A FACILE ROUTE TO 20-MDFROXYECDYSONE ND SIDE OHIN HONOLOCUES FROM POSTSTERON 1
 UOO HEDTMANN, RALF KLINTZ, KLRT HCBERT, JADWIGA FRELEK², IONTSCHO VLAHOV3, and PETER WELZEL*
 Fakultät für Chemie der Ruhr-universitat, Postfach 102148, D-4630 Bochum (FRG)

(Received in Germany 8 January 1991)

Abstract

A flexible approach to ecdysteroids, chain elongated at $\mathrm{C}-26$ and $\mathrm{C}-27$, is reported. Key features are the addition of 5-1ithio 2,3-dihydrofurans (3) to poststeron (10) and a stereoselective reduction of the 22-00 group.

Background

The steroid hormone 20-hydroxyecdysone (1) plays a key role in the development of Drosophila melanogaster (and of insects, in genera1). 4 Drosophila development is divisible into embryogenesis, three larval instars, and the prepupal and pupal stages. Each of these stages is marked by a pulse of 1 . The late third instar pulse triggers the larval-to-adult metamorphosis. In larval salivary glands this puls induces the formation of a small set of puffs. It is assumed that these "early puffs" encode regulatory proteins that repress their own expression and induce the formation of a great number of "late puffs". 1 inducible products are believed to play a key role in initiating metamorphosis. ${ }^{5}$ Ashburner et al. ${ }^{6}$ have proposed some fifteen years ago that transcription of the early genes is directly induced by an ecdysone-receptor complex. In contrast to vertebrate steroid hormone receptors, 7 the ecdysteroid receptor was until recently virtually uncharacterized (probably caused by the low concentration of the receptor in the target cells and the 1 imited stability of the hormonereceptor complex). ${ }^{4}$

Scheme 1
We decided some time ago to prepare a blologically active derivative of 1 that (i) contains a (latent) chemically reactive group, and (ii) a radioactive label. Such a compound could be (i) covalently attached to the receptor via the reactive group, thus permitting its identification (affinity labeling ${ }^{10}$), (ii) bound to a matrix in order to concentrate or even isolate the receptor through affinity chromatography, ${ }^{9}$ and (iii), after isolation of the receptor protein, be used in determining the hormone binding site. From structure-activity studies it is known that essentially all the functional groups in 1 are requiredio,11

$\mathrm{St}_{\mathrm{St}}^{\mathrm{OH} \mathrm{CHO}}$

J

to ensure full biological activity and cannot be used to attach a potential coupling group. However, structural changes at the end of the side-chain appear not to cause a loss of activity as can be judged from the high biological activity of ponasterone $A(1 b)$ and 26-iodoponasterone $A, 8 \mathrm{c}$ and the moderate activity of compound 1c. ${ }^{\mathrm{sa}}$
We report here a flexible approach to the synthes is of ecdysteroids with substituents at C26 and C-27. These compounds have been shown to be biologically active and one of them was successfully used for affinity labeling of a partly purified ecdysterid receptor (vide infra).

Synthesis Desion

Chemical synthesis of ecdysteroids is a longstanding problem. 12 The methods that have been developed for side-chain construction are summarized in Scheme 2. The main problem is, of course, to control the configuration at $\mathrm{C}-20$ and $\mathrm{C}-22$. Starting materials were $\mathrm{C}-22$ or $\mathrm{C}-20$ carbonyl compounds of type a and b, respectively, which were converted in many synthetic schemes to the central intermediate h. ${ }^{13}$ Conversion of b to e follows the Cram rule. ${ }^{14}$ Addition of an organometallic reagent to h yields an addition product of type \mathbf{j} or k with the correct configuration at C-22 (cyclic Cram model). As can be seen from Scheme 2, formation of the 20-hydroxy-ecdysone side chain as in n using this type of approach is rather lengthy. Recently, Kametani et a1.15 introduced the sequence $b \rightarrow c \rightarrow g \rightarrow i \rightarrow m \rightarrow i n$ which the configuration at $\mathrm{C}-20$ is controlled by the Cram rule and that at c-22 in the reduction step $g \rightarrow i$. The most straightforward approach from b to n was reported by the Schering and Hoffmann - LaRoche groups. ${ }^{16}$ It consists of acetylide addition to $b(b) f$), nydration of the triple bond ($f-\gg 1$) and hydride reduction ($1--1 n$). The only shortcoming of this process is the poor stereccontrol (b \rightarrow f: d.e. 60\%; $1 \rightarrow n$: (22R):(22S) $=$ $1: 19^{17}$). We decided to follow the retrosynthetic sequence depicted in the lower part of Scheme 2. It was anticipated to introduce the complete side chain via acyl anion synthon p, for which lithiated dihydrofurans of type a were selected as synthetic equivalents. This approach demands a method for the stereoselective synthes is of the dihydrofuran precursors of \mathbf{q} as well as directing the stereochemical outcome of the 22-keto group recuction in the desired sense. This paper reports the addition of \mathbf{q} to b as well as the reduction of o to n. The synthesis of compounds a was already reported in a preliminary form, ${ }^{1}$ a full account of this work will be the subject of a forthcoming publication.

Model Studies using Pregnenolone (2a) as Substrate

Treatment of 2 with the lithiated dihydrofurans 3a-3c led to the formation of the very acidsensitive addition products of type 4 which were normally directly converted to the corresponding 22-ketones 7. Only $4 b$ was isolated and fully characterized. If $2 a$ with the free 3-OH group was the starting material, an excess (normally 4 equiv.) of 3 had to be employed. For silyl ether $\mathbf{2 0} 1$ equiv. of 3c proved to be sufficient. The yield of 7 was in the range of 90% corrected for recovered 2. In all cases only about 70% of the keto steroid 2

$\boldsymbol{2}$	R
a	H
b	$\mathrm{Me}_{3} \mathrm{St}$

$$
\begin{array}{c|cc}
3 & \mathrm{R}^{1} & \mathrm{R}^{2} \\
\hline \mathbf{a} & \mathrm{Me} & \mathrm{Me} \\
\mathbf{b} & \mathrm{Me} & \mathrm{Bu} \\
\mathrm{c} & \mathrm{Bu} & \mathrm{Bu}
\end{array}
$$

8

B

Scheme 3.
were consumed. We assume that part of 2 is converted by 3 into the corresponding enolate from which 2 is restored dring the work-up procedure. In preliminary experiments we tried to overcome this difficulty using nucleophiles derived from 3 by tranemetallation (MgBrz \times $\mathrm{Et}_{2} \mathrm{O}, \mathrm{Et} \mathrm{IA}_{1} \mathrm{C} 1, \mathrm{CeCl}_{3}$) but without success. ${ }^{18}$ Addition of DMPU19 to a reaction mixture of 26 and 3 C led to the complete recovery of 2 b .18 .20
In all cases studied a single stereoisomer 7 was formed which is assumed to have the (2OR) configuration based on chemical precedent ${ }^{21}$ and the chemical shift of the $21-\mathrm{CH}_{3}$ group (8 (CH3-21) for 7a: 1.68). 22
Reduction of 7 a with NaBH_{4} yielded the (22S) and the (22R) compounds 5 a and 6 a , respectively, in a 3:1 ratio. In small-scale test experiments similar results were obtained using DIBAH and $\mathrm{LiAlH}\left(\mathrm{O}^{\mathrm{t}} \mathrm{Bu}\right)_{3} .{ }^{23}$ These results are in agreement with the previous observations mentioned above. ${ }^{17}$ The stereochemical outcome of these reductions is tentatively explained on the basis of the cyclic Cram model (see A in Scheme 3).24,25
On the other hand, protection of the OH groups in 5 a by trimethylsilyl ether formation with trimethylsilyl triflate,28,27 followed by DIBAH reduction nicely yielded mainly the desired (22R) compound 6a (after deorotection with BUANF), probably via transition state geometry as depicted in B. ${ }^{28}$ Assignment of the configuration at C-22 in 5a and ea is based on the chemical shifts of the CH3-21 which is known to be larger for the (22S) than for the (22R) isomer (about $0.1 \mathrm{ppm}^{29}$, see Table 1).
Scheme 4.

10	R
a	H
b	SiMe_{3}

I1	R
a	H
b	SIMe_{3}

13	R
a	H
b	SiMe_{3}

Preparation of 20-Hycroxyecdysone (1a)

Poststerone 10a reacted with an excess of 1 ithium compound 3 a to an addition product the enol ether group of which was cleaved with 0.1 . HC1 producing 11a in 79\% yield. Reduction of $11 a$ with LiATH $\left(O^{t} B u\right)_{3}$ led to a 16:1 mixture of 12 and 1a. The keto function at C-6 was stable under these conditions. Unfortunately, after conversion of 11a to the persilylated 11b the keto functions turned out to be completely stable toward LiAlH(OBU)3. ${ }^{10}$ DIBAH as reducing agent caused reduction of the 22-keto group in the desired stereochemical sense but the 6-oxo group was also reduced (vide infra). After allylic oxidation with MnO_{2} and silyl ether removal with TBAF a $39: 1$ mixture (HPLC) of 1 a and 12 was obtained in 80% yield. Ia was identical with an authentic sample.

Preparation of Side chain Homologues 18a. 19a, 18c and 19c

The 1:1 mixture of diastereoisomers obtained from poststerone (10a) and rac.-3b could be separated only after silyl ether formation, to provide pure samples of 106 and 17 b . Reduction of both compounds with DIBAH and subsequent re-oxidation of the 6-OH group with MnO_{2} produr ced 18b and 19b, respectively, each contaminated with traces of the corresponding (22S)-isomer. Cleavage of the silyl ether groups ($180 \rightarrow 18 c, 190 \rightarrow 19 c$) followed by HPLC showed the d.e. in the DIBAH reduction step to be 94\%. Direct reduction of the mixture of 16a and 17a with LiAlH $\left(O^{t} \mathrm{Bu}\right) 3$ provided $18 a$ and $19 a$, which now could be separated by HPLC. In order to interelate these compounds with 18c and 19c, respectively, the silyl groups were removed from pure 17b. Subsequent reduction with $\mathrm{LiAlH}\left(\mathrm{O}_{\mathrm{t}} \mathrm{Bu}\right)_{3}$ furnished 19 a .

The configuration at c-22 depicted in formulae 18 and 19 was expected from the results obtained in the reduction of 11a and 11b, respectively. These assignments are consistent with those of the ${ }^{1} H$ NMR studies, as summarized in Table 1 . Thus, as in the case of 12 and $1 a$, for the pairs 18a/18c and 19a/19c the $21-\mathrm{CH}_{3}$ groups in the (22S) isomers (18a, 19a) are more deshielded.
Final proof of the configuration at $\mathrm{C}-22$ was obtained from the 300 nm CD band of the in-situ generated complexes of 1a, 12, and $18 c$ with $\mathrm{MO}_{2}(\mathrm{OAC})_{4}$. This band can (inter alia) be used to determine the absolute configuration of optically active 1,2-diols. ${ }^{30}$ From Figure 1 it is obvious that the spectra of 1a and 18c complexes are almost identical in the 300 mm region. One may conclude, therefore, that 18c has the same configuration at $\mathrm{c}-22$ as la. One has however to be careful since the $C D$ curves depicted in Figure 1 are mast probably sum curves of three cotton effects: the side-chain and ring A diol complexes, and the enone chromophore. Since the interfering ring A diol and enone cotton effects are, however, equal in all compounds they are eliminated in the difference spectra. The complete identity of the difference spectra ($1 a-12$) and (18c - 12) (see Figures $1 a$ and 1b) demonstrates unambiguously that $1 \mathbf{1 a}$ and 18 c have the same configuration at $\mathrm{C}-22$.
The configuration at c-25 can not be determined by this method. Attempts to obtain suitable crystals for an X-ray analysis were unsuccessful. The problem was finally solved by a stereoselective synthesis. Optically active 30 on reaction with persilylated poststerone 106

16,17	\mathbf{R}
\mathbf{b}	H
SMMe_{3}	

18

$$
\begin{array}{r|lll}
18,19 & \mathrm{R}^{1} & \mathrm{R}^{2} & \mathrm{R}^{3} \\
\hline \mathrm{a} & \mathrm{H} & \mathrm{OH} & \mathrm{H} \\
\mathrm{~b} & \mathrm{OH} & \mathrm{H} & \mathrm{SiMe}_{3} \\
\mathrm{c} & \mathrm{OH} & \mathrm{H} & \mathrm{H}
\end{array}
$$

Scheme 5.

Table 1. ${ }^{1} \mathrm{H}$ MR signals of $\mathrm{CH}_{3}-21$ of compounds in [d5] pyridine

| Config. | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 22S | 5a: 1.66 | 12: 1.71 | 18a, 19a: 1.73 | | |
| $22 R$ | 6a: 1.55 | 13a: 1.60 | 18c, 19c: 1.61 | 21a, 21b: 1.59 | 6c: 1.52 |

Figure 1. Assignment of configuration at $\mathrm{C}-22$ in 18c:
 DMSO solution and difference curve of the spectra of 12 and 12 (-).
b: CD spectra of $12(\cdots)$ and $18 \mathrm{c}(\cdots)$ in the presence of [MO2(OAC)4] in DMSO solution and difference curve of the spectra of 12 and 18c (-).
followed by acid hydrolysis and resilylation provided pure 160 identical with the specimen obtained after separation of the 16b/17b mixture descr ibed above.

Prearation of 21a and 21b

In analogy to the experiments described above, compounds 21a and 21b were prepared from 10a and rac.-3d via 20a/20b and the ketones $22 a$ and 22%. In contrast to the case described above HPLC separation of $22 a$ and 22 b did not pose any problems. In this series, it turned out to be necessary to study the DIBAH reduction (after silylation) more in detail. In model
exper iments it was found that persilylated 20 -hydroxyecdysone (130) was readily reduced with 2.2 equiv. DIBAH in THF (4 h at $20^{\circ} \mathrm{C}$). Reoxidation with MHO_{2} and F -mediated desilylation provided ta in 81% overall yield. On the other hand, the 22 -oxo group in 7 f was practically inert under these conditions even after 10 hours. Only the formation of decomposition products was observed. Under forced conditions (10 equiv. of DIBAH, th) the keto group was reduced. Besides the desired reduction product of the over-reduced compound 9a was obtained. The structure was determined after desilylation (9a->9b), the configurations at c-20 and c-22 are unknown. One may conclude from these experiments that in the reduction of the silylated ecdysteroids the carbonyl group at c-6 reacts faster than that at c-22. Furthermore, the rather slow reduction of the 22-oxo group with DIBAH in THF may be accompanied by side reactions. This difficulty could be circumvented when the DIBAH reduction of 7 f was performed in toluene rather than in THF.

	R^{1}	R^{2}	R^{3}
2	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OS}_{1} \mathrm{~B} \mathrm{BPPh}_{2}$	H
b	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OSI}_{1} \mathrm{BuPh}_{2}$	CH_{3}	H
c	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OSi}^{\text {t }{ }^{\text {BuPh }}}$	$\mathrm{SiMe3}_{3}$

21	R^{1}	R^{2}
\mathbf{a}	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$
b	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}$	CH_{3}

22	R^{1}	R^{2}	R^{3}
,	CH_{3}	$\left.\mathrm{CH}_{2}\right)_{4} \mathrm{OSI}_{1} \mathrm{BuPh}_{2}$	H
b	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OSI}_{1} \mathrm{BuPh}_{2}$	CH_{3}	H
c	CH_{3}	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OSI}^{\mathrm{t}} \mathrm{BuPh}_{2}$	SiMe_{3}
	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OS,}_{1}^{1} \mathrm{RuPh} 2$	CH_{3}	SiMe

Scheme 6.

6f was readily formed without any side products being observed. Application of these reaction conditions to the reduction of 22 c , followed by MnO_{2} oxidation and deprotection furnished $21 a$ in 82% overall yield.

The (R) configuration at $\mathrm{C}-22$ follows from the reduction procedure and is supported by the chemical shift of the $\mathrm{CH}_{3}-21$ protons (see Table 1).

The configuration at $\mathrm{C}-25$ was established by a stereochemically unambiguous synthesis. The reaction of 10 a with an excess of optically active 3 d provided almost exclusively 22a, identical with a sample obtained by separation of $22 a / 220$ as described above. 10b was treated with 1.0 equiv. of 3 d to yield 20c. Enol ether cleavage followed by resilylation gave 22c from which $21 a$ was prepared using the already descr ibed procedure.

Epiloque

The affinity of ecdysteroids $1 a, 18 c, 19 c, 21 a$, and $21 b$ for receptor proteins has been measured by their ability to displace bound [${ }^{3} \mathrm{H}_{2}$]ponasterone A . Receptor preparations were obtained from nuclei of Drosophila melanogaster embryos and from the cytoplasm of Drosophila pupae. In addition, the ecdysteroid concentration required for 50\% puff induction at 74EF and 75B in salivary gland chromosomes of larval Drosophila (third instar) was determined. A comparison of these values showed no significant difference between the activity of these ecdysteroids to bind in vitro to the receptor and to induce in vivo puffs. As for ta, the relative receptor binding affinity and relative puff induction of the side chain homologues were about 1% of the corresponding values of ponasterone $A .{ }^{1 b}$
Furthermore, a radioligand was obtained from the ecdysteroid homologue $21 a$ by selective bromoacetylation of the primary hydroxy1 group in the side chain with $\mathrm{BrOH}_{2}{ }^{14} \mathrm{OOOH}$. This compound was shown by the group of Professor Pongs to react rapidly, quantitatively, and irreversibly with the ecdysteroid receptor. Analysis of the labeled receptor protein has identified two different peptides. ${ }^{5 b}$

EXPERIMENTAL
Genera 1
All O_{2} - or moisture-sensitive reactions were performed in oven-dried glassware under a positive pressure of argon. Sensitive liquids and solutions were transferred by syringe and were introduced into the reaction flasks through rubber septa. Usual work-up means partitioning the reaction mixture between water and an organic solvent (given in paranthesis), drying the combined organic solutions over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and removal of the solvent by distillation in vacuo at $40^{\circ} \mathrm{C}$, using a rotatory evaporator. The instrumentation used was: ${ }^{1} \mathrm{H}$ NMR: WP-80 (Bruker); AM-400 (Bruker); ${ }^{13} \mathrm{C}$ NMR: AM-400 (Bruker); IR: Perkin Elmer 257; MS: MAT-731 and MAT-CH-5 (Finnigan) ; HPLC: High-pressure chromatography using pump system model 6000 (Waters Associates Inc.), UV-detector LC-3 (Pye Unicam), stainless steel columns $25.0 \mathrm{~cm} \times 0.4 \mathrm{~cm}$ (analytical) or $25.0 \mathrm{~cm} \times 2 \mathrm{~cm}$ (preparative), stationary phase and eluent are given in parenthesis; MPLC: Medium-pressure chromatography using $31.0 \mathrm{~cm} \times 2.5 \mathrm{~cm}$ glass tubes, silica gel Grace ($50 \mu \mathrm{~m}$), Duramat pump (CFG); Thomachrom $U N$ detector (Reichelt). The FAB mass spectra were obtained using a Finnigan MAT-731 instrument. Samples were dissolved in DMSO, and the matrix (given in parenthesis) was added. The solutions were placed on a stainless steel probe tip and bombarded with 6 KeV Xenon from a modified Saddle Field Ion Source.

General procedure for the oreparation of 2-1ithio der ivatives of 2.3-dihydrofurans (3).
Procedure a: To a solution of the respective 2,3-dihydrofuran 1 equiv. of TMEDA in TFF 1.0 equiv. of n-BuLi (1.5 M solution in hexane) was added at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to $20^{\circ} \mathrm{C}(1-2.5 \mathrm{~h})$ and was stirred at $20^{\circ} \mathrm{C}$ for 15 min .
Procedure b: To a solution of the 2,3-dihydrofuran in THF t-BuLi (1.5 M solution in pentane) was added at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm to ambient temperature ($1-2.5 \mathrm{~h}$) and was then stirred at $20^{\circ} \mathrm{C}$ for 15 min .

(20R)-38.20,25-Tr ihydroxy-cholest-5-en-22-one (7a).

To a solution of 3 a (7 mmol , procedure b) a solution of pregnenolone ($2 \mathrm{a}, 600 \mathrm{mg}, 1.89 \mathrm{mmol}$) in dry THF (20 ml) was added dropwise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then for 1 h at $20^{\circ} \mathrm{C}$. Usual work-up ($\mathrm{Et}_{2} \mathrm{O}$) and MPLC (hexanes-ethyl acetate $2: 1$-> $1: 1$) gave a mixture of two compounds (7 a and probably $4 \mathrm{a}, 430 \mathrm{mg}$) along with pure 7 a (140 mg) and 2 a ($93 \mathrm{mg}, 15 \%$). Total yield of 4a and 7a: 90% (based on 2a). To a solution of the above mixture of 4 a and 7 aa (150 mg) in 7 FF -water ($20: 1,10.5 \mathrm{ml}$) was added at $20^{\circ} \mathrm{CHCl}(0.1 \mathrm{~mol} / 1$, 0.5 ml). After being stirred for 30 min at $20^{\circ} \mathrm{C}$ the mixture was neutralized with solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. Filtration, solvent evaporation and LC (hexanes-ethyl acetate 2:1) gave 7a (105 mg , 70\%).- M.D. $186-189^{\circ} \mathrm{C}$ (from acetone).- ${ }^{1} \mathrm{H}$ NR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91$ ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.01 ($\mathrm{s}, \mathrm{CH}_{3}-19$), $1.23\left(\mathrm{~s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27\right), 1.46\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.50-2.80\left(\mathrm{CH}_{2}-23\right), 3.30-3.75$ (3$\mathrm{H}), 3.90(\mathrm{~s}, \mathrm{OH}), 5.32\left(\mathrm{~W}_{1 / 2}=8 \mathrm{~Hz}, 6 \mathrm{H}\right)$.- IR (KBr): $1690 \mathrm{~cm}^{-1}(\infty) .-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\boldsymbol{x})=414$ ($[\mathrm{M}$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 0.8$), 399 (2), 381 (3), 317 (92), 299 (63), 281 (17), 255 (17), 229 (8), 199 (9), 159 (37), 113 (55), 43 (100).- (Found: C, 74.81; H, 10.16. $\mathrm{C}_{2} \mathrm{rH}_{4} 4 \mathrm{O}_{4}$ (432.6) requires $\mathrm{C}, 74.96 \mathrm{H}$, 10.25\%).

Reduction of 7a.

To a solution of NaBH 4 ($110 \mathrm{mg}, 2.8 \mathrm{mmol}$) in water (0.35 ml) and $\mathrm{NaOH}(5 \%, 0.4 \mathrm{ml})$ was added cropwise at $20^{\circ} \mathrm{C}$ a solution of 7 a ($80 \mathrm{mg}, 0.18 \mathrm{mmol}$) in ThF (5 ml), and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 16 h . Usual work-up (Et2O) and MPLC (hexanes-ethy1 acetate-ethanol $30: 30: 1$) gave $6 \mathrm{a}(16 \mathrm{mg}, 20 \%$) and $5 \mathrm{a}(48 \mathrm{mg}, 59 \%)$.
(20R, 22R)-Cholest-5-ene-36,20,22.25-tetraol (6a).
M.p. $231-234^{\circ} \mathrm{C}$ (from acetone-methanol).- ${ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5 \mathrm{~N}}$): $\delta=1.05$ and 1.18 (2 s 's, $\left.\mathrm{CH}_{3}-18, \mathrm{CH}_{3}-19\right)$. 1.47 ($\mathrm{s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), 1.56 ($\mathrm{s}, \mathrm{CH}_{3}-21$). $3.60-4.10(3+\mathrm{H}, 22-\mathrm{H}), 5.43$ $\left(W_{1 / 2}=8 \mathrm{~Hz}, 6-\mathrm{H}\right) .-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\boldsymbol{\%})=434\left([\mathrm{M}]^{+}, 0.2\right), 417(0.3), 401(3), 384(2), 360(2), 330$ (5), 317 (100), 299 (63), 281 (15), 255 (14), 229 (9), 159 (41), 43 (99).- (Found: C, 74.39 ; $\mathrm{H}, 10.74$. $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{BO}_{4}$ (434.6) requires $\mathrm{C}, 74.61 ; \mathrm{H}, 10.66 \%$).
(20R,22S)-Cholest-5-ene-38,20,22,25-tetraol (5a).
5a: M.p. 196-1990 (fram methanol).- 'H NM ($80 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta=1.08$ and 1.20 (2 s 's, $\mathrm{CH}_{3}-$ 18 and $\left.\mathrm{CH}_{3}-19\right), 1.42\left(\mathrm{~s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27\right), 1.66\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 3.60-4.10(3-\mathrm{H}, 22-\mathrm{H}) ; 5.42$ $\left(W_{1 / 2}=8 \mathrm{~Hz}, 6+\mathrm{H}\right) .-\mathrm{IR}(\mathrm{KBr}): 1650 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}) .-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=434\left([\mathrm{M}]^{+}, 0.3\right), 416(0.2)$, 401 (3), $383(2), 360(4), 317(100), 299(58), 281(17), 255(14), 229(8), 159(31), 43$ (70).- (Found: C, 71.88; H, 10.14. $\mathrm{C}_{2} \mathrm{HH}_{48} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ (452.6) requires C, 71.96; H, 10.29\%).
(20R)-3B,20,25-Tris-(trimethyl-silanyloxy)-cholest-5-en-22-one (7b).
To a solution of $7 \mathrm{fa}(30.4 \mathrm{mg}, 69 \mu \mathrm{~mol})$ in $\mathrm{dry} \mathrm{THF}(3 \mathrm{ml})$ and 2,6 -lutidine ($63 \mu 1,55 \mu \mathrm{~mol}$) was added dropwise at $20^{\circ} \mathrm{C}$ trimethylsily 1 triflate ($47 \mu 1,0.241 \mathrm{mmol}$) and the mixture was stirred at $20^{\circ} \mathrm{C}$ for 30 min . Usual work-up (Et2O) and LC (hexanes-ethy1 acetate-NEt3 $60: 1: 0.3$) gave $7 \mathrm{~m}(38 \mathrm{mg}, 86 \%) .-{ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{8}$): $\delta=0.17,0.18$, and 0.30 (3 s 's, $\left.\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.89$ and 0.98 (2 s 's, $\mathrm{CH}_{3}-18, \mathrm{CH}_{3}-19$), 1.26 ($\mathrm{s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), 1.48 ($\mathrm{s}, \mathrm{CH}_{3}{ }^{-}$ 21), 2.61-2.93 ($\left.\mathrm{CH}_{2}-23\right), 3.43-3.90(3-\mathrm{H}), 5.37\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 6-\mathrm{H}\right) .-\mathrm{IR}\left(\mathrm{CCl}_{4}\right): 1715 \mathrm{~cm}^{-1}$ ($\mathrm{C}=\mathrm{O}$).- $\mathrm{C}_{3} \mathrm{HE}_{8} \mathrm{OO}_{4} \mathrm{Si}_{3}(649.2)$, $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=648\left([\mathrm{M}]^{+}, 0.1\right), 633(3), 543(4), 461$ (100), 371 (5), 281 (22), 143 (51), 117 (70), 73 (53).
(20R, 22R)-3B,20,25-Tr is-(tr imethyl-silanyloxy)-cholest-5-en-22-01 (6b).
To a solution of 7 m (prepared from 7a, $29.9 \mathrm{mg}, 68 \mu \mathrm{~mol}$, as described above) in dry THF (2.0 ml) was added dropwise at $-78^{\circ} \mathrm{C}$ DIBAH (1.2 M in toluene, $0.28 \mathrm{ml}, 0.34 \mathrm{mmol}$). The mixture was stirred for 3 h being allowed to warm to $20^{\circ} \mathrm{C}$. Usual work-up ($\mathrm{Et}_{2} \mathrm{O}$) and LC (hexanes-ethyl acetate-NEt3 $50: 1: 0.25$) gave 66 ($31 \mathrm{mg}, 728$) along with a mixture (4 mg) of 66 and another

signals), 0.95 and 1.00 (2 s 's, $\mathrm{CH}_{3}-18$ and $\mathrm{CH}_{3}-19$), 1.17 ($\mathrm{s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), 1.35 ($\mathrm{s}, \mathrm{CH}_{3}-$ 21), 3.32-3.90 ($3-\mathrm{H}, 22-\mathrm{H}$), $5.39\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 6-\mathrm{H}\right) .-\mathrm{IR}\left(\mathrm{OCl}_{4}\right): 3630,3500-3300 \mathrm{~cm}^{-1}(\mathrm{OH}) .-$ $\mathrm{C}_{3} 8 \mathrm{H} 7004 \mathrm{Si}_{3}(651.2) \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=650([\mathrm{M}]+, 0.1), 635(0.7), 619(0.6), 545(5), 461(100)$, 371 (5), $281(24), 143(46), 117(67), 73$ (47).

General orocedure for the silyl ether cleavage.
To a solution of the silyl ether in dry THF was added at $20^{\circ} \mathrm{C}$ TBAF (0.1 M solution in THF, 1.3 equiv per sily1 group). The mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h . After solvent evaporation the crude reaction product was purified by LC.

Ga from eb,

After sily 1 ether cleavage in ©b (general procedure) and LC (hexanes-ethy 1 acetate-ethanol 10:10:1) 6a (76\%) was obtained, identical with the product of NaBH4 reduction of 7a.
(20R.25RS)-38,20,25-Tr ihydroxy-27-propyl-cholest-5-en-22-one (7c).
$7 c$ was prepared from 2a and rac.-3b (procedure b) as described for 7a. LC (hexanes-ethy 1 acetate 2:1) gave 85\% of a mixture of two C-25 diastereoisomeres.- ${ }^{1} \mathrm{H} \mathrm{NM}$ ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 8 $=0.89\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.02\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.17\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.45\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.50-2.75\left(\mathrm{CH}_{2}-\right.$ 23); 3.30-3.75 (3H), 3.91 (s, OH), $5.32\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 6-\mathrm{H}\right) .-\mathrm{IR}\left(\mathrm{CHCl}_{3}\right)$: $3595-3450(\mathrm{OH})$,
 456.3603), $438(2), 399(2), 381(2), 358(6), 317(19), 299(17), 184(42), 183(40), 43$ (100).

Reduction of $7 c$.

7c was reduced with DIBAH as described for 7a. MPLC (hexanes-acetone 2:1) gave 5c (47\%) and a mixture of 5 c and 6 c (34\%).
(20R, 22S, 25RS)-27-Propyl-cholest-5-ene-3B,20,22,25-tetraol (5C).
${ }^{1} \mathrm{H}$ NMR $\left(80 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.91\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.03\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.21\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.29(\mathrm{~s}$, $\mathrm{CH}_{3}-21$), $3.20-3.80(3 \mathrm{H}, 22+\mathrm{H}), 6.36$ ($\mathrm{w}_{1 / 2}=7 \mathrm{~Hz}, 6-\mathrm{H}$).- IR ($\mathrm{CHCl} \mathrm{H}_{3}$): 3660-3300(OH), 1600 $\mathrm{cm}^{-1}(\mathrm{C}=\mathrm{C}) .-\mathrm{C}_{3} \mathrm{OH}_{2} \mathrm{O}_{4}(476.7), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=443\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]^{+}, 1.2\right), 425$ (1), 401.3036 ([M$\left.\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$, Calc for $\mathrm{C}_{2} 4 \mathrm{H}_{4} \mathrm{O}_{3}$: 401.3055), $383(2), 360(3), 317(86), 299(54), 281$ (16), 271 (8), 255 (12). 43 (100).
(20R, 25RS)-27-Propy1-38-20,25-tr is-(trimethylsilanyloxy)-cholest-5-en-22-one (7d).
7d was obtained from 7c as described for 7b. LC (hexanes-ethyl acetate-NEt 3 50:1:0.25),
 $0.98\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.16\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.49\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.65-2.95\left(\mathrm{OH}_{2}-23\right), 3.45-3.80(3-\mathrm{H})$,
 $675.4665\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 1, \mathrm{Calc}\right.$ for $\left.\mathrm{C}_{3} \mathrm{sH7}_{7} \mathrm{O}_{4} \mathrm{Si}_{3}: 675.4660\right), 633$ (2), 585 (2), 543 (1), 461 (41), 281 (13), 143 (50), 117 (95), 73 (100).
(20R,22R.25RS)-27-Prooyl-3B.20.25-tris-(trimathylsilanyloxy)-cholest-5-en-22-01 (8d).
6d was obtained from 7d by DIBAH reduction as described for 6b (yield: 76\%).- ${ }^{1} \mathrm{H}$ NMR (80 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=0.18,0.20,0.31\left(3 \mathrm{~s} \mathrm{~s}_{\mathrm{s}}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.00\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right)$, $1.28\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.35\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 3.30-3.80(3-\mathrm{H}$ and $22-\mathrm{H}), 5.38\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 6+\mathrm{H}\right) .-\mathrm{IR}$ (Cl_{4}): $3630,3520 \mathrm{~cm}^{-1}$ (OH).- $\mathrm{C}_{39} \mathrm{HH}_{76045} \mathrm{Si}_{3}(693.2)$, $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=587.4317$ ([M-CH3-
 (42), 73 (100).
(20R, 22R, 25RS)-26-Propyl-cholest-5-ene-38,20,22.25-tetrapl (6C).
6d was converted to bc using the general silyl ether cleavage procedure. LC (hexanes-acetone 2:1) provided 6d (73\%) and a mixture of 6 c and 5 c (9%).- ${ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{CDCl3}$): $\delta=0.89$ ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.02 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 1.19 ($\mathrm{s}, \mathrm{CH}_{3}-27$), 1.26 ($\mathrm{s}, \mathrm{CH}_{3}-21$, for $\delta_{\mathrm{pyritaine}}$, see Table 1), $3.30-3.80(3-\mathrm{H}$ and $22-\mathrm{H}), 5.36$ ($\mathrm{w} / \mathrm{s}_{2}=7 \mathrm{~Hz}, 6-\mathrm{H}$).- IR ($\mathrm{CHCl3}$) : $3660-3300$ (OH) , $1600 \mathrm{~cm}^{-}$ 1 (C=C).- $\mathrm{C}_{3} \mathrm{OH}_{5} \mathrm{OO}_{4}(476.7), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=440\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 2\right), 425(2), 401.3044$ ($\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{Hg}^{-}\right.$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}, 8$, Calc for $\mathrm{C}_{26} \mathrm{H}_{4} 1 \mathrm{O}_{3}: 401.3055$), 383 (3), 365 (2), 360 (3), 317 (100), 299 (56).

Addition of 3c to $2 a$.

To a solution of 3c ($7.0 \mathrm{mmo1}$, procedure b) in THF (10 ml) a solution of $2 \mathrm{~m}(579.9 \mathrm{mg}, 1.83$ mmol) in dry THF (20 ml) was added at $-78^{\circ} \mathrm{C}$ within 25 min . The mixture was then allowed to warm to $20^{\circ} \mathrm{C}(4.75 \mathrm{~h})$. Usual work up (Et2O) followed by MPLC (hexanes-ethyl acetate-NEts $5: 1: 0.1$) gave 4b ($506.1 \mathrm{mg}, 56 \%$), 7 e ($109.6 \mathrm{mg}, 12 \%$) and 2 a ($166.7 \mathrm{mg}, 26 \%$).
(20R)-26, 27-Dipropyl-22,25-epoxy-cholest-5,22-diene-3B,20-diol (4b).
${ }^{1} \mathrm{H}$ NRR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.82\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 0.99\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 0.80-1.00\left(\mathrm{CH}_{3}-30, \mathrm{CH}_{3}-33\right)$, $1.40(\mathrm{~s}, \mathrm{CHz}-21), 2.35\left(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, \mathrm{CH}_{2}-24\right), 3.50\left(\mathrm{w}_{1 / 2}=18 \mathrm{~Hz}, 3 \mathrm{H}\right), 4.48(\mathrm{t}, \mathrm{J}=2.4$ $\mathrm{Hz}, 23-\mathrm{H}$) , 5.34 ($\mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}, 6 \mathrm{H}$).- $\mathrm{IR}\left(\mathrm{Cl}_{4}\right): 3600-3200(\mathrm{OH}), 1705 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C}-\mathrm{O}) .-$ $\mathrm{Ca}_{3} \mathrm{H}_{52 \mathrm{O}}^{2}$ (498.8), MS: $m / z(\%)=498.4071$ ($[\mathrm{M}]^{+}, 7$, Calc 498.4073), $480(12), 465(2), 423$ (8), 358 (17), $299(28), 226(100), 225(69), 197(59), 55(96)$.
(20R)-26, 27-Dipropyl-38,20,25-tr inydroxy-cholest-5-en-22-one (7e).
mp.: 101-103${ }^{\circ} \mathrm{C}$ (from Et20-hexane).- ${ }^{1} \mathrm{H}$ NMR ($80 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=0.89$ ($\mathrm{s}, \mathrm{CH}_{3}-18$), $0.80-1.05$
$\left(\mathrm{CH}_{3}-30, \mathrm{CH}_{3}-33\right), 1.02\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.45\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.48-2.77\left(\mathrm{CH}_{2}-23\right), 3.46\left(\mathrm{w}_{1 / 2}=21\right.$ $\mathrm{Hz}, 3-\mathrm{H}), 3.95$ (broad $\mathrm{s}, \mathrm{OH}), 5.32(" \mathrm{d"}, \mathrm{~J}=4.0 \mathrm{~Hz}, 6-\mathrm{H})$. - IR $\left(\mathrm{OCl}_{4}\right)=3600-3100(\mathrm{OH}), 1700$ $\mathrm{Cm}^{-1}(\mathrm{C}=0) .-\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=480\left(\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 24\right), 465\left(\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]+, 3\right), 423$ (41), 317 (45), 299 (42), 197 (64), 151 (63), 55 (100).-(Found $\mathrm{C}, 76.69, \mathrm{H}, 11.00, \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{CO}_{4}$ (516.8) requires C, $76.70, \mathrm{H}, 10.92 \%$).
(20R)-20,25-Dihycroxy-26, 27-dipropy 1-30-(tr imethylsilanyloxy)-cholest-5-en-22-one (8).
a. - To a solution of $3 \mathrm{c}(98 \mu \mathrm{~mol}$, procedure b) in dry THF (0.5 ml) a solution of $2 \mathrm{bl}(38.1 \mathrm{mg}$, $98 \mu \mathrm{~mol}$) in THF (1.0 ml) was added at $-78^{\circ} \mathrm{C}$ and the mixture was allowed to warm up $20^{\circ} \mathrm{C}$ within 4.75 h . Usual work up ($\mathrm{Et}_{2} \mathrm{O}$) followed by LC led to 8 (22\%), 63\% of $\mathbf{2 b}$ were recovered. b. -To a solution of 3c ($106 \mu \mathrm{~mol}$, procedure a) in dry THF (1.0 ml) a solution of $\mathbf{2 b}$ (37.4 $\mathrm{mg}, 96.4 \mu \mathrm{~mol}$) in THF (0.5 ml) was added at $-78^{\circ} \mathrm{C}$ and the solution was allowed to warm to $20^{\circ} \mathrm{C}$ within 4 h . Usual work-up ($\mathrm{Et}_{2} \mathrm{O}$) followed by treatment with $0.1 \mathrm{~N} \mathrm{HCl}(1.0 \mathrm{ml})$ in THF (5.0 ml , stirring at $20^{\circ} \mathrm{C}$ for 2 h), usual work up ($E t_{2} \mathrm{O}$) and LC (hexanes-ethyl acetate 5:1)
 signals) $0.88\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 0.80-1.03\left(\mathrm{CH}_{3}-30, \mathrm{CH}_{3}-33\right), 0.96\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.48\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right)$, $2.48-2.73\left(\mathrm{CH}_{2}-23\right), 3.50\left(\mathrm{w}_{1 / 2}=16 \mathrm{~Hz}, 3-\mathrm{H}\right), 3.95$ (broad $\left.\mathrm{s}, \mathrm{OH}\right), 5.33(" \mathrm{~d}$ ", J $=4.4 \mathrm{~Hz}, 6-$
 ($\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 1.3$, Ca 1 c for $\mathrm{C}_{6} \mathrm{H}_{62} \mathrm{O}_{3} \mathrm{Si}: 570.4468$), 552 (4), 527 (1), 430 (5), 389 (5), 299 (24), 226 (74), 225 (62), 197 (100).
(20R)-26.27-Dipropyl-3B,20,25-tris-(trimethylsilanyloxy)-cholest-5-en-22-one (7f).
a) $7 e$ was silylated as described for $7 a$ (82% yield).- b) 46 was opened with $H C 1$ and then silylated (74% yield over two steps).- ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CBD}_{6}\right): \delta=0.175,0.233,0.314$ (3 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), $0.88\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 0.91$ and $0.92\left(2 \mathrm{t}\right.$'s, $\mathrm{J}=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}-30$ and $\mathrm{CH}_{3}-33$), $0.98\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.49\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.51-2.59(17-\mathrm{H}), 2.72$ and 2.89 (2 ddd' $\mathrm{s}, \mathrm{J}=$ $\left.4.7,11.0,18.2 \mathrm{~Hz}, \mathrm{CH}_{2}-23\right), 3.66\left(\mathrm{w}_{1} / 2=18 \mathrm{~Hz}, 3+\mathrm{H}\right), 5.37(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6-\mathrm{H}) .-\mathrm{IR}\left(\mathrm{CCl}_{4}\right)$ $: 1720 \mathrm{~cm}^{-1}(\mathrm{C}=0)$.- $\mathrm{C}_{4} \mathrm{HHBoO}_{4} \mathrm{Si}_{3}(733.3)$, $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=717\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 16\right), 675.4568$ ([M$\mathrm{C}_{4} \mathrm{Hg}^{2+}{ }^{+}$5, Calc for $\mathrm{C}_{38} \mathrm{H}_{71} \mathrm{O}_{4} \mathrm{Si}_{3}: 675.4661$), 627 (4), 585 (3), 461 (100).

Reduction of 7 f .
a) in THF: To a solution of $7 \mathrm{f}(4.1 \mathrm{mg}, 5.6 \mu \mathrm{~mol})$ in dry THF (1.0 ml) DIBAH (1.5 M in tolut ene, $41.1 \mu 1,61.6 \mu 1$) was added dropwise. The solution was allowed to warm to $20^{\circ} \mathrm{C}$ with in 4h. Usual work-up $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ followed by SC (hexanes-ethyl acetate-NEt 3 100:1:0.4) gave of ($2.7 \mathrm{mg}, 65 \%$) and $9 \mathrm{a}(0.5 \mathrm{mg}, 12 \%$).- b) The same procecture with toluene as solvent (1.5 equiv. of DIBAH) gave 6 f in 50% yield, 26% of $7 f$ were recovered.
(20R.22R)-26.27-Diorooy 7-38.20.25-tris-(trimethylsilanyloxy)-cholest-5-en-22-ol (6f).
${ }^{1} \mathrm{H}$ NRR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.181,0.250,0.313$ (3 s's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3$ signals), $0.922\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ 18) , $0.929\left(t, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{3}-30\right.$ and $\mathrm{CH}_{3}-33$), $0.963\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.347\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.57$ (broad $t, J=10.5 \mathrm{~Hz}, 17-H), 3.48\left(w_{1 / 2}=12 \mathrm{~Hz}, 22-H\right), 3.66\left(w_{1 / 2}=20 \mathrm{~Hz}, 3+H\right), 5.39(\mathrm{~d}$, $J=4.6 \mathrm{~Hz}, 6-\mathrm{H}) .-\mathrm{IR}\left(\mathrm{CCl}_{4}\right): 3610-3400 \mathrm{~cm}^{-1}(\mathrm{OH}) .-\mathrm{C}_{42 \mathrm{He}}^{2 \mathrm{O}} \mathrm{ASi}_{3}(735.4), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=735$ $\left([\mathrm{M}]^{+}, 0.15\right), 661(0.3), 644(0.2), 642(0.7), 629(2), 587.4288$ ([M-HOSiMe3-C4H9] ${ }^{+}, 22$, Calc for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{OO}_{3} \mathrm{Si}_{2}: 587.4316$), 401 (32), 215 (43), 117 (45), 73 (100).
（20玉，22E）－26．27－Diprooyl－3B，25－bis－（tr imethylsilanyloxy）－cholest－5－en－22－01（9n）．
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{C}_{8} \mathrm{D}_{6}$ ）：$\delta=0.179,0.263$（ 2 s ＇s， $\mathrm{Si}\left(\mathrm{CH}_{3}\right) \mathrm{s}$ signals）， 0.650 （ $\mathrm{s}, \mathrm{CH}_{3}-18$ ）， 0.937 and 0.940 （ 2 t ＇s， $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{3}-30$ and $\mathrm{CH}_{3}-33$ ）， 0.964 （ $\mathrm{s}, \mathrm{CH}_{3}-19$ ）， 2.43 （ddd， $\mathrm{J}=13,6,2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.56$（broad $\mathrm{t}, \mathrm{J}=12 \mathrm{~Hz}, 17+\mathrm{H}), 3.65\left(\mathrm{w}_{1 / 2}=20 \mathrm{~Hz}, 3 \mathrm{H}\right), 3.91\left(\mathrm{w}_{1 / 2}=10 \mathrm{~Hz}, 22\right.$
 Calc for $\mathrm{Ca}_{3} \mathrm{He} 5 \mathrm{SO}_{3} \mathrm{Si}_{2}: 589.4473$ ）， 571 （3）， 499 （14）， 255 （24）， 215 （59）， 183 （78）， 73 （100）．
（20R，22R）－26．27－Dipropyl－cholest－5－ene－38，20，22，25－tetraol（60），
of was desilyated（see general procedure）to give be，after LC（hexanes－ethyl acetate 1：1）， in 90\％yield．－ 1 H NMR（ $400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ ）：$\delta=0.891$ and 0.896 （ 2 t ＇s， $\mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-30$ and $\mathrm{CH}_{3}-33$ ）， 1.053 （ $\mathrm{s}, \mathrm{CH}_{3}-19$ ）， 1.172 （ $\mathrm{s}, \mathrm{CHs}_{3}-18$ ）， 1.570 （ $\mathrm{s}, \mathrm{CH}_{3}-21$ ）， $3.85\left(\mathrm{w} / \mathrm{w}_{2}=20 \mathrm{~Hz}, 3 \mathrm{H}\right.$ and $22+\mathrm{H}$ ）， $4.69,5.32,6.07$ and 6.17 （ 4 broad s＇s， OH ）， 5.43 （＂ $\mathrm{d} ", \mathrm{~J}=4.0 \mathrm{~Hz}, 6-\mathrm{H}$ ）．－IR $\left(\mathrm{CHCl}_{3}\right): 3670-3400 \mathrm{~cm}^{-1}(\mathrm{OH}) .-\mathrm{C}_{3} \mathrm{HHseO}_{4}(518.8)$ ， $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=482.4125\left(\left[\mathrm{M}-2 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 13\right.$ ，Calc for $\mathrm{C}_{3} \mathrm{H}_{5} 4 \mathrm{O}_{2}$ ： 482.4124 ）， 464 （6）， 443 （20）， 425 （14）， 317 （100）， 299 （57）．
（20玉．22三）－26．27－Dipropy1－cholest－5－ene－38．22．25－trio1（96）．
$9 a$ was desilylated（see general procedure）to give，after LC（hexanes－ethy1 acetate 1：1）so in 728 y ield．${ }^{1} \mathrm{H}$ NR（ $400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ ）：$\delta=0.739$（ $\mathrm{s}, \mathrm{CH}_{3}-18$ ）， 0.897 and 0.901 （ 2 t ＇s， $\mathrm{J}=$ $7.4 \mathrm{~Hz}, \mathrm{CH}_{3}-30$ and $\mathrm{CH}_{3}-33$ ）， 1.056 （ $\mathrm{s}, \mathrm{CH}_{3}-19$ ）， 1.13 （d，J＝8．4 Hz， $\mathrm{CH}_{3}-21$ ）， 3.85 （ $\mathrm{w}_{1 / 2}=20$ $\mathrm{Hz}, 3+\mathrm{H}$ ）， $4.21\left(\mathrm{w}_{1 / 2}=5 \mathrm{~Hz}, 22-\mathrm{H}\right), 5.25$ and 6.16 （ $2 \mathrm{broad} \mathrm{s} \mathrm{s}, \mathrm{OH}$ ）， 5.27 （ $\mathrm{d}, \mathrm{J}=5.3 \mathrm{~Hz}$ ， OH ）， 5.42 （＂ $\mathrm{d} ", \mathrm{~J}=4.7 \mathrm{~Hz}, 6+\mathrm{H}$ ）．－ $\mathrm{C}_{3} 3 \mathrm{HsoO}_{3}(502.8)$ ， $\mathrm{MS}: \mathrm{m} / \mathrm{z}(x)=445$（［M－C4H9］＋，1）， 427.3574 （ $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 9$ ，calc for $\mathrm{C}_{2} \mathrm{gH}_{4} \mathrm{PO}_{2}: 427.3576$ ）， 409 （4）， 183 （100）．
（20R）－2B．3B，14，20．25－Pentahydroxy－5B－cholest－7－ene－6，22－dione（11a）．
To a solution of 3a（ 1.61 mmol ，procecture b）in THF（ 2.0 ml ）a solution of 10 a （ $35 \mathrm{mg}, 97$ $\mu \mathrm{mol}$ ）in THF（ 8.0 ml ）was added dropwise at $-78^{\circ} \mathrm{C}$ ．The reaction mixture was stirred for 3 h ，being allowed to warm to $20^{\circ} \mathrm{C}$ ．After addition of saturated aq．NaCl（ 5 ml ）the organic layer was separated．The aqueous layer was extracted with n－butanol（ $3 \times 5 \mathrm{ml}$ ）and the combi－ ned organic solutions were washed with water（ 5 ml ）．After solvent removal，addition of water（ 20 ml ），and lyochilisation the residue was dissolved in $7 \mathrm{FF}(5 \mathrm{ml}$ ）and treated with $0.1 \mathrm{NHCl}(1.5 \mathrm{ml})$ for 1 h at $20^{\circ} \mathrm{C}$ ．Neutralisation with solid $\mathrm{K}_{2} \mathrm{OO}_{3}$ ，phase separation，addi－ tion of water to the organic phase，lyophilisation，and finally LC（ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$－methanol 12：1） gave 11a（ $30 \mathrm{mg}, 65 \%$ ）and recovered 10 a （ $5 \mathrm{mg}, 17 \%$ ）．－M．p．207－2090 ${ }^{\circ} \mathrm{C}$（from methanol， 1 it ．
 1.06 （ $\mathrm{s}, \mathrm{CH}_{3}-19$ ）， 1.12 （ $\mathrm{s}, \mathrm{CH}_{3}-18$ ）， 1.35 and 1.37 （ 2 s ＇s， $\mathrm{CH}_{3}-26, \mathrm{OH}_{3}-27$ ）， 1.68 （ $\mathrm{s}, \mathrm{OH}_{3}-21$ ）， $2.64(\mathrm{~m}, \mathrm{HH}), 3.02$（ $\mathrm{dd}, \mathrm{J}=4 \mathrm{~Hz}, 13 \mathrm{~Hz}, 5-\mathrm{H}$ ）， $3.21-3.32$（ $17 \mathrm{H}, \mathrm{CH}_{2}-23$ ）， $3.55-3.63$（ $9-\mathrm{H}$ ）， $4.13-4.20(2+H), 4.24\left(W_{1 / 2}=8 \mathrm{~Hz}, 3-\mathrm{H}\right), 6.22(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 7+\mathrm{H}) .-\mathrm{C}_{2} 7 \mathrm{H}_{42 \mathrm{O}}$（ 478.7 ）， $\mathrm{FAB}-\mathrm{MS}$ （glycerol）：$m / z(\%)=501\left([M+\mathrm{Na}]^{+}, 20\right), 479\left([\mathrm{MHH}]^{+}, 31\right), 461$（100）， 443 （35）， 425 （28）， 363 （5）， 348 （39）， $329(35), 303(45)$.

Reduction of 11 a with LIATH $\left(\mathrm{O}_{\mathrm{B}} \mathrm{BU}\right)_{3}$ ．
To a solution of 11a（ $25 \mathrm{mg}, 52 \mu \mathrm{~mol}$ ）in dry THF（ 8 ml ） $\mathrm{LiAlH}\left(\mathrm{O}^{+} \mathrm{Bu}\right)_{3}$（ 0.5 M solution in THF， $1.2 \mathrm{ml}, 0.6 \mathrm{~mol}$ ）was added dropwise at $0^{\circ} \mathrm{C}$ ．The mixture was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and for 1 h at $20^{\circ} \mathrm{C}$ ．Usual work－up（1－butano1），addition of water to the combined organic solu－ tions，lyophilisation，and $\mathrm{LC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$－methanol 8：1）gave 12 （ $17.2 \mathrm{mg} 68 \%$ ）and la（ 1.5 mg ， 6\％）．In the reaction mixture the 12a：1a ratio as determined by HPLC（ $5 \mu \mathrm{~m}$ RP－18，methanol－ water 2：3）was 16：1．
（2OR，22S）－2ß，3R，14，20，22，25－Hexahydroxy－5 5 －cholest－7－en－6－one（12）．
M．p． $258-260^{\circ} \mathrm{C}$（from methanol， 1 it．${ }^{16}$ ： $259-260^{\circ} \mathrm{C}$ ）．－${ }^{1 \mathrm{H}} \mathrm{NMR}$（ $80 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$ ）：$\delta=1.08$（ s ， $\mathrm{CH}_{3}-19,1.22$（ $\mathrm{s}, \mathrm{CH}_{3}-18$ ）， $1.40\left(\mathrm{~s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27\right.$ ）， 1.71 （ $\mathrm{s}, \mathrm{CH}_{3}-21$ ）， $2.85-3.15(5-\mathrm{H}), 3.40-$ $3.75(9-\mathrm{H}, 17+\mathrm{H}), 4.00-4.35(2+\mathrm{H}, 3-\mathrm{H}), 6.22(\mathrm{~d}, \mathrm{~J}=2 \mathrm{~Hz}, 7+\mathrm{H}) .-\mathrm{IR}(\mathrm{KBr}): 1650 \mathrm{~cm}^{-1}$
 （100）， $427.6(36), 411.5(23), 393(20), 371(42), 347(40), 331(57), 329(72), 303(70)$, 301 （93）．
（20R，22R）－2B，3B，14，20，25－Pentak is－（tr imethyl－silanyloxy）－5 ${ }^{2}$－cholest－7－ene－6，22－dione（11b）． To a solution of 11 a （ $20 \mathrm{mg}, 0.041 \mathrm{mmol}$ ）and $2,6-\mathrm{lutidine}(76 \mu 1,0.066 \mathrm{mmol})$ in dry ThF （ 4.0 ml ）trimethylsilyl triflate（ $64 \mu \mathrm{l}, 0.33 \mathrm{mmol}$ ）was added dropwise at $20^{\circ} \mathrm{C}$ ．The mixture was stirred at $20^{\circ} \mathrm{C}$ for 1 h ．Usual work－up（Et2O）and LC（hexanes－ethyl acetate－NEt3

 19), 0.91 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.17 (2 s's, $\mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), 1.39 ($\mathrm{s}, \mathrm{CHz}_{3}-21$), $2.50(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}$, $17+\mathrm{H}$), $2.57-2.67$ and $2.78-2.88\left(\mathrm{CH}_{2}-23\right), 2.95$ (dd, $\left.J=3.5 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.06\left(\mathrm{~W}_{1 / 2}=23\right.$ $\mathrm{Hz}, 9-H), 3.91\left(W_{1 / 2}=21 \mathrm{~Hz}, 2-\mathrm{H}\right), 4.00\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 3-\mathrm{H}\right), 5.93(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7+\mathrm{H}) . \mathrm{C}^{-}$
 733 (3), 662 (2), $651(2), 643(2), 635(1), 561$ (100).
(20R.22R)-2B,38,14,20,22,25-tlexakis-(tr imethylsilanyloxy)-58-cholest-7-en-6-one (13b).
la was silylated as described for $7 \mathrm{7a}$ (86% yield).- ${ }^{1} \mathrm{H}$ MR ($400 \mathrm{MHz}, \mathrm{CeDs}$): $\delta=0.138$, $0.141,0.173,0.224,0.236$ and 0.237 (6 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), 0.73 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 0.94 (s , $\left.\mathrm{CH}_{3}-18\right), 1.29\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-26\right.$ and $\left.\mathrm{CH}_{3}-27\right), 2.70(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 17 \mathrm{H}), 2.95(\mathrm{dd}, \mathrm{J}=13.8 \mathrm{~Hz}$, $4.0 \mathrm{~Hz}, 5 \mathrm{H}), 3.09\left(\mathrm{~W}_{1 / 2}=12 \mathrm{~Hz}, 22-\mathrm{H}\right), 3.35(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 9-\mathrm{H}), 3.93\left(\mathrm{~W}_{1} / 2=12 \mathrm{~Hz}, 2-\right.$ H), 3.99 (broad s, $3-\mathrm{H}$), 6.02 (d, J $=2.1 \mathrm{~Hz}, 7 \mathrm{H}$).- IR ($\propto 14$): $1675 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).$\mathrm{C}_{4} \mathrm{sHg}_{2} \mathrm{OH}_{7} \mathrm{Si}$ (913.7), $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=897\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 0.65\right), 894\left(\left[\mathrm{M} \mathrm{H}_{2} \mathrm{O}\right], 0.7\right), 807(0.7)$, 561.3252 ($\left[\mathrm{M}_{-1} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{3} \mathrm{Si}_{3}\right]^{+}, 88, \mathrm{Calc}$ for $\mathrm{C}_{3} \mathrm{HH}_{53} \mathrm{O}_{4} \mathrm{Si}_{3}$: 561.3208), 171 (21), 147(22), 73 (100).

(20R.22R)-22-Hycroxy-2B,3B,14,20,25-pentak is-(tr imethyl-silanyloxy)-5 A -cholest-7-en-6-one (13a).

To a solution of 11 b ($10 \mathrm{mg}, 0.012 \mathrm{mmol}$) in dry THF (2.0 ml) DIBAH (1.2 M solution in toluene, $75 \mu 1,0.09 \mathrm{mmol}$) was added droowise at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 4 h , being allowed to warm to $20^{\circ} \mathrm{C}$. Usual work-up ($\mathrm{Et}_{2} \mathrm{O}$) gave a crude product which was carefully dried (16 h at $100-200 \mathrm{~Pa}$), dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.0 \mathrm{ml}\right.$), and then treated with MOO_{2} (70 mg , freshly prepared ${ }^{32}$) for 16 h at $20^{\circ} \mathrm{C}$. Filtration though SiO_{2}, solvent evaporation and LC (hexanes-ethyl acetate-NEt.3 40:1:0.2) gave 13a along with traces of its (22S) isomer (8.3 $\mathrm{mg}, 83 \%$). The d.e. was determined after sily1 group removal (vide infra).- IR (OC14): 3640, 3500-3350 (OH), $1665 \mathrm{~cm}^{-1}$ (unsat. CO^{2}).- ${ }^{1 \mathrm{H}} \mathrm{HMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): 8=0.09,0.18,0.23$, and 0.36 (5 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), 0.78 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 0.93 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.17 and 1.19 (2 s 's, $\mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), 1.29 ($\mathrm{s}, \mathrm{CH}_{3}-21$), 2.25 ($\mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, 17 \mathrm{H}$), 2.54 (presumably OH), 2.97 (dd, $J=3.5 \mathrm{~Hz}, 13.0 \mathrm{~Hz}, 5-\mathrm{H}), 3.07\left(\mathrm{~W}_{1 / 2}=24 \mathrm{~Hz}, 9-H\right), 3.45\left(\mathrm{~W}_{1 / 2}=16 \mathrm{~Hz}, 22+\mathrm{H}\right), 3.93\left(\mathrm{~W}_{1 / 2}=20 \mathrm{~Hz}\right.$, $2+\mathrm{H}), 4.01\left(\mathrm{~W}_{1 / 2}=7 \mathrm{~Hz}, 3-\mathrm{H}\right), 6.00(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 7-\mathrm{H}) .-\mathrm{C}_{42} \mathrm{H}_{4} \mathrm{OO}_{7} \mathrm{Si}_{5}(840.9)$, $\mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=$ 825.4858 ($\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 0.7, \mathrm{Calc}$ for $\mathrm{C}_{4} \mathrm{HBa}_{1} \mathrm{O}_{7} \mathrm{Si}_{5}: 825.4828$), 735 (4), 664 (1), 651 (4), 645 (1), 635 (1), 561 (100).

Reduction of 136.

DIBAH reduction (reaction time 4h) of 136 as described for $13 a$ gave a polar product, which was converted to la by MHO_{2} oxidation and silyl group cleavage in 81% overall yield.
(20R,22R)-2ß,3B,14,20,22,25-Hexahydroxy-5 β-cholest-7-en-6-one (1a).
1 la (with traces of 12) was prepared from the sample of 13 a desribed above by silyl ether cleavage (general procedure). Yield after LC ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$-methanol 5:1) 80\%, d.e. $=95 \%$ (determined by HPLC ($5 \mathrm{\mu m}$ RP-18, methanol-water 3:4)). Formation of 1 la and 12 was secured by TLC and HPLC comparison. ${ }^{-1} \mathrm{H}$ MR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) : 1.07 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 1.22 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.37 ($\mathrm{s}, \mathrm{CH}_{3}-26, \mathrm{CH}_{3}-27$), $1.60\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.97-3.03(\mathrm{~m}, 5 \mathrm{H}, 17-\mathrm{H}), 3.59\left(\mathrm{~W}_{1 / 2}=20 \mathrm{~Hz}, 9-\mathrm{H}\right)$, $3.88\left(\mathrm{~W}_{1 / 2}=10 \mathrm{~Hz}, 22 \mathrm{H}\right), 4.14-4.25(2 \mathrm{H}, 3-\mathrm{H}), 4.72(\mathrm{~s}, \mathrm{OH}), 5.24(\mathrm{~s}, \mathrm{OH}), 6.03(\mathrm{~d}, \mathrm{~J}=$ $5.9 \mathrm{~Hz}, \mathrm{OH}), 6.10(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, \mathrm{OH}), 6.18(\mathrm{~d}, \mathrm{OH}), 6.27(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7 \mathrm{H}), 6.32(\mathrm{~s}$, OH). ${ }^{13} \mathrm{C}$ NM ($100 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D} 5 \mathrm{~N}$): $\delta=17.95$ (C-18), 21.16 (C-21), 21.54, 21.76, 24.53 (C-19), $27.52,30.06,30.18,31.83,32.05,32.51,34.46,38.03,38.72,42.71,48.15$ (C-5), 50.14 (C17), 51.45 ($\mathrm{C}-13$), 68.11 ($\mathrm{C}-3$), 68.20 ($\mathrm{C}-2$), 69.61 ($\mathrm{C}-25$) , 76.89 ($\mathrm{C}-22$), 77.59 ($\mathrm{C}-20), 84.22$ (C-14), 121.71 (C-7), 166.60 (C-8), 203.58 (C-6).

[^0](20R.25RS)-22.25-Epoxy-20-hydroxy-27-propyl-23,38, 14-tr is(trimethyl-silanyloxy)-7,22-dien-6one (140/15b).
To a solution of rac. -36 (17.3 mmol , procedure a) in THF (1.0 ml) was added at $-78^{\circ} \mathrm{C}$ under argon a solution of $100(10.0 \mathrm{mg}, 17.3 \mu \mathrm{~mol})$ in dry THF (1.0 ml) and the mixture was stirred for 5 h being allowed to warm to $20^{\circ} \mathrm{C}$. Usual work-up ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$), followed by MPLC (hexanesethyl acetate-NEt3 $10: 1: 0.1$) gave 14b/15b ($5.2 \mathrm{mg}, 42 \%$, not completly pure) and 10 b (4.7 mg , 47\%).- ${ }^{1} \mathrm{H}$ NR ($400 \mathrm{MHz}, \mathrm{CbD}_{6}$): $\delta=0.088,0.173,0.221$ (3 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3$ signals), 0.79 (s , $\mathrm{CH}_{3}-18$) , 0.81 ($\mathrm{s}, \mathrm{CH}_{3}-18$) , 0.896 ($\mathrm{t}, \mathrm{J}=10.0 \mathrm{~Hz}, \mathrm{CH}_{3}-30$ and $\mathrm{CH}_{3}-33$), 1.21 and 1.24 (2 s 's, $\mathrm{CH}_{3}-19, \mathrm{CH}_{3}-26$), 1.46 ($\mathrm{s}, \mathrm{CH}_{3}-21$), 2.93 (dd, J $=1.7,5.2 \mathrm{~Hz}, 5-\mathrm{H}$), $3.05\left(\mathrm{w}_{1 / 2}=16 \mathrm{~Hz}, 17-\right.$ H), 3.91 ($\mathrm{d}, \mathrm{J}=10 \mathrm{~Hz}, 2-\mathrm{H}$), 4.00 (broad $\mathrm{s}, 3-\mathrm{H}$), 4.55 (broad $\mathrm{s}, 2 * \mathrm{HH}, 23-\mathrm{H}$), 6.00 (broad s. $7+\mathrm{H}$).- IR (CC14): 3580 (CH), $1660 \mathrm{~cm}^{-1}$ (C=O).- $\mathrm{C}_{3} \mathrm{SH}_{70 \mathrm{O}} \mathrm{CSis}_{3}$ (719.2), MS: m/z (\%): 718
 466 (10), $376(4.8), 185(29), 184(27), 147(33), 73(100)$.
(20R,25RS)-2ß,3ß, 14, 20,25-Pentahydroxy-27-propy1-5 β-cholest-7-ene-6,22-dione (16a/17a).
16a/17a were prepared from 10a and rac. -36 as described for 11 a . MPLC ($5 \mathrm{~mm} \mathrm{RP}-18, \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{CH}_{3} \mathrm{CN} 6: 3: 1$) and $\mathrm{LC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{CH}_{3} \mathrm{OH} 10: 1\right)$ gave $16 \mathrm{a} / 17 \mathrm{a}$ (68\%), which could not be separated.${ }^{1} \mathrm{H}$ MR ($80 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) : $\delta=0.89\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{3}-30\right.$), 1.04 ($\mathrm{s}, \mathrm{CH}_{3}-19$), $1.10\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ 18), $1.30\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.70\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.80-3.70\left(5-\mathrm{H}, 9-\mathrm{H}, 17 \mathrm{H}^{2}\right.$ and $\left.\mathrm{CH}_{2}-23\right), 4.00-4.30(2-$ H and $3-\mathrm{H}$), $6.19(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 7-\mathrm{H})$.

Reduction of 16a/17a.

 showed 2 large and 2 small peaks corresponding to the diastereoisomers isomer ic at $\mathrm{C}-22$ and $\mathrm{c}-25$. Separation of the $\mathrm{C}-22$ from the $\mathrm{c}-25$ isomers was unsufficient for d.e. determination but allowed the isolation of pure 18a (34\%) and 19a (34\%). Structural assigment and d.e. determination rest on the reduction of pure 17a (see below).
(20R,22S,25R)-2B, 38, 14,20,22,25-Hexahydroxy-26-propyl-5B-cholest-7-en-6-one (19a).
$\mathrm{mp}: 219-221^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}$).- ${ }^{1 \mathrm{H}} \mathrm{HMR}\left(400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D} 5 \mathrm{~N}\right): 8=0.83$ ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-30$), 1.07 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 1.23 ($\mathrm{s}, \mathrm{CH}_{3}-18$), $1.39\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.73\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 3.01$ ($\mathrm{dd}, \mathrm{J}=3.5$ $\mathrm{Hz}, 13 \mathrm{~Hz}, 5-\mathrm{H}), 3.51-3.65(9-\mathrm{H}$ and $17-\mathrm{H}), 3.94$ (broad d, J $=9.5 \mathrm{~Hz}, 22-\mathrm{H}), 4.27\left(\mathrm{~W}_{1 / 2}=21\right.$ $\mathrm{Hz}, 2+\mathrm{H}), 4.35\left(\mathrm{w}_{1 / 2}=7 \mathrm{~Hz}, 3-\mathrm{H}\right), 6.24(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7-\mathrm{H}) .-\mathrm{IR}(\mathrm{KBr}): 1670-1640 \mathrm{~cm}{ }^{-1}$ (unsat. $\mathrm{C}=0$). $-\mathrm{C}_{3} \mathrm{OH}_{50 \mathrm{O}}$ (522.7), FAB MS (glycerol): $\mathrm{m} / \mathrm{z}(\%)=523$ ($\left.\mathrm{M}+\mathrm{H}\right]^{+}, 54$), 505 (69), 487 (100), 469 (43), 453 (12).
(2OR,22S,25S)-23,31, 14,20,22,25-Hexahydroxy-27-propyl-53-cholest-7-en-6-one (18a).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): identical with the spectrum of 19a.- IR (KBr): $1640 \mathrm{~cm}^{-1}$ (unsat.
 469 (43), 451 (12).

Silylation of $160 / 17 \mathrm{a}$.
The 16a/17a mixture was silylated as described for 11a to give 76\% of a mixture of c-25 diastereoisomers. Prep. HPLC ($5 \mu \mathrm{~m}$ Si100, i-octane-dioxane-i-propanol 200:0.20:0.25) gave 17b (35\%) and 166 (36\%), and 6% of fraction containing both of them. Configurational assigrment at $\mathrm{C}-25$ is based on HPLC compar ison with the sample of 10 b that is described in the following paragraph.- HPLC (5 mm Si 100 (Merck), i-octane-i-propanol-dioxane 200:0.25:0.20), retention times: 17b: 17.6 min , and 166: 18.1 min .

Formation of 106 from 106 and (s)-36.
Reaction of 106 with (S)-3b (as descr ibed above for $10 b$ and rac. 3 bb) gave 14b (36\%). 33\% of 10 b were recovered. Enol ether cleavage and subsequent silylation ($14 \mathrm{~b}-\mathrm{s}$ 16b) were performed as described in the 16b/17b series (see above). Yield: 37% (based on 14b).
(20R,25S)-27-Propy1-2ß,3ß,14,20,25-pentak is-(tr imethylsilanyloxy)-5 ${ }^{2}$-cholest-7-ene-6.22dione (166).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.07,0.17,0.19,0.22$ and 0.33 (5 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right) 3$ signals), 0.70 ($\mathrm{s}, \mathrm{CH}_{3}-19$), $0.92\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.17\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.41\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.51\left(\mathrm{~W}_{1 / 2}=20 \mathrm{~Hz}, 17-\right.$ $\mathrm{H}), 2.57-2.67$ and $2.77-2.87\left(\mathrm{CH}_{2}-23\right), 2.94(\mathrm{dd}, J=3.5 \mathrm{~Hz}, 13 \mathrm{~Hz}, 5-\mathrm{H}), 3.05\left(\mathrm{w}_{1} / 2=24 \mathrm{~Hz}\right.$,
$9 H), 3.91\left(W_{1 / 2}=20 \mathrm{~Hz}, 2+1\right), 4.00\left(W_{1 / 2}=8 \mathrm{~Hz}, 3+H\right), 5.94(d, J=2.2 \mathrm{~Hz}, 7 H)$ and unidentified signals at $\delta=0.90$ and 1.36.- IR (C_{14}): 1715 ($\mathrm{C}=0$), $1665 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$). -
 823 (2), 775 (3), 753 (2), 685 (3), 651 (2), 561 (100).
(2OR, 25R)-27-Propy1-2B,3B, 14,20,25-pentak is-(tr imethylsilanyloxy)-5B-cholest-7-ene-6,22dione (170).
$\frac{1}{1 H}$ NR ($400 \mathrm{MHz}, \mathrm{C}_{8} \mathrm{D}_{6}$): identical with the spectrum of 16 b , exception: $\delta=2.56-2.66$ and 2.81-2.91 ($\mathrm{CH}_{2}-23$), $3.06\left(\mathrm{~W}_{1 / 2}=23 \mathrm{~Hz}, 9-\mathrm{H}\right)$.- IR $\left(\mathrm{OCl}_{4}\right)$: $1715(\mathrm{C}=0)$, $1665 \mathrm{~cm}^{-1}$ (unsat.
 865.5142), 823 (2), 775 (2), 753 (1), 685 (2), 651 (1), 561 (100).
(20R.25R)-2B.3B.14.20.25-Pentahyctroxy-27-propyl-51-cholest-7-ene-6.22-dione (17a).
17 b was desilylated (see general procedure) to give after $\mathrm{LC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$ 12:1) 17a in quantitative yield.- ${ }^{1} \mathrm{H}$ NR ($80 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) : $\delta=0.89$ ($\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, \mathrm{CH}_{3}-30$) , $1.04,1.10$ (2 s 's, $\mathrm{CH}_{3}-18, \mathrm{CH}_{3}-19$), $1.30\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.70\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.80-3.70\left(5-\mathrm{H}, 9-\mathrm{H}, 17-\mathrm{H}, \mathrm{CH}_{2}-23\right)$, $4.00-4.30(2-\mathrm{H}, 3-\mathrm{H}), 6.19(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 7-\mathrm{H}) .-\mathrm{C}_{3} \mathrm{OH}_{4} 8 \mathrm{O} 7$ (520.7), FAB MS (glycerol): m/z $(\%)=521\left([\mathrm{MH}+]^{+}, 26\right), 503(100), 485(30), 467$ (17).

Reduction of 17 a .
17a was rediced with Li(${ }^{\text {tBuO }}$) ${ }_{3}$ AlH in THF as described for 11 a . Analytical HPLC ($5 \mu \mathrm{~m}$ Si 100, $\mathrm{CHCl}_{3}-\mathrm{CH}_{3} \mathrm{OH} 7: 1$) showed the presence of 2 peaks in a $16: 1$ ratio (corresponding to a d.e. $=$ 88% for the reduction of the $22-\infty$ group). The main peak correlated with 19a, obtained from the reduction of the 16a /17a mixture as described above.

(20R,22R,25S)-22-Hydroxy-26-propy1-2ß,3日, 14,20,25-pentak is-(tr imathyl-silanyloxy)-5 5 -

 cholest-7-en-6-one (186). ${ }^{33}$Conversion of 16 b to 18 db by DIBAH reduction and subsequent MOO_{2} oxidation was performed as described for 11b—>13a (see there). Yield: 77\%.- ${ }^{1} \mathrm{H}$ NRR ($400 \mathrm{MHz}, \mathrm{C}_{6 \mathrm{D}}$): $\delta=0.09,0.18$, $0.21,0.22$ and 0.32 (5 s 's, $\mathrm{Si}\left(\mathrm{CHz}_{3}\right)_{3}$ signals), 0.78 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 0.92 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.21 (s , $\mathrm{CH}_{3}-26$), $1.31\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.28(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 17-\mathrm{H}), 2.36$ ("d", OH), 2.96 ($\mathrm{dd}, \mathrm{J}=3.5$ $\mathrm{Hz}, 13 \mathrm{~Hz}, 5-\mathrm{H}), 3.06\left(\mathrm{~W}_{1 / 2}=24 \mathrm{~Hz}, 9-\mathrm{H}\right), 3.45(\mathrm{dd}, \mathrm{J}=3 \mathrm{~Hz}, 10 \mathrm{~Hz}, 22+\mathrm{H}), 3.92\left(\mathrm{~W}_{1 / 2}=21\right.$ $\mathrm{Hz}, 2-\mathrm{H}), 4.02\left(\mathrm{w}_{1 / 2}=8 \mathrm{~Hz}, 3+\mathrm{H}\right), 6.00(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7+\mathrm{H}) .-\mathrm{IR}\left(\mathrm{CO}_{4}\right): 3630-3300(\mathrm{OH})$, $1665 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).- $\mathrm{C}_{4} \mathrm{sHg}_{\mathrm{oO}} \mathrm{OSSi}_{5}(883.6), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\boldsymbol{*})=867\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 0.3\right), 795(1)$, 777 (1), 735 (2), 707 (1), 687 (1), 651 (10), 561 (100).
(20R.22R.25R)-22-Hydroxy-27-propy1-2B, 30, 14,20,25-pentakis-(tr imethy1-si lany loxy)-50-cholest-7-en-6-one (19b). ${ }^{33}$
Conversion of 17 b to 196 by DIBAH reduction and subsequent MHO_{2} oxidation was performed as described for $11 \mathrm{~b}-\mathrm{C} 13 \mathrm{a}$ (see there). Yield: 71\%.- ${ }^{1} \mathrm{H}$ NMP ($400 \mathrm{MHz}, \mathrm{C}_{6 \mathrm{D}}$): $\delta=0.10,0.17$, $0.22,0.23$ and 0.34 ($5 s^{\prime} \mathrm{s}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), 0.78 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 0.92 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.19 (s , $\mathrm{CH}_{3}-26$), $1.30\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.25(\mathrm{t}, \mathrm{J}=9.5 \mathrm{~Hz}, 17-\mathrm{H}), 2.33$ ("d", OH), $2.95(\mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz}$, $13 \mathrm{~Hz}, 5-H), 3.06\left(w_{1 / 2}=24 \mathrm{~Hz}, 9-H\right), 3.44\left(w_{1 / 2}=18 \mathrm{~Hz}, 22 H\right), 3.92\left(w_{1 / 2}=20 \mathrm{~Hz}, 2 H\right)$, $4.00\left(w_{1 / 2}=8 \mathrm{~Hz}, 3-\mathrm{H}\right), 6.00(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7-\mathrm{H}) .-\mathrm{IR}\left(\mathrm{CCl}_{4}\right): 3630-3300(\mathrm{OH}), 1665 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).- $\mathrm{C}_{4} \mathrm{SH}_{80 \mathrm{O} 7 \mathrm{~S} 15}(883.6), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=867\left(\left[M-\mathrm{CH}_{3}\right]^{+}, 1\right), 825$ (1), 777 (1), 708 (2), 687 (1), 651 (2), $634(4), 631(5), 561(36), 509(44), 493(40), 440(32), 421$ (100).
(2OR,22R,25S)-28,3B, 14,20,22,25-Hexahydroxy-27-propyl-5ß-cholest-7-en-6-one (18c).
186 was desilylated (general procedure) to give 18c (83\% yield). The d.e. (94\%) of the DIBAH
 $0.85\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}-30\right), 1.08$ ($\mathrm{s}, \mathrm{CH}_{3}-19$), 1.22 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.36 ($\mathrm{s}, \mathrm{CH}_{3}-26$), $1.61(\mathrm{~s}$, $\mathrm{CH}_{3}-21$), $3.02\left(\mathrm{w}_{1 / 2}=20 \mathrm{~Hz}, 5-\mathrm{H}\right.$ and $\left.17+\mathrm{H}\right), 3.57\left(\mathrm{w}_{1 / 2}=23 \mathrm{~Hz}, 9-\mathrm{H}\right), 3.92\left(\mathrm{w}_{1 / 2}=16 \mathrm{~Hz}\right.$, $22-\mathrm{H}), 4.20\left(\mathrm{w}_{1} / 2=21 \mathrm{~Hz}, 2-\mathrm{H}\right), 4.27\left(\mathrm{w}_{1 / 2}=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 6.25(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 7-\mathrm{H})$, signals at $\delta=0.89$ (t$), 1.38$ (q) and $3.57(\mathrm{~m})$, probably traces of BuaNX.- $\operatorname{IR}(\mathrm{KBr})$: $1665-1635 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).- $\mathrm{C}_{3} \mathrm{OH}_{50 \mathrm{O}}$ (522.7), FAB-MS (glycerol): $\mathrm{m} / \mathrm{z}(\%)=523$ ($[\mathrm{M}+\mathrm{H}]^{+}, 57$), 505 (87), 487 (100), 469 (55).
(20R,22R,25R)-2 $2 \beta, 3 \beta, 14,20,22,25$-texahydroxy-27-propyl-5R-cholest-7-en-6-one (19c).
196 was desilylated (general procedure) to give 19 c (83% yield). The d.e. (94\%) of the DIBAH reduction ${ }^{33}$ was determined by HPLC ($5 \mu \mathrm{mPR}-18$, MeOH $\mathrm{H}_{2} \mathrm{O}$ 3:4).- ${ }^{1} \mathrm{H}$ MR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{DSN}$): $8=$
0.84 ($\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{CH}_{3}-30$), $1.07\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 1.22\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.35\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.61(\mathrm{~s}$, $\mathrm{CH}_{3}-21$), $3.01\left(\mathrm{w}_{1 / 2}=22 \mathrm{~Hz}, 2 \mathrm{H}, 5 \mathrm{H}\right.$ and $\left.17+\mathrm{H}\right), 3.52\left(\mathrm{w}_{1 / 2}=23 \mathrm{~Hz}, 9-\mathrm{H}\right), 3.90\left(\mathrm{w}_{1 / 2}=17\right.$ $\mathrm{Hz}, 22-\mathrm{H}), 4.19\left(\mathrm{w}_{1 / 2}=23 \mathrm{~Hz}, 2+\mathrm{H}\right), 4.25\left(\mathrm{w}_{1 / 2}=8 \mathrm{~Hz}, 3-\mathrm{H}\right), 6.26(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 7-\mathrm{H})$, signals at $0.89(t), 1.38(q)$ and $3.57(m)$, traces of BuaNX.- IR(KBr): $1645 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$). - $\mathrm{C}_{3} \mathrm{H}_{500} \mathrm{O}_{7}$ (522.7), FAB MS (glycerol): 523 ([M+H]+, 42), 505 (72), 487 (100), 469 (43).

(20R.25S)-27-(3-(tert, -Buty1-dipheny1-silanyloxy)-propy 1)-22,25-epoxy-20-hydroxy-23,38,14-tris-(trimethylsilanyloxy)-58-cholest-7.22-dien-6-one (20c).

To a solution of 3d (96.1 $\mu \mathrm{mol}$, procedure b) in dry THF (2.0 ml) a solution of 100 (50.5 $\mathrm{mg}, 87.4 \mu \mathrm{~mol}$) in THF (1.0 ml) was added at $-78^{\circ} \mathrm{C}$, and the mixture was stirred for 4.2 h while warming up to $20^{\circ} \mathrm{C}$. Usual work up (Et2O) followed by LC (hexanes-ethyl acetate-NEt3 12:1:0.1) gave 3d ($23.3 \mathrm{mg}, 56 \%$), $10 \mathrm{am}\left(17.3 \mathrm{mg}, 34 \%\right.$), $20 \mathrm{c}(36.8 \mathrm{mg}, 43 \%) .-{ }^{1} \mathrm{H} \mathrm{NPR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 8=0.04,0.06$ and $0.10\left(3 \mathrm{~s} \mathrm{~s}^{\prime}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right.$ signals), 0.78 ($\mathrm{s}, \mathrm{CH}_{3}-19$), $0.92\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ 18), $1.02\left(\mathrm{~s}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}-21\right.$ and $\left.\mathrm{CH}_{3}-26\right), 2.93\left(\mathrm{~W}_{1 / 2}=12 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.37$ $\left(W_{1 / 2}=12 \mathrm{~Hz}, 9 H\right), 3.63\left(t, J=6.1 \mathrm{~Hz}, \mathrm{CH}_{2}-30\right), 3.71\left(\mathrm{~m}, \mathrm{w}_{1 / 2}=16 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.88$ (broad $\mathrm{s}, 3 \mathrm{H}), 4.52(\mathrm{t}, \mathrm{J}=2.2 \mathrm{~Hz}, 23-\mathrm{H}), 5.78(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 7+\mathrm{H}), 7.33-7.42$ and $7.62-7.66$ (Ar-H).- IR (CCI4): 3600-3200 (OH), 1715 (enol ether), 1670 (unsat. $C=0$), 1640, $1590 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{C}) .-\mathrm{C}_{5} \mathrm{HH}_{8} \mathrm{O}_{7} \mathrm{Si}_{4}(973.6), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=873\left(\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3}\right]^{+}, 0.3\right), 799$ (0.3), 725 (0.4), 605 (0.9), 577 (3), 503 (10), $466(15), 429(19), 355(25), 337$ (78), 199(100), 73 (53).

Addition of (\pm-3d to 10 a .
Reaction of (\pm)-3d with 10a, as described for the synthesis of 11a, followed by LC (ethyl acetate-ethanol 25:1) gave a mixture of $22 a$ and 220 (75\%, based on 10a). Prep. HPLC (i-octane-CHCl3-ethanol 15:15:1) gave 22b (35\%), 22a (33\%), and a mixture of both diastereomeres (7\%).

Addition of (S)-3d to 10a.

Reaction of (S)-3d with 10a, as described for the synthesis of 11a, followed by LC (ethyl acetate-ethanol 30:1) gave 22a (50\%, based on 10a). The specimen of 22a obtained in this exper iment was identical (HPLC) with 22a obtained in the preceding experiment.- HPLC ($5 \mathrm{\mu m}$ Si 100, i-octane-CHC13-ethano1 5:5:1), retention times: 22b: 16 min and 22a: 18 min .
(20R.25S)-27-[3-(tert, Buty]-dipheny1-silanyloxy)-propy1]-2ß.38, 14,20,25-50-pentahycroxy-cholest-7-ene-6.22-dione (22a).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.85\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 0.98\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.03(\mathrm{~s}, 9 \mathrm{H}, \mathrm{sitBu}), 1.15$ ($\mathrm{s}, \mathrm{CH}_{3}-26$), $1.42\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.41$ ($\mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz}, 13 \mathrm{~Hz}, 5 \mathrm{H}$), $2.54-2.70\left(17-\mathrm{H}_{1} \mathrm{CH}_{2}-23\right)$, $3.00\left(w_{1 / 2}=23 H z, 9-H\right), 3.65\left(t, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}-30\right), 3.86\left(w_{1 / 2}=23 \mathrm{~Hz}, 2-H\right), 4.01\left(\mathrm{w}_{1} / 2\right.$ $=9 \mathrm{~Hz}, 3+\mathrm{H}), 4.09\left(\mathrm{~s}, \mathrm{OH}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.78(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7 \mathrm{H}), 7.38$ and 7.66 ($\mathrm{Ar}-\mathrm{H}$), unidentified small signals at $\delta=0.88$ and 1.24.- IR (CHCl3): 3650-3200 (OH), 1695 ($C=0$), $1650 \mathrm{~cm}^{-1}$ (unsat. $C=0$). . Neither EI nor FAB MS could be obtained.
(20R,25R)-27-[3-(tert, -Butyl-diphenyls ilany loxy)-propyl]-2B,3B,14,20,25-penta-hydroxy-5ß-cholest-7-ene-6,22-dione (2\%).
${ }_{1} \mathrm{H}-\mathrm{NMP}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 0.99\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.03(\mathrm{~s}, 9 \mathrm{M}, \mathrm{SitBu}), 1.13$ ($\mathrm{s}, \mathrm{CH}_{3}-26$) , $1.43\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right), 2.42$ ($\left.\mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz}, 13 \mathrm{~Hz}, 5 \mathrm{H}\right), 2.55-2.68\left(17+\mathrm{H}, \mathrm{CH}_{2}-23\right)$, $3.00\left(w_{1 / 2}=23 \mathrm{~Hz}, 9 H\right), 3.65\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}-30\right), 3.86\left(\mathrm{~W}_{1 / 2}=22 \mathrm{~Hz}, 2-\mathrm{H}\right), 4.02\left(\mathrm{w}_{1 / 2}\right.$ $=9 \mathrm{~Hz}, 3 \mathrm{H}), 4.09\left(\mathrm{~s}, \mathrm{OH}\right.$, exchanges with $\left.\mathrm{D}_{2} \mathrm{O}\right), 5.79(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7 \mathrm{H}), 7.38$ and 7.66 ($\mathrm{Ar}-\mathrm{H}$), unidentified small signals at $8=0.88$ and 1.25.- IR ($\mathrm{CH} \mathrm{Cl}_{3}$): 3650-3200(OH), 1700 ($\mathrm{C}=0$), $1655 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$). - Nelther EI nor FAB MS could be obtained.

[^1]1077.5817 ([M-C4H9]+, 13, Calc for Cs $\mathrm{CHg}_{9} \mathrm{COsSig}_{6}$ 1077.5808), 987.5 (18), 897.5 (13), 807.5 (7), 561 (100).

(20R.25S)-27-[3-(tert, -Buty]-dipheny]-silanyloxy)-propy1]-23,38,14,20.25-pentakis-

(trimethyl-silanyloxy)-58-cholest-7-ene-6.22-dione (22c).
a) 22a was silylated as described for 11a to give, after LC (see preceding experiment) 22c in 71\% yield. b) 22c was also obtained from 20a by (i) opening with HC1 (see formation of 11a), (ii) silylation, (iii) LC (see above) in 78% overall yield.- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$), δ
 18), $1.17\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.21\left(\mathrm{~s}, \mathrm{Si}^{\mathrm{tBu}}\right), 1.42\left(\mathrm{~s}, \mathrm{CH}_{3}-21\right) .2 .51\left(\mathrm{~W}_{1 / 2}=21 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.55-$ 2.64 and $2.80-2.91\left(\mathrm{CH}_{2}-23\right), 2.95(\mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz}, 13 \mathrm{~Hz}, 5-\mathrm{H}), 3.07\left(\mathrm{w}_{1 / 2}=22 \mathrm{~Hz}, 9 \mathrm{H}\right)$, $3.69\left(t, J=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}-30\right), 3.92\left(\mathrm{w}_{1} / 2=20 \mathrm{~Hz}, 2+\mathrm{H}\right), 4.00\left(\mathrm{w}_{1} / 2=7 \mathrm{~Hz}, 3 \mathrm{H}\right), 5.94(\mathrm{~d}, \mathrm{~J}=$ $2.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.27$ and 7.80 ($\mathrm{Ar}+\mathrm{H}$).- IR ($\mathrm{CC} 1_{4}$): $1715(\mathrm{C}=0), 1665 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).$\mathrm{C}_{6} \mathrm{H}_{106 \mathrm{OsSi}}(1135.9), \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=1119\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 2\right)$, 1077.5798 ([M-C4H9]+, 17, Calc for $\mathrm{C}_{5} \mathrm{HHg}_{9} \mathrm{O}_{8} \mathrm{Si}_{6}: ~ 1077.5808$), 987.5 (10), 897.5 (17), 807.5 (9), 561 (100).

(20R, 22R,25R)-2R,3B, 14,20,22,25-Hexahydroxy-27-(3-hydroxy-propy1)-5B-cholest-7-en-6-one (21b).

21b was obtained from 22d (as described for 1a) by (i) DIBAH reduction in THF, (ii) oxidation with MnO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (iii) desilylation. (iv) $\mathrm{LC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH} 5: 1\right)$ in 43% yield.- ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{3} \mathrm{D}_{5} \mathrm{~N}$), $\delta=1.08$ ($\mathrm{s}, \mathrm{CH}_{3}-19$), 1.22 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 1.37 ($\mathrm{s}, \mathrm{CH}_{3}-26$), 1.59 (s , $\mathrm{CH}_{3}-21$), $2.98-3.07(5-\mathrm{H}, 17 \mathrm{H}), 3.59$ ($\mathrm{w}_{1 / 2}=20 \mathrm{~Hz}, 9 \mathrm{H}$), $3.89\left(\mathrm{w}_{1 / 2}=14 \mathrm{~Hz}, \mathrm{CH}_{2}-30,22-\right.$ H), $4.15-4.26(2-\mathrm{H}, 3-\mathrm{H}), 6.26(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7+\mathrm{H}) .-\mathrm{IR}(\mathrm{KBr}): 1635 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).$\mathrm{C}_{3} \mathrm{H} 5 \mathrm{oOs}$ (538.7), FAB MS (glycerol): $\mathrm{m} / \mathrm{z}(\%)=539$ ($[\mathrm{M}+\mathrm{H}]^{+}, 17$), 521 (32), 503 (42), 487 (54), 485 (100), 469 (22), 467 (23).

(20R,22R,25S)-2日,38, 14,20,22.25-Hexahydroxy-27-(3-hydroxy-propy 1)-5 β-cholest-7-en-6-one (21a).

21a was obtained from 22c by (i) DIBAH reduction in toluene (cf.7f, procedure 2), (ii) oxidation with MnO_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (iii) desilylation, (iv) $\mathrm{LC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M}-\mathrm{OH} 8: 1\right.$) in 83\% overall yield.- ${ }^{1} \mathrm{H}$ NR spectrum ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$) was identical with that of 21 b with the exception of : $\delta=3.87\left(W_{1 / 2}=11 \mathrm{~Hz}, \mathrm{CH}_{2}-30,22-\mathrm{H}\right.$).- $\mathrm{IR}(\mathrm{KBr}): 1635 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).- $\mathrm{C}_{3} \mathrm{OH}_{50 \mathrm{O}} \mathrm{B}_{8}$ (538.7), FAB MS (DMSO-glycerol): $m / z(\%)=539\left([M+H]^{+}, 14\right), 521$ (33), 503 (45), 487 (53), 485 (100), 469 (24), 467 (22).

Acknowledgements - It is a pleasure to thank Dr.D.Miller, Dr.W.Dietrich, and their colleagues for the MS and NR spectra. Financial support by the Deutsche Forschungsgemeinschaft, the Minister für Wissenschaft und Forschung des Landes Nordrhein westfalen (PhD grant to R.K.), and the Fonds der Chemischen Industrie is gratefully acknow ledged.

References and Notes

1 Preliminary Communications: a) U.Hedtmann, P.Welze1, Tetrahedron Lett. 1985, 26, 27732774; b) U.Hedtmann, K.Hobert, R.Klintz, P.Welzel, J.Frelek, M.Strangmann-D iekmann, A.Klöne, O.Pongs, Angew. Chem. 1989, 101, 1543-1545, Angew. Chem. Int. Ed. Eng 7. 1989, 28, 1515-1518.
2 Permanent Address: Department of Chemistry, Warszawa Un1versity, u1.Pasteura 1, PL-02-093 Warszawa (Poland)
3 Permanent Address: Institute of Organic Chemistry and Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria)
4 J.Koolman (ed.): Ecdysone - From Chemistry to Mode of Action, Georg Thieme Verlag, Stuttgart, 1989.
5 For most recent work, see a) G.Fe1g1, M.Gram, O.Pongs, Mucleic Acids Res. 1989, 17, 71677177; b) M.Strangmann-Diekmann, A.Klone, A.Ozyhar, F.Krek lau, H.-H.Kiltz, U.Hedtmann, P.Welze1, O.Pongs, Eur. J.B iochem. 1990, 189, 137-143; c) K.C.Burtis, C.S.Thumme1, C.W.Jones, F.D.Kar im, D.S.Hogness, Cell 1990, 61, 85-99; d) C.S.Thumme1, K.C.Burtis, D.S.Hogness, Cell 1990, 61, 101-111; e) W.A.Segraves, D.S.Hogness, Genes Deve1. 1990, 4, 204-219.

6 M.Ashburner, Dev.Bio7. 1974, 39, 141-157; M.Ashburner, C.Chihara, P.Meltzer, G.Richards, Cold Sor ing Harbor Symp.quant.Bio1. 1974, 38, 655-662.
7 Reviews: a) S.Green, P.Chambon, Nature (London), 1986 , 324, 209-252; b) H.Gronemeyer (ed.): Affinity Labelling and Cloning of Steroid and Thyroid Hormone receptors, Ellis Horwood, VCH, Chichester/We inheim, 1988.
8 For recent experiments of this type, see a) D.Guédin-Vuong, Y.Nakatani, B.Luu, G.Our isson, Tetrahedron Lett. 1985, 26, 5959-5962 and Croat.Chem.Acta 1985, 58, 547-557, b) Cf. B.A.Sage, D.H.S.Horn, T.M.Landon, J.D.O'Connor, Arch. Ins.Biochem. Phys iol. 1988, 25-33, c) P.Cherbas, L.Cherbas, S.-S.Lee, K.Nakanishi, Proc.Nat1.Acad.Sci.USA 1988, 85, 2096-2 100.
9 M.Lombest, M.Claire, P.Lustenberger, A.Michaud, M.-E.Rafestin-Oblin, J.Biol.Chem. 1987, 262, 8121-8127.
10 P.Cherbas, D.A.Trainor, R.J.Stonard, K.Nakanishi, J.Chem.Soc., Chem.Commun. 1982, 13071308.

11 Review: R.Bergamasco, D.H.S.Horn in J.A.Hoffmann (ed.): Progress in Ecdysone Research, Elsevier/North Holland Biomedical Press, Amsterdam 1980, p. 299-324.
12 Review: T.Kametani, M.Tsubuki, lc.cit. ${ }^{4}$, p.74-96.
13 a) G.Hüppi, J.B.Sidda11, J.Am.Chem.Soc. 1967, 89, 6790-6792 ; b) H.Hikino, K.Mohri, Y.Hikino, S.Arihara, T.Takemoto, H.Mori, K.Shibata, Tetrahedron 1978, 32, 3015-3021, and previous work cited therein; c)M. Adamczyk, E.K.Dolence, D.S.Watt, M.R.Christy, J.H.Reibenspies, O.P.Anderson, J.Org.Chem. 1984, 49, 1378-1382; d) G.M.Segal, S.Zh.Sydykov, I.V.Torgov, Izv.Akad.Nauk.SSR Ser.Khim. 1982, 317-325.

14 D.J.Cram, F.A.Abd Elhafez, J.Am.Chem.Soc. 1962, 74, 5828-5835; J.Mulzer, Nachr.Chem. Tech.Lab. 1984, 32, 16-18.
15 T.Kametani, M.Tsubuki, K.Higurashi, T.Honda, J.Org.Chem. 1986, 51, 2932-2939.
16 U.Kerb, R.Wiechert, A.Fur lenmeier, A.Fürst, Tetrahedron Lett. 1968, 4277-4280.
17 Personal communication of Prof.Wtechert, see also N.K.Chaudhuri, R.Nickolson, H.Kimball, M.Gut, Steroids 1970, 15, 525-539.

18 R.K1intz, Dissertation, Ruhr-Universität Bochum, 1990.
19 1,3-Dimethyltetrahydro-2(1H)-pyr imidinon, T.Mukhopadhyay, D.Seebach, Melv.Chim.Acta 1982, 65, 385-391.
20 see E.Juraisti, E.L.Elie1, Tetrahedron Lett. 1977, 543-546; K.S.Kyler, D.S.Watt, J.Org.Chem. 1981, 46, 5182-5188.

21 J.Redpath, F.J.Zeelen, Chem.SoC.Rev. 1983, 12, 75-98.
22 D.M.Piatak, J.Wicha, Chem.Rev. 1978, 78, 199-241.
23 U.Hedtmann, Dissertation, Ruhr-Universität Bochum, 1987.
24 Less clear in this respect is the observation that even on reduction of $7 a$ with LiAlH (OtBu) 3 in the presence of TMEDA or HMPA and with Bu4NBH4 5 a was the main product; ${ }^{23}$ cf. J.A.Katzenellenbogen, S.B.Bowlus, J.Org. Chem 1972, 38, 627-632; M.T.Reetz, Angew. Chem. 1984, 96, 542-555, Angew.Chem. Int.Ed.Eng7. 1984, 23, 556; E.K.Dolence, M.Adamczyk, D.S.Watt, G.B.Russe11, D.H.S.Horn, Tetrahedron Lett. 1985, 26, 1189-1192; M.Bhupathy, T.Cohen, Tetrahedron Lett. 1985, 26, 2619-2622; Y.Yamamoto, K.Maruyama, J.Am.Chem.Soc. 1985, 107, 6411-6413.

25 cf . X.Chen, E.R.Hortelano, E.L.Elie1, S.V.Frye, J.Am. Chem. Soc. 1990, 112, 6130-6131.
26 E.J.Corey, H.Cho, C.Rücker, D.H.Hua, Tetrahedron Lett. 1981, 22, 3455-3458.
27 This silylation method gave more reliable results than the previously published with $N, O-$ bis(trimethylsilyl)acetamide method. 1a
28 N.T.Anh, Top.Curr.Chem. 1980, 88, 145-162; M.Cherest, H.Felkin, N.Prudent, Tetrahedron Lett. 1968, 2199-2204.
29 see ref. 16
30 J.Frelek, Z.Majer, A.Perkowska, G.Snatzke, I.Vlahov, U.Wagner, Pure App 1.Chem. 1935, 57, 441-451.
${ }^{31}$ Assignment by comparison with the spectrum of $1 \mathbf{1 a}$.
32 J.Attenburrow, A.F.B.Cameron, J.H.Chapman, R.M.Evans, B.A.Hems, A.B.A.Jansen, T.Walker, J.Chem.Soc. 1952, 1094-1111.

33 18b and 19b, respectively, contained small amounts of the respective (22S) isomer formed in the DIBAH reduction step. The d.e. was determined after sily1 group removal.

[^0]: 28, 38, 14-Tr is-(tr imethy lsilany loxy)-5 -prean-7-ene-6,20-dione (106).
 $10 a$ was silylated with 3 equiv. of 2,6 -lutidine and trimethylsily 1 triflate as described for 7a (81% yield after LC (hexanes-ethyl acetate-NEt3 10:1:0.1)).- ${ }^{1} \mathrm{H} \mathrm{MR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.08,0.10,0.12$ (3 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), 0.56 ($\mathrm{s}, \mathrm{CH}_{3}-18$), 0.92 ($\mathrm{s}, \mathrm{CH}_{3}-19$), 2.13 (s , $\mathrm{CH}_{3}-21$), 2.50 (dd, $\left.\mathrm{J}=4.1 \mathrm{~Hz}, 13.2 \mathrm{~Hz}, 5-\mathrm{H}\right), 2.96\left(\mathrm{~W}_{1 / 2}=8 \mathrm{~Hz}, 9+\mathrm{H}\right), 3.73\left(\mathrm{~W}_{1 / 2}=12 \mathrm{~Hz}, 2-\right.$ H), 3.89 (broad $s, 3-H), 5.81$ ($d, J=2.3 \mathrm{~Hz}, 7-\mathrm{H}$).- IR (CC14): 1705 ($\mathrm{C}=0$), $1670 \mathrm{~cm}^{-1}$ (unsat. $\mathrm{C}=0$).- MS: $\mathrm{m} / \mathrm{z}(\%)=578.3279\left([\mathrm{M}]^{+}\right.$, Calc for $\mathrm{C}_{3} \mathrm{OH}_{5} 4 \mathrm{O}_{5} \mathrm{~S} 13: 578.3279,4$), 550 (4), 488(4), 466 (34), 185 (91), 73 (100).

[^1]: (20R,25R)-27-[3-(tert,-Buty1-diphenyl-silanyloxy)-propy1]-28,31, 14,20,25-pentak is-
 (tr imethyl-silany loxy)-58-cholest-7-ene-6.22-dione (22d).
 22b was sllylated as described for 11a. LC (hexanes-ethyl acetate-NEt 3 30:1:0.15) gave 22d in 79\% yield.- ${ }^{1} \mathrm{H}$ NR ($400 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{6}$), $\delta=0.06,0.17,0.18,0.24$ and 0.34 (5 s 's, $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}$ signals), $0.70\left(\mathrm{~s}, \mathrm{CH}_{3}-19\right), 0.92\left(\mathrm{~s}, \mathrm{CH}_{3}-18\right), 1.16\left(\mathrm{~s}, \mathrm{CH}_{3}-26\right), 1.20(\mathrm{~s}, \mathrm{Sit} \mathrm{Bu}), 1.41(\mathrm{~s}$, $\left.\mathrm{CH}_{3}-21\right), 2.51\left(\mathrm{~W}_{1 / 2}=19 \mathrm{~Hz}, 17-\mathrm{H}\right), 2.56-2.67$ and $2.75-2.86\left(\mathrm{CH}_{2}-23\right), 2.96(\mathrm{dd}, \mathrm{J}=3.5 \mathrm{~Hz}$, $13 \mathrm{~Hz}, 5-\mathrm{H}), 3.07\left(\mathrm{w}_{1 / 2}=23 \mathrm{~Hz}, 9-\mathrm{H}\right), 3.69\left(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, \mathrm{CH}_{2}-30\right), 3.92\left(\mathrm{w}_{1 / 2}=20 \mathrm{~Hz}, 2-\right.$ H), $4.00\left(W_{1 / 2}=8 \mathrm{~Hz}, 3-H\right), 5.94(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 7-\mathrm{H}), 7.26$ and $7.79(\mathrm{Ar}-\mathrm{H}) .-\mathrm{IR}\left(\mathrm{CO} \mathrm{l}_{4}\right)$: $1715(\mathrm{C}=0), 1665 \mathrm{~cm}^{-1}$ (unsat. 00).~ C6iH100O8Sis (1135.9), MS: $\mathrm{m} / \mathrm{z}(\%)=1119\left(\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}, 2\right)$,

