Photooxidation of C_5 - C_7 Cycloalkanes in the NO- H_2O -Air System

H. Takagi, N. Washida,* H. Bandow, H. Akimoto, and M. Okuda

Division of Atmospheric Environment, The National Institute for Environmental Studies, P.O. Tsukuba-gakuen, Ibaraki, 305 Japan (Received: June 9, 1980; In Final Form: June 19, 1981)

Photooxidation of C_5 - C_7 cycloalkane-NO-H₂O-air systems was investigated. Reaction products were analyzed by FID gas chromatography (GC), GC/MS, and FT IR. Cycloalkanone and cycloalkyl nitrate were observed to form as undegraded products. Among the C_5 - C_7 cycloalkanes, the ratios of cycloalkyl nitrate produced to cycloalkane consumed were nearly equal (0.05-0.1), while marked variations were observed in the ratios of cycloalkanone produced to cycloalkane consumed (0.0016, 0.23, and 0.031 for C_5 , C_6 , and C_7 cycloalkanes, respectively). These differences were explained by the ring rupture of cycloalkane ring, assuming that the extent of the ring rupture process depends on the strain energy of the cycloalkane ring. Cycloalkanone and cycloalkyl nitrate were minor product except for cyclohexanone, which amounted 20-30% of cyclohexane consumed. Formaldehyde was observed as a ring rupture product (3-9% of cycloalkane consumed). Major products were unidentified carbonyls produced by ring cleavage reactions. These carbonyls amounted to about 45% of cycloalkane consumed. Formation of carbonyls and formaldehyde could be explained by the ring cleavage decomposition of the vibrationally hot cycloalkyloxy radicals.

Introduction

Analysis of the reaction products of the photooxidation of the hydrocarbon-NO-H₂O-air system is one of the widely accepted methods used to understand the reaction mechanisms occurring in photochemical air pollution. This method has been used to report on the photooxidation processes of alkanes,¹⁻⁷ alkenes,⁸⁻¹⁰ and aromatic hydro-carbons.¹¹⁻¹⁶ In this study, the photooxidation processes of cyclopentane, cyclohexane, and cycloheptane were investigated in cycloalkanes-NO-H2O-air systems in order to clarify the following three questions:

(1) What kinds of products are produced in the photooxidation of cycloalkanes? Formation of cycloalkanone and cycloalkyl nitrate is expected from the reaction of O_2 , NO, and NO₂ with the cycloalkyl radical which is produced by hydrogen atom abstraction by OH radicals or oxygen atoms, $O(^{3}P)$.

(2) Are there marked differences in the products pro-

- N. Pitts, Jr., J. Phys. Chem., 80, 1948 (1976).
 (5) R. A. Cox, R. G. Derwent, P. M. Holt, and J. A. Kerr, J. Chem. Soc., Faraday Trans. 1, 72, 2044 (1976).
- (6) G. Paraskevopoulos and R. J. Cvetanović, J. Phys. Chem., 81, 2598 (1977)
- (7) W. P. L. Carter, A. C. Lloyd, J. L. Sprung, and J. N. Pitts, Jr., Int.
- J. Chem. Kinet., 11, 45 (1979). (8) A. P. Altshuller, S. L. Kopczynski, W. A. Lonneman, T. L. Becker, and R. Slater, Environ. Sci. Technol., 1, 899 (1967).
- (9) H. Niki, P. D. Maker, C. M. Savage, and L. P. Breitenbach, J. Phys. Chem., 82, 135 (1978).
- (10) H. Akimoto, H. Bandow, F. Sakamaki, G. Inoue, M. Hoshino, and M. Okuda, Environ. Sci. Technol., 14, 172 (1980).
 (11) S. L. Kopczynski, Int. J. Air Water Pollut., 8, 107 (1964).
 (12) K. Nojima, K. Fukaya, S. Fukui, and S. Kanno, Chemosphere, 3,
- 247 (1974); 4, 77 (1975); 5, 25 (1976).
- (13) M. Hoshino, H. Akimoto, and M. Okuda, Bull. Chem. Soc. Jpn., 51, 718 (1978).
- (14) H. Akimoto, M. Hoshino, G. Inoue, M. Okuda, and N. Washida, Bull. Chem. Soc. Jpn., 51, 2496 (1978).
 (15) K. R. Darnall, R. Atkinson, and J. N. Pitts, Jr., J. Phys. Chem., District (1978).
- 83, 1943 (1979).
- (16) H. Takagi, N. Washida, H. Akimoto, K. Nagasawa, Y. Usui, and M. Okuda, J. Phys. Chem., 84, 478 (1980).

duced from C_5 - C_7 cycloalkanes?

(3) Does a ring rupture reaction occur in the photooxidation of cycloalkanes? Cleavage of the aromatic ring was found in the photooxidation of toluene,^{12,17} xylene,^{15,16} and mesitylene.¹⁸

Experimental Section

The Pyrex cylindrical reaction chamber (240 mm i.d., 1660 mm length, and 67 dm³ volume), oil-free pumping system, and xenon short-arc light source (500 W) have been described previously.^{13,14,16} Experimental conditions were as follows: cycloalkane, 1-20 ppm; NO, 1-7 ppm, H₂O 60-80% relative humidity; and air, 1 atm. Procedures for the mixing of gases and the sampling of the reaction products were also the same as described previously.^{13,14,16} Analyses of the reaction products were made by GC, GC/MS, and GC/PIMS^{16,19} with a 3-m column of 5% SE-30 on Shimalite-W. Cycloalkyl nitrates used as the standard samples were synthesized²⁰ as follows: Cyclopentyl nitrate was prepared by the nitration of cyclopentyl alcohol in a mixture of nitric acid and sulfuric acid at low temperature (-20 °C). Cyclohexyl and cycloheptyl nitrates were prepared by the reaction of the bromide salt of these compounds with silver nitrate in acetonitrile solvent.

Reaction products were also analyzed by a Nicolet 7199 long-path FT IR spectrometer. In this case, photooxidation was carried out in another reactor, which will be described in detail in a later publication.¹⁷ Briefly, the reaction chamber is a stainless steel cylinder, 500 mm i.d., 3550 mm long, and 0.79 m³ in volume. The inner wall of the chamber is coated by FEP-Teflon. The chamber is bakable to 80 °C and evacuable to 1×10^{-6} torr. An eight-mirror multireflection cell is set in the chamber. The base path between multireflection mirrors is 3000 mm and the number of reflection is 69, giving a total path length of 210.8 m. Fourteen black lights (40 W, Toshiba FL 40S BLB) set on the inner wall of the chamber were used as

A. P. Altshuller, S. L. Kopczynski, D. Wilson, W. Lonneman, and F. D. Sutterfield, J. Air Pollut. Control Assoc., 19, 787 (1969).
 (2) J. J. Bufalini, B. W. Gay, and S. L. Kopczynski, Environ. Sci.

Technol., 5, 333 (1971). (3) W. P. L. Carter, K. R. Darnall, A. C. Lloyd, A. M. Winer, and J.

N. Pitts, Jr., Chem. Phys. Lett., 42, 22 (1976).
 (4) K. R. Darnall, W. P. L. Carter, A. M. Winer, A. C. Lloyd, and J.

⁽¹⁷⁾ H. Bandow and H. Akimoto, to be submitted for publication. (18) H. Takagi, N. Washida, H. Akimoto, and M. Okuda, Spectrosc. Lett., in press.

⁽¹⁹⁾ N. Washida, H. Akimoto, H. Takagi, and M. Okuda, Anal. Chem., 51, 910 (1978).

⁽²⁰⁾ N. Kornlum and C. Teitelbaum, J. Am. Chem. Soc., 74, 3076 (1952).

Takagi et al.

TABLE I:	Ratios of Cy	cloalkanone a	nd Cycloalky	'l Nitrate	Produced	l to Cy	cloalkane	Consumed	for the `	Various
Experiment	al Condition	5								

initial c	onen, ppm	∆[cycloalkanone]	∆[cycloalkyl nitrate]/	final cycloalkane irrd	total irrdn time,					
cycloalkane NO		$-\Delta$ [cycloalkane], (±%)	$-\Delta$ [cycloalkane], (±%)	unreacted, %	min					
	Cyclopentane									
78	12	0.00052 (90)	0.029 (30)	80	478					
9.2	24	0.00082(110)	0.042(40)	89	429					
81	61	0.000000(110)	0.042(40)	88	483					
2.8	5.7	0.00110(10)	0.069 (25)	92	360					
1.8	6.3	0.00158(40)	0.036 (30)	69	434					
1.0	0.0	av 0.00159 ± 0.00152	av 0.045 ± 0.015	00	101					
	Cycloheyane									
9.5	12	0.44 (50)	0.163(30)	97	343					
9.3	2.5	0.14(30)	0.054(45)	86	360					
8.7	6.2	0.18(20)	0.079(40)	90	358					
2.9	6.1	0.14(50)	0.057 (50)	82	341					
0.8	6.1	0.23(30)	0.095 (60)	88	305					
0.0	0.2	av 0.23 ± 0.13	av 0.090 ± 0.044							
		Cyclobe	eptane							
8.8	0.8	0.031 (20)	0.039 (20)	95	309					
7.9	2.3	0.024(15)	0.037(30)	89	306					
8.8	5.5	0.041(20)	0.047(15)	87	296					
3.0	5.6	0.025(20)	0.054(40)	73	335					
1.0	5.4	0.025(15)	0.061(20)	73	322					
20.0	5.8	0.039 (30)	0.063 (15)	84	342					
2010	010	av 0.031 ± 0.008	av 0.050 ± 0.011							

the photooxidation light source. The effective light intensity as measured by the primary photodecomposition rate of NO_2 was 0.22 min⁻¹.

Results and Discussion

Three major products were observed in the photooxidation of each C_5-C_7 cycloalkane by the FID GC analysis. One product appeared with a shorter retention time than cycloalkane. This low-boiling-point product was thought to be produced by the ring cleavage of cycloalkane. The other two products appeared at a longer retention time than cycloalkane. These two products were identified as cycloalkanone and cycloalkyl nitrate by the GC/MS and GC/PIMS. In the case of cyclohexane, mass spectra of the low-boiling-point product observed showed only one signal at m/e 58 when GC/PIMS by Ar resonance lines (11.83) and 11.62 eV)¹⁹ was used. Mass spectra by GC/EIMS with 70-eV electron impact could not be measured because of the interference from the large background of water which was initially contained in the gas mixture. If the signal at m/e 58 is the signal of the parent ion, the low-boilingpoint product might be glyoxal, acetone, or propionaldehyde. The formation of acetone and propionaldehyde from cyclohexane is highly unlikely. Therefore, glyoxal is the most probable low-boiling-point product measured by the GC/PIMS. The low-boiling-point product observed by the FID GC may not be glyoxal, because glyoxal is not sensitive to FID GC. Therefore at least two low-boilingpoint products were observed by GC/PIMS and FID GC. Two high-boiling-point products were identified as cyclohexanone and cyclohexyl nitrate by comparison with a reference mass pattern and GC retention time from standard samples. Both cyclohexanone and cyclohexyl nitrate increased linearly with irradiation time. Values of the ratio of cycloalkanone and cycloalkyl nitrate formed to cycloalkane consumed under the various experimental conditions were calculated and are listed in Table I (Δ - $[cycloalkanone]/-\Delta[cycloalkane]$ and $\Delta[cycloalky]$ nitrate]/ $-\Delta$ [cycloalkane]). Each value is the mean value of 7-9 measurements during one experiment. Total irradiation time and the final reactant (cycloalkane) conversion are also shown in Table I. The values were calculated from

the peak area of the FID GC peak for each product and the sensitivities of these product to the FID GC which were measured by standard samples.

As shown in Table I, a significant difference was observed in the yield of cycloalkanone among C_5-C_7 cycloalkanes. Values for Δ [cycloalkanone]/ $-\Delta$ [cycloalkane] differed by two orders of magnitude between cyclopentane and cyclohexane. In the case of cyclopentane, the formation of cyclopentanone appears to show a dependence on [NO]. However, the dependence may be insignificant, considering the scatter of the results. (In this case, signals for cyclopentanone were very small on the FID gas chromatogram and error limits (\pm) on the measurements of the FID GC peak area of cyclopentanone were about 100%.)

On the other hand, the amounts of cycloalkyl nitrates produced are not remarkably different for each C_5-C_7 cycloalkane.

Table I also shows that cycloalkanone and cycloalkyl nitrate are not major products except when cyclohexane is used. In order to determine what compounds are major products, we analyzed the photooxidation products with the long-path FT IR spectrometer. In this case, since the large amount of water disturbed the measurements, photooxidation was carried out in the cycloalkane-NO-dry air system. Carbonyls, nitrates, H₂CO, HCOOH, C₂H₂, and a small amount of CH4 were observed as the photooxidation products. The ratios of each product formed to cycloalkanes consumed were calculated and plotted in Figure 1 a-c. In this case, the concentrations of products $(H_2CO, HCOOH, C_2H_2)$ were calculated by using the absorption coefficients of each product. The concentration of total nitrate was calculated by using the average absorption coefficients for CH_3ONO_2 and $C_2H_5ONO_2$ ($\epsilon =$ $1.25 \times 10^{-2} \text{ torr}^{-1} \text{ cm}^{-1}$ at 863 cm⁻¹, which corresponds to the O-NO₂ stretching mode). The concentration of total carbonyls was calculated as monocarbonyl compounds by using the average integrated absorbance of the C=0stretching, which was estimated from the absorbances of various carbonyl compounds, (CH₃)₂CO, CH₃CHO, CH₃-COOH, $(CH_3CO)_2O$, $(CH_3CO)(HCO)O$, $c-C_5H_8O$, and $c-C_5H_8O$, $c-C_5H_8O$, and $c-C_5H_8O$, $c-C_5$ $C_6H_{10}O$ (the integrated absorbance used was 0.374 cm⁻² torr⁻¹ per a C=O stretching mode at ~1780 cm⁻¹). H₂CO

Figure 1. Photooxidation products measured by long-path FT IR are plotted against the cycloalkane consumed. Values for the carbonyls (except H₂CO, HCOOH, and cyclohexanone) should be multiplied by 10.

and HCOOH are not included in with the total carbonyls (contributions of H_2CO and HCOOH to the absorption ~1780 cm⁻¹ were subtracted). All of the above absorption coefficients and absorbances were determined in this reactor by use of the reference samples. Since the absorption of cyclohexanone was observed separately from other carbonyls in the case of cyclohexane, both of cyclohexanone and other carbonyls except cyclohexanone, H_2CO , and HCOOH are plotted separately in Figure 1b.

From the slopes shown in Figure 1a–c, the ratios of total nitrates formed to cycloalkane consumed are 0.13, 0.22, and 0.25 for cyclopentane, cyclohexane, and cycloheptane, respectively. Since these total nitrates do not consist of only cycloalkyl nitrates, values are consistent with the results in Table I. The value of the ratio of the cyclohexanone produced to the cyclohexane consumed (0.15-0.25) agreed well with the results in Table I. Results in Figure 1a–c show that carbonyls are the major products in the photoxidation of cycloalkanes.

Figure 2 shows the absorption spectra of carbonyls produced in the photooxidation of cyclopentane (a), cycloheptane (b), and cyclohexane (c). Large absorptions by the C=O stretching of the carbonyl compounds (1700–1850 cm⁻¹) were observed beneath the strong absorption by water. Below these spectra, the reference spectra of cyclopentanone (a), cycloheptanone (b), and cyclohexanone (c) are shown. As shown in Figure 2, only in the case of cyclohexane (c) can a large absorption by cyclohexanone be seen. This absorption by cyclohexanone is shown as a shaded area in Figure 2c. The remaining absorption, subtracting the absorption of cyclohexanone, is shown in Figure 2d. This remaining absorption corresponds to the absorption by other carbonyls except cyclohexanone. In the case of cyclopentane and cycloheptane, no significant absorptions by cyclopentanone and cycloheptanone were observed. These results are consistent with the results shown in Table I (the amounts of cyclopentanone and cycloheptanone formed are very small).

The absorption spectra of carbonyls are broad. This fact means that several carbonyl compounds were produced or that dicarbonyls were produced. Yields of the products are calculated and listed in Table II. In this case, the yields were normalized to number of carbon atoms in order to estimate the carbon balance among the products. As shown in Table II, HCOOH and C_2H_2 are minor products and H_2CO amounted to 3–9% of the cycloalkane consumed. In addition carbonyls produced through the cleavage of the cycloalkane ring are major products. Methods to estimate the number of carbon atoms used to normalize the carbonyls and nitrate yields will be discussed later.

In the NO–H₂O–air system, the reaction of cycloalkane should be initiated mainly by OH radicals produced by the photodecomposition of HONO.²¹ The reaction of OH radicals with cycloalkane (c-RH) starts with the abstraction of a hydrogen atom to form cycloalkyl radicals (c-R·). Processes to form cycloalkanone and cycloalkyl nitrate might be as follows:

$$NO + NO_2 + H_2O \rightleftharpoons 2HONO$$
 (1)

 $HONO + h\nu (290-400 \text{ nm}) \rightarrow OH + NO$ (2)

 $c-RH + OH \rightarrow c-R + H_2O$ (3)

$$c-R \cdot + O_2 \rightarrow c-RO_2 \cdot \tag{4}$$

$$c-RO_2 + NO \rightarrow c-RO + NO_2$$
 (5)

$$\rightarrow c \text{-RONO}_2$$
 (6)

 $c-RO \rightarrow ring rupture$ (7)

$$c-RO + NO_2 \rightarrow c-RONO_2$$
 (8)

 $c-RO + NO \text{ or } O_2 \text{ or } NO_2 \rightarrow$

$$cycloalkanone + HNO \text{ or } HO_2 \text{ or } HNO_2$$
 (9)

Cycloalkyl nitrates are produced by reactions 6 or 8. Figure 3 shows the concentration of NO, NO₂, and O₃ plotted against the irradiation time for the photooxidation of cyclopentane. Time profiles for these molecules were quite similar in the cases of cyclohexane and cycloheptane. As shown in Figure 3, although most of the NO is converted into NO₂ in the latter half of the experiment, the concentration of nitrates increases in proportion to the decrease of cycloalkane (see Figure 1a). Since the formation rate of nitrates is not proportional to the concen-

⁽²¹⁾ W. H. Chang, R. J. Nordstrom, J. G. Calvert, and J. H. Shaw, Environ. Sci. Technol., 10, 674 (1976); C. H. Wu, C. C. Wang, S. W. Japar, L. I. Davis, Jr., H. Hanabusa, D. Killinger, H. Niki, and B. Weinstock, Int. J. Chem. Kinet., 8, 765 (1976); R. A. Cox and R. G. Derwent, J. Photochem., 6, 23 (1976/77).

Figure 2. Long-path FT IR absorption spectra of carbonyls produced in the photooxidation of cyclopentane (a), cycloheptane (b), and cyclohexane (c). The lower spectra are the reference spectra of cyclopentanone (a), cycloheptanone (b), and cyclohexanone (c). The cyclohexanone absorption is shown by the shaded area in (c). This absorption was subtracted and the remaining absorption is shown in (d).

tration of NO₂, reaction 6 might be important as well as reaction 8, as suggested by Darnall et al.⁴

The ring cleavage reaction, reaction 7, might occur by the decomposition of a vibrationally hot cycloalkyloxy radical produced by reaction 5:

$$\Delta H = -15.9 \text{ kcal/mol}$$

$$(5b)$$

$$\Delta H = -15.9 \text{ kcal/mol}$$

$$(5c)$$

$$\Delta H = -15.8 \text{ kcal/mol}$$

and, for example

$$\bigcirc 0^{\circ} \longrightarrow CH_2(CH_2)_3CH0$$
 (7a)

$$\Delta H = -2.4 \text{ kcal/mo}$$

 $\Delta H = +3.7 \text{ kcal/mol}$

$$\Delta H = -2.8 \text{ kcal/mol}$$

where the values of heat of formation of cycloalkylperoxy radicals, cycloalkyloxy radicals, and $\cdot CH_2(CH_2)_nCHO$ radicals were calculated²² by the group additivity rule of

free radicals.²³ The vibrationally hot cycloalkyloxy radicals have 18.3, 12.2, and 18.6 kcal/mol for C5-C7 cycloalkyl, respectively, in excess of that necessary to cause ring cleavage. Therefore, the unimolecular decomposition rate for reaction 7 should be faster in C_5 and C_7 than in C_6 . In addition the differences in ΔH among C_5 - C_7 in reaction 7 result from the strain energies of the cycloalkane rings. Ring cleavage, reaction 7, competes with reactions 8 and 9. The ΔH value for reaction 9 is 33-36 kcal/mol in excess, independent of the number of carbon atoms in the cycloalkane. Therefore, the larger yield of cyclohexanone than cyclopentanone and cycloheptanone in reaction 9 can be explained by the strain energy of the cycloalkane ring. On the other hand, the yields of cycloalkyl nitrates are not affected by the number of carbon atoms in the cycloalkane. This result supports the importance of reaction 6 rather than reaction 8 as a route to form cycloalkyl nitrates.

The $CH_2(CH_2)_nCHO$ radicals produced by reaction 7 can be decomposed to smaller fragments:

$$\cdot CH_2(CH_2)_n CHO + O_2 \rightarrow \cdot O_2 CH_2(CH_2)_n CHO$$
(10)

$$\cdot O_2 CH_2(CH_2)_n CHO + NO \rightarrow \cdot O CH_2(CH_2)_n CHO + NO_2$$
(11)

$$\cdot O CH_2(CH_2)_n CHO \rightarrow H_2 CO + \cdot CH_2(CH_2)_{n-1} CHO$$
(12)

$$\xrightarrow{D_2 \text{,NO}_2} \text{OHC}(CH_2)_{\text{-}} CHO + HO_2 HNO_2 HNO_2 (13)$$

(22) ΔH_f° of cycloalkyloxy radicals were deduced to be -5.9, -17.0, and -15.4 kcal/mol for C_5 - C_7 cycloalkanes, respectively, from group additivity tables and ring correction values; e.g., ΔH_f° [cyclopentyloxy radical] = [C-(C)₂(H)(O)] + 4[C-(C)₂(H)₂] + ring correction = -5.9 kcal/mol. ΔH_f° of $\cdot CH_3(CH_2)_nCHO$ radicals were deduced to be -8.3, -13.3, and -18.2 kcal/mol for n = 3, 4, and 5, respectively; e.g. ΔH_f° [$\cdot CH_2(CH_2)_3CHO$] = [$\cdot C-(C)(H)_2$] + 2[$C-(C)_2(H)_2$] + [$C-(H)_2(C)(CO)$] + [CO(C)(H)] = -8.3 kcal/mol. In the cases of cycloalkylperoxy radicals, first, ΔH_f° of cyclo-alkyl-OH molecules were deduced to be -4.16, -52.7, and -51.2 kcal/mol for C_5 - C_7 , respectively. The bond dissociation energy of ROO-H was estimated to be 90 kcal/mol from CH₃OOH \rightarrow CH₃O₂ + H and HOOH \rightarrow HO₂ + H. From these values, ΔH_f° values for cycloalkylperoxy radicals were calculated to be -3.7, -14.8, and -13.3 kcal/mol for C_5 - C_7 , respectively.

(23) S. W. Benson, "Thermochemical Kinetics, Method for the Estimation of Thermochemical Data and Rate Parameters", 2nd ed. Wiley, New York, 1976; pp 53-77.

TABLE II: Yields of Products at $-\Delta$ [cycloalkane] = 0.20 ppm

	carbonyls ^a	cyclo- alkanone	nitrates ^b	H ₂ CO	нсоон	C_2H_2	total
		Cvel	lopentane				
vield, ppm	0.20		0.026	0.088	0.014	0.018	
carbon no. to normalize	2.2/5		4.7/5	1/5	1/5	2/5	
normalized vield, ppm	0.088		0.024	0.018	0.003	0.007	
% to 0.20 ppm	44		12	9.0	1.5	3.5	70
		Cyc	lohexane				
vield, ppm	0.16	0.054	0.044	0.080	0.021	0.010	
carbon no, to normalize	2.6/6	6/6	5.6/6	1/6	1/6	2/6	
normalized vield, ppm	0.069	0.054	0.041	0.013	0.004	0.003	
% to 0.20 ppm	43	27	20	6.5	2.0	1.5	100
		Cyc	loheptane				
yield, ppm	0.17	-	0.049	0.045	0.009	0.009	
carbon no. to normalize	3.2/7		6.8/7	1/7	1/7	2/7	
normalized vield, ppm	0.078		0.048	0,006	0.001	0.003	
% to 0.20 ppm	45	2 4	3.2	0.6	1.3	74	

^a Carbonyls except H_2CO , HCOOH, and cyclohexanone (measured by the absorption of the C=O stretching mode). ^b Total nitrates (measured by the absorption of the O-NO₂ stretching mode).

Figure 3. Concentrations of NO, NO₂, O_3 , cyclopentane, and carbonyls are plotted against the irradiation time. The experimental conditions are the same as the conditions in Figure 1a.

A vibrationally hot $OCH_2(CH_2)_nCHO$ radical produced in reaction 11 has about 8 kcal/mol in excess to decompose to $H_2CO + \cdot CH_2(CH_2)_{n-1}CHO$, reaction 12. The $\cdot CH_2$ - $(CH_2)_{n-1}CHO$ radicals produced in reaction 12 decompose to $\cdot CH_2(CH_2)_{n-2}CHO + H_2CO$ by the same processes as reactions 10–12, and finally decompose to glyoxal, (CH-O)(CHO). As shown in Table II, the ratios of the absolute yield of H_2CO to carbonyls are 0.44:1, 0.50:1, and 0.26:1 for C_5-C_7 cycloalkane, respectively. If the carbonyl compounds observed are dicarbonyl compounds, e.g., OHC- $(CH_2)_nCHO$, as shown in reaction 13, the integrated absorption coefficient for the C=O stretching band should be doubled. In such a case, above ratios should be 0.88:1, 1:1, and 0.52:1. Then fraction ratios for the competing reactions, reactions 12 and 13, can be estimated²⁴ as 0.47:0.53 for cyclopentane, 0.50:0.50 for cyclohexane, and 0.34:0.66 for cycloheptane. These values show that fractions for reactions 12 and 13 are about 0.5 for both reactions.

Finally, the average carbon atom numbers for the carbonyl compounds produced by the degradation cycle of the type of reactions 10–13 were estimated²⁵ to be 4.3, 5.2, and 6.5 for C₅–C₇ cycloalkanes, respectively. Since the carbonyl compound produced by reactions 10–13 has two CHO, carbon atom numbers per C=O stretching are 2.2, 2.6, and 3.2 for C₅–C₇ cycloalkane, respectively. The normalizations of the carbonyl yield shown in Table II were done by the use of these numbers. The average carbon atom numbers of nitrates are difficult to estimate. The numbers 1/2(4.3 + 5), 1/2(5.2 + 6), and 1/2(6.5 + 7) were used for the normalization in Table II, because ntirates can be produced by reaction 14 subsequent to reaction 10.

$$O_2CH_2(CH_2)_nCHO + NO \rightarrow O_2NOCH_2(CH_2)_nCHO$$
(14)

Of course the OHC(CH₂)_nCHO produced in reaction 13 and the O₂NOCH₂(CH₂)_nCHO produced in reaction 14 can be decomposed by subsequent reactions (i.e., photolysis and OH reactions). In such a case, the average carbon atom numbers for the carbonyls and nitrates might become smaller and the normalized yields also become smaller, and the sum of each normalized product yield (70, 100, and 74% for C₅-C₇ cycloalkane, respectively) shown in Table II might be overestimated.

Acknowledgment. The authors thank Professor T. Endow, Aoyama Gakuin University, for his suggestion on the synthesis of cycloalkyl nitrates.

 $n(1-f) + (n-1)f(1-f) + (n-2)f^2(1-f) + \dots + 2f^{n-2}(1-f)/1 - f + f(1-f) + f^2(1-f) + \dots + f^{n-2}(1-f)$

for the C_n cycloalkane.

⁽²⁴⁾ Assuming the branching ratios of the type shown in reaction 12, f, and reaction 13, 1 - f, are constant in the degradation cycle of the \cdot CH₂(CH₂)_nCHO radicals, f can be given by the relation f = P/(1 + P) where P is the production ratio of H₂CO to dicarbonyls. For example, in the case of cyclopentane, f = 0.47 was deduced from P = 0.88.

⁽²⁵⁾ The average number of carbon atoms of the carbonyls produced in the type of reactions $10{-}13$ was calculated from the expression