final volume of 1 mL . To each assay tube were added the following: 0.1 mL of the displacer drug concentration (0.1 mL of vehicle if no competing drug was added) and 0.1 mL of $[3 \mathrm{H}]$ nisoxetine ($\mathrm{NEN}, 85 \mathrm{Ci} / \mathrm{mmol}$) in buffer (final concentration $0.5-1 \mathrm{nM}$). Nonspecific binding was determined using $10 \mu \mathrm{M}$ cold mazindol. The binding experiment was initiated by addition of 0.8 mL of membrane suspension (550-600 $\mu \mathrm{g}$ of protein). The incubation time was 30 min at $25^{\circ} \mathrm{C}$.
(4) Dopamine Transporter (DAT) Binding Assay. ${ }^{39}$ Adult male Wistar rats weighing 220-280 g were used. Animals were killed by decapitation and the whole brain with the exception of the brainstem and cerebellum was quickly removed, and the various areas were dissected, weighed, and immediately frozen at $-70^{\circ} \mathrm{C}$. Striatum used for the binding experiments was homogenized with an Ultra-Turrax (setting 5 for 20 s) in 10 volumes of ice-cold 10 mM phosphate buffer (pH 7.4) containing 0.32 M sucrose and centrifuged at 48000 g for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The resulting pellet was resuspended in 10 volumes of ice-cold 10 mM phosphate buffer (pH 7.4), incubated at $37^{\circ} \mathrm{C}$ for 10 min , and then centrifuged twice more at 48000 g for $10 \mathrm{~min}\left(4^{\circ} \mathrm{C}\right)$. The final pellet was resuspended in 10 volumes of ice-cold 10 mM phosphate buffer and was stored at $-70{ }^{\circ} \mathrm{C}$ until use. At the time of the experiment, the membranes were diluted in the same ice-cold phosphatesaline buffer (final dilution 1:140, wt/vol). Competition assays
were performed in a final volume of 1 mL . To each assay tube were added the following: 0.1 mL of the displacer drug concentration (0.1 mL of vehicle if no competing drug was added) and 0.1 mL of [$\left.{ }^{3} \mathrm{H}\right] \mathrm{WIN}-35428$ (NEN, $83.5 \mathrm{Ci} / \mathrm{mmol}$) in buffer (final concentration 0.5 nM). Nonspecific binding was determined using $10 \mu \mathrm{M}$ cold mazindol. The binding experiment was initiated by addition of 0.8 mL of membrane suspension ($300 \mu \mathrm{~g}$ of protein). The incubation time was 120 \min at $4^{\circ} \mathrm{C}$.

For all described binding assays, after the incubation period the reaction was stopped by rapid vacuum filtration through Whatman GF/B presoaked filters (1% polyethylenimine in assay buffer), using a 24 Brandel cell harvester, followed by two washes with 5 mL of ice-cold assay buffer. The filters obtained were placed in scintillating poly(ethylene) vials with 5 mL of scintillation cocktail (E coscint-H, National Diagnostic) and equilibrated by shaking. The filter-retained radioactivity was counted the next day in a liquid scintillation counter (Kontron Betamatic V) with 48-52\% of efficiency. For all binding assays, an initial screen was conducted at a concentration of $1 \mu \mathrm{M}$ of each unknown derivative. If there was greater than 50% displacement of each specific radioligand used, subsequent experiments were performed and the data obtained were plotted as log concentration vs percent of specific binding and analyzed with GraphPad Prism (GraphPad Software, Inc.) version 3.0. I C_{50} values were calculated from each competition experiments with samples in triplicate, using 8-12 different concentrations of drugs dissolved and diluted in the different assay buffers. The inhibition constant K_{i} was calculated from IC_{50} value using the Cheng-Prusoff equation. ${ }^{40}$ For each compound, the final K_{i} value was obtained as mean from two to four independent experiments. In all cases, the standard error mean (SEM) was less than 15\%.

Acknowledgment. This work was financially supported in part by the Ministry of Science and Technology of Spain (PROFIT 2000-2003) and the Department of Industry, Commerce and Tourism of the Basque Government.

References

(1) Van Praag, H. M. Past Expectations, Present Disappointments, Future Hopes or Psychopathology as the Rate-Limiting Step of Progress in Psychopharmacology. Hum. Psychopharmacol. 2001, 16, 3-8.
(2) Frazer, A. Antidepressants. J . Clin. Psychiatry 1997, 58 (Suppl. 6), 9-25.
(3) Delgado, P.; M oreno, F. Antidepressants and the Brain. Intern. Clin. Psychopharmacol. 1999, 14 (Suppl. 1), S9-S16.
(4) Tejani-Butt, S. M. [$\left.{ }^{3} \mathrm{H}\right]$ Nisoxetine: A Radioligand for Quantitation of Norepinephrine Uptake Sites by Autoradiography or by Homogenate Binding. J. Pharmacol. Exp. Ther. 1992, 260 (1), 427-436.
(5) Szabadi, E.; Bradshaw, C. M.; Boston, P. F.; Langley, R. W. The Human Pharmacology of Reboxetine. Hum. Psychopharmacol. 1998, 13, S3-S12.
(6) Schatzberg, A. F. Clinical Efficacy of Reboxetine in Major Depression. J. Clin. Psychiatry 2000, 61 (Suppl. 10), 31-38.
(7) Racagni, G.; Brunello, N. Physiology to Functionality: The Brain and Neurotransmitter Activity. Intern. Clin. Psychopharmacol. 1999, 14 (Suppl. 1), S3-S7.
(8) Leonard, B. E. Neuropharmacology of Antidepressants that Modify Central Noradrenergic and Serotonergic Function: A Short Review. Hum. Psychopharmacol. 1999, 14, 75-81.
(9) Montgomery, S. A. Rapid Onset of Action of Venlafaxine. Intern. Clin. Psychopharmacol. 1995, 10 (Suppl. 2), 21-27.
(10) Harvey, A. T.; Rudolph, R. L.; Preskorn, S. H. Evidence of the Dual Mechanisms of Action of Venl afaxine. Arch. Gen. Psychiatry 2000, 57, 503-509.
(11) Stahl, S. M.; Entsuah, R.; Rudolph, R. L. Comparative Efficacy Between Venlafaxine and SSRIS: A Pooled Analysis of Patients with Depression. Biol. Psychiatry 2002, 52, 1166-1174.
(12) De Boer, T. The Effects of Mirtazapine on Central Noradrenergic and Serotonergic Neurotransmission. Intern. Clin. Psychopharmacol. 1995, 10 (Suppl. 4), 19-23.
(13) Blier, P. The Pharmacology of Putative Early-Onset Antidepressant Strategies. Eur. Neuropsychopharmacol. 2003, 13, 57-66.
(14) Gilligan, P. J.; Robertson, D. W.; Zaczek, R. Corticotropin Releasing Factor (CRF) Receptor Modulators: Progress and Opportunities for New Therapeutic Agents. J. Med. Chem. 2000, 43, 1641-1660.
(15) Saunders, J.; Williams, J. P. New Developments in the Study of Corticotropin Releasing F actor. Annu. Rep. Med. Chem. 2000 36, 21-30.
(16) Leroy, V.; Mauser, P.; Gao, Z.; Peet, N. P. Neurokinin Receptor Antagonists. Expert. Opin. Invest. Drugs. 2000, 9, 735-746.
(17) Goodwin, G. M.; Phil, D.; Edin, F. R. C. P.; Psych, F. R. C. How Do Antidepressants Affect Serotonin Receptors? The Role of Serotonin Receptors in the Therapeutic and Side Effect Profile of SSRIs. J. Clin. Psychiatry 1996, 57 (Suppl. 4), 9-13.
(18) Blier, P. Possible Neurobiol ogical Mechanisms Underlying Faster Onset of Antidepressant Action. J. Clin. Psychiatry 2001, 62 (Suppl. 4), 7-11.
(19) Artigas, F.; Celada, P.; Laruelle, M.; Adell, A. How Does Pindolo Improve Antidepressant Action? Trends Pharmacol. Sci. 2001, 22, 224-228.
(20) Pérez, V.; Puigdemont, D.; Gilaberte, I.; Alvarez, E.; Artigas, F. Augmentation of Fluoxetine's Antidepressant Action by Pindolol: Analysis of Clinical, Pharmacokinetic and Methodological Factors. J. Clin. Psychopharmacol. 2001, 21, 36-45.
(21) Martínez-Esparza, J. M.; Oficialdegui, A. M.; Pérez-Silanes, S.; Heras, B.; Orús, L.; Palop, J . A.; Lasheras, B.; Roca, J .; Mourelle, M.; Bosch, A.; del Castillo, J . C.; Tordera, R.; del Río, J.; Monge, A. New 1-Aryl-3-(4-arylpiperazin-1-yl)propane Derivatives, with Dual Action at $5-\mathrm{HT}_{1 \mathrm{~A}}$ Serotonin Receptors and Serotonin Transporter, as a New Class of Antidepressants. J. Med. Chem. 2001, 44, 418-428.
(22) Fluoxetine. Drugs Future 1977, 1, 27-32.
(23) Hughes, D. L. The Mitsunobu Reaction. Org. React. 1991, 355656.
(24) Duncan, R. L.; Helsley, G. C.; Welstead, W. J.; Da Vanzo, J . P. Funderburk, W. H.; Lunsford, C. D. Aroyl Piperidines and Pyrrolidines. A New Class of Potent Central Nervous System Depressants. J. Med. Chem. 1970, 13, (1), 1-6.
(25) Yevich, J. P.; New, J. S.; Smith, D. W.; Lobeck, W. G.; Catt, J D.; Minielli, J. L.; Eison, M. S.; Taylor, D. P.; Riblet, L. A.; Temple, D. L. Synthesis and Biological Evaluation of 1-(1,2 Benzisothiazol-3-yl) and 1-(1,2-Benzisoxazol-3-yl)piperazine Derivatives as Potential Antipsychotic Agents. J. Med. Chem. 1986 29, 359-369.
(26) Nagai, Y.; Uno, H.; Umemoto, S. Studies on Psychotropic Agents. II. Synthesis of 1-Substituted-3-(p-fluorophenacyl)piperidines and the Related Compounds. Chem. Pharm. Bull. 1977, 25, (8) 1911-1922.
(27) Orjales, A.; Toledo, A.; Pumar, M. C. 4-[(Aryl)(aryloxy)methyl] piperidine Derivatives and their Use as Serotonin and/or Noradrenaline Reuptake Inhibitors. Eur. Pat. Appl. EP99500208.6. Chem. Abstr. 2000, 132, 347494.
(28) Iyobe, A.; Uchida, M.; Kamata, K.; Hotei, Y.; Kusama, H. Harada, H. Studies on New Platelet Aggregation Inhibitors 1. Synthesis of 7-Nitro-3,4-dihydroquinoline-2(1H)-one Derivatives. Chem. Pharm. Bull. 2001, 49 (7), 822-829.
(29) Berglund, R. A. Impact of Potassium Salts on Aromatic Substitution Reactions. Org. Process Res. Dev. 1997, 1, 328-330.
(30) Ramachandran, P. V.; Teodorovic, A. V.; Rangaishenvi, M. V.; Brown, H. C. Chiral Synthesis via Organoboranes. 34. Selective Reductions. 47. Asymmetric Reduction of Hindered α, β-AcetyIenic Ketones with B-Chlorodiisopinocampheylborane to Propargylic Alcohols of Very High Enantiomeric Excess. Improved Workup Procedure for the I solation of Product Alcohols. J. Org. Chem. 1992, 57, (8), 2379-2386.
(31) Angelastro, M. R.; Baugh, L. E.; Bey, P.; Burkhart, J. P.; Chen, T.-M.; Durham, S. L.; Mehdi, S.; Peet, N. P. Inhibition of Human Neutrophil Elastase with Peptidyl Electrophilic Ketones. Orally Active $\mathrm{P}_{\mathrm{G}}-$ Val-Pro-Val Pentafluoroethyl Ketones. J. Med. Chem. 1994, 37, 4538-4553.
(32) Ismaiel, A. M.; Arruda, K.; Teitler, M.; Glennon, R. A. Ketanserin Analogues: The Effect of Structural Modification on $5-\mathrm{HT}_{2}$ Serotonin Receptor Binding. J. Med. Chem. 1995, 38, 11961202.
(33) Díaz, A.; Labeaga, L.; Olmo, E.; Artaiz, I.; Berisa, A.; RuízOrtega, J. A.; Orjales, A.; Pazos, A. F-98214-TA: A Novel and Selective 5-HT and NA-Uptake Inhibitor with an Antidepressant Profile. Society for Neuroscience. $30^{\text {th }}$ Annual Meeting, New Orleans. 2000, 26, 1042, P387.4.
(34) Still, W. C.; Kahn, M.; Mitra, A. Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 1978, 43, 2923-2925.
(35) Orjales, A.; Mosquera, R.; Labeaga, L.; Rodes, R. New 2-Piperazinylbenzimidazole Derivatives as $5-\mathrm{HT}_{3}$ Antagonists. Synthesis and Pharmacological Evaluation. J. Med. Chem. 1997, 40, 586-593.
(36) Tapia, I.; Alonso-Cires, L.; López-Tudanca, P. L.; Mosquera, R.; L abeaga, L.; Innerárity, A.; Orjales, A. 2,3-Dihydro-2-oxo-1H-benzimidazole-1-carboxamides with Selective Affinity for the $5-\mathrm{HT}_{4}$ Receptor: Synthesis and Structure-Affinity and StructureActivity Relationships of a New Series of Partial Agonist and Antagonist Derivatives. J. Med. Chem. 1999, 42, 2870-2880.
(37) Orjales, A.; Alonso-Cires, L.; López-Tudanca, P. L.; Tapia, I.; Labeaga, L.; M osquera, R. Synthesis and 5-HT3 Receptor Affinity of New Quinolinecarboxylic Acid Derivatives. Drug Des. Discovery 2000, 16, 271-279.
(38) Mathis, C. A.; Taylor, S. E.; Enas, J. D.; Akgün, E. Binding Potency of 6-Nitroquipazine Analogues for the 5-Hydroxytryptamine Reuptake Complex. J. Pharm. Pharmacol. 1994, 46, 751-754.
(39) Madras, B. K.; Spealman, R. D.; Fahey, M. A.; Neumeyer, J. L.; Saha, J. K.; Milius, R. A. Cocaine Receptors Labeled by [$\left.{ }^{3} \mathrm{H}\right] 2 \beta$ -carbomethoxy-3 β-(4-fluorophenyl)tropane. Mol. Pharmacol. 1989, 36, 518-524.
(40) Cheng, Y. C.; Prussof, W. H. Relationship Between the Inhibition Constant $\left(\mathrm{K}_{\mathrm{i}}\right)$ and the Concentration of Inhibitor which causes 50\% Inhibition $\left(\mathrm{IC}_{50}\right)$ of an Enzymatic Reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

J M0309349

[^0]: * To whom correspondence should be addressed. Phone: (34) 9448183 00. Fax: (34) 944818309. E-mail: aorjales@faes.es.

