CONCLUSIONS

The five-membered heterocycle in the structure of 3-oxo-3-chloromethyl-2,3-dihydro-1,3benzoxaphosphole is planar to within $\pm 0.03 \AA$ with the greatest (CPC) endo bond angle equal to $91.33(7)^{\circ}$.

LITERATURE CITED

1. V. A. Naumov and L. V. Vilkov, The Molecular Structures of Organophosphorus Compounds [in Russian], Nauka, Moscow (1986).
2. International Tables for X-Ray Crystallography, Vol. 3, Kynoch Press, Birmingham, England (1968), p. 276.
3. R. Taylor and O. Kennard, J. Am. Chem. Soc., 104, 5063 (1982).
4. A. N. Chekhlov, S. P. Ionov, A. N. Bovin, et al., Izv. Akad. Nauk SSSR, Ser. Khim., 2240 (1985) 。

REACTION OF ELEMENTAL PHOSPHORUS WITH PHENOLS

B. E. Ivanov, E. K. Badeeva,

UDC 542.91:546.18:547.56 and S. S. Krokhina

The reactions of elemental phosphorus $\left(P_{4}\right)$ with phenols to give triaryl phosphites hold both practical and theoretical interest. However, the available data on this reaction does not indicate their general features [1-3]. In the present work, we studied the reactions of P_{4} with various phenols in order to clarify, the effect of the pK_{a} value of the phenol and the nature and position of the ring substituent on the course of the reaction and yield of triaryl phosphites.

The PhO^{-}anions do not react with P_{4}, while AlkO^{-}and $A 1 \mathrm{kS} \mathrm{S}^{-}$anions undergo quantitative. reaction $[2,4]$. This discrepancy results both from the reduced nucleophilicity of Pho ${ }^{-}$ anions and the strong association of these ions in solution in comparison with AlkO and AlkS ${ }^{-}$ ions [5]. In order to increase the actual concentration of free Ph^{-}in solution, the reactions of P_{4} with phenols were studied with the addition of crown ethers or in DMF. The reactions were carried out in the presence of corresponding phenolates and CCl_{4}. The following phenols were selected for study: phenol (I), $0^{-}, m^{-}$, and p-cresols (II)-(IV), o-ethylphenol (V) , p-tert-butylphenol (VI), p-chlorophenol (VII), p-fluorophenol (VIII), and p-nitrophenol (IX):

$$
\begin{aligned}
& \mathrm{P}_{4}+6 \mathrm{RONa}+6 \mathrm{ROH}+6 \mathrm{CCI}_{4} \rightarrow 4(\mathrm{RO})_{3} \mathrm{P}+6 \mathrm{NaCl}+6 \mathrm{CCl}_{3} \mathrm{H} \\
& \mathrm{R}=\mathrm{Ph}(\mathrm{X}) ; \quad o-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathrm{XI}) ; \quad m-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathrm{XII}) ; \quad p-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathrm{XIII}) ; \quad o-\mathrm{EtC}_{6} \mathrm{H}_{4} \quad(\mathrm{XIV}) ; \\
& p-(t-\mathrm{Bu}) \mathrm{C}_{6} \mathrm{H}_{4}(\mathrm{XV}) .
\end{aligned}
$$

The reactions were carried out in an argon atmosphere at $50-90^{\circ} \mathrm{C}$ over $1-5 \mathrm{~h}$ depending on the phenol taken in DMF or in the presence of 15 -crown-5 or 18 -crown-6. The reactions in the presence of cation-solvating agents proceed rather selectively and rapidly to give triaryl phosphites with an impurity of triaryl phosphates or only phosphates depending on the nature of the phenol. The separation of the reaction mixtures containing crown ethers is difficult due to the high solubility of the complexes of the crown ethers and reaction products in same solvents. The range of phenol pK_{a} values, in which reaction with P_{4} is possible, is $9-11$ The reaction of P_{4} with phenols (I)-(IV) proceeds with the complete conversion of P_{4} and the greatest triaryl phosphite yields. The yield of triaryl phosphites (X)-(XIII) is $85,73,66$, and 56%, respectively. The conversion of P_{4} and the triaryl phosphite yield drop with increasing size of the alkyl substituent [phenols (V) and (VI)]: (XIV) was obtained in 25% yield, while (XV) was detected only spectrally. The corresponding phosphates, $\left(\mathrm{P}-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{O}\right){ }_{3} \mathrm{PO}$ (XVI) and ($\mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{O}$) ${ }_{3} \mathrm{PO}$ (XVII) were obtained in 11 and 14% yields in the case of halophenols (VII) and (VIII). THe reaction of p-nitrophenol (IX) ($\mathrm{pK}_{\mathrm{a}} 7.15$) with P_{4} does not proceed.

[^0]Thus, the composition and yield of the products formed in the reaction of P_{4} with phenols depend on the acidity of the phenol and the nature of the ring substituent.

EXPERIMENTAL

The reactions were carried out in a glass reactor equipped with a stirrer, bubbler, thermometer, and condenser in a dry argon atmosphere in absolute solvents. The sodium phenolates were obtained according to Williams and Donahue [6]. The ${ }^{31} \mathrm{P}$ NMR spectra were taken on a KGU-4 spectrometer at 10.2 MHz relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$. The IR spectra were taken on a Specord 75IR spectrophotometer. The gas-liquid chromatographic analysis was carried out on a Tsvet 5 chromatograph using a column packed with 15% FM-16 on Chromosorb and helium as the gas carrier.

Triphenyl Phosphite (X). A sample of 10.6 g (0.048 mole) 15 -crown-5 was added to a mixture of 1 g (0.032 g -atom) $\mathrm{P}_{4}, 4.5 \mathrm{~g}$ (0.048 mole) (I), and 5.6 g (0.048 mole) PhoNa in $40 \mathrm{ml} \mathrm{CCl} 1_{4}$ at $50^{\circ} \mathrm{C}$ and heated for 3 h at $50-70^{\circ} \mathrm{C}$ until P_{4} was entirely consumed. The reaction mixture was evaporated at 10 mm and the residue was extracted with ether. After removal of the ether, the residue was subjected to molecular distillation at $170^{\circ} \mathrm{C}$ and 10 mm to give 8.5 g (85%) (X), $\mathrm{n}_{\mathrm{D}}{ }^{5} 1.5890$. Found: $\mathrm{P}, 9.42 \%$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}$: P , 9.5\% [7].

Tri(o-methylphenyl) Phosphite (XI). A sample of 18.7 g (0.14 mole) o- $\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{ONa}$ was added in portions to a mixture of 15.5 g (0.14 mole) (II), 22 g (0.14 mole) $\mathrm{CCl}_{4}, 2.8 \mathrm{~g}$ (0.09 g -atom) P_{4}, and $26 \mathrm{~g}(0.35 \mathrm{~mole}) \mathrm{DMF}$ at $20^{\circ} \mathrm{C}$. The reaction mixture was warmed to $40-50^{\circ} \mathrm{C}$ and a finely dispersed precipitate formed. The mixture was heated at $70^{\circ} \mathrm{C}$ until P_{4} was completely consumed. The NaCl precipitate was separated by centrifugation and the supernatant was evaporated at 10 mm . Gas-liquid chromatography indicated that the volatile fraction contained $\mathrm{CHCl}_{3}, \mathrm{CCI}_{4}$, and DMF. The ${ }^{31} \mathrm{P}$ NMR spectrum of the residue gave signals at $\delta 131$ and -18 ppm 。 Fractionation gave $23 \mathrm{~g}(73 \%)(\mathrm{XI})$, bp $183^{\circ} \mathrm{C}(0.8 \mathrm{~mm}), \mathrm{n}_{\mathrm{D}}^{25} 1.5758$. Found: P , 8.25\%. Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{PO}_{3}: \mathrm{P}, 8.8 \%$. ठ P 131 ppm [7].

Tri(m-methylpheny1) Phosphite (XII). a) Phosphite (XII) was obtained by analogy with (XI) from 22.3 g (0.2 mole) (III), 31.6 g (0.2 mole) $\mathrm{CCl}_{4}, 4 \mathrm{~g}$ (0.13 g -atom) $\mathrm{P}_{4}, 37.6 \mathrm{~g}$ (0.51 mole) DMF, and $26.8 \mathrm{~g}\left(0.2\right.$ mole) $\mathrm{m}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{ONa}$. The yield of (XII) was $30 \mathrm{~g}(66 \%)$, bp $135^{\circ} \mathrm{C}$ (0.1 mm), $\mathrm{n}_{\mathrm{D}}^{25} 1.5740$. Found: $\mathrm{P}, 8.42 \%$. Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{PO}_{3}: \mathrm{P}, 8.8 \%$ 。 $\delta \mathrm{P} 130 \mathrm{ppm}$ [7].
b) A sample of $5.66 \mathrm{~g}(0.025$ mole) 15 -crown-5 was added to a mixture of $0.5 \mathrm{~g}(0.016 \mathrm{~g}-$ atom) $\mathrm{P}_{4}, 2.78 \mathrm{~g}$ (0.025 mole) (III), 3.35 g (0.025 mole) $\mathrm{m}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{ONa}$, and $15 \mathrm{ml} \mathrm{CCl} \mathrm{Cl}_{4}$ and heated for 3 h at $50-70^{\circ} \mathrm{C}$ until P_{4} was completely consumed. The mixture was evaporated in vacuum and the residue was extracted with ether. After removal of the ether, the residue was subjected to molecular distillation at $170^{\circ} \mathrm{C}$ (10 mm) to give 3 g (53%) (XII) identical to the sample described above.

Tri(p-methylphenyl) Phosphite (XIII). This was obtained by analogy with (XI) from 22.3 g (0.2 mole) (IV), $31.6 \mathrm{~g}(0.2 \mathrm{~mole}) \mathrm{CCl}_{4}, 4 \mathrm{~g}\left(0.129 \mathrm{~g}\right.$-atom) $\mathrm{P}_{4}, 37.6 \mathrm{~g}$ (0.51 mole) DMF, and $26.8 \mathrm{~g}(0.2 \mathrm{~mole}) \mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{ONa}$. At the end of the reaction, the mixture was treated with water and the lower layer was separated. The aqueous phase was extracted with two $100-\mathrm{ml}$ portions of ether. The ethereal extracts were combined with the organic layer and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent, the residue was distilled to give 25.5 g (56%) (XIII), bp $250^{\circ} \mathrm{C}(10 \mathrm{~mm})$, $\mathrm{n}_{\mathrm{D}}^{25} 1.5725$. Found: $\mathrm{P}, 8.35 \%$. Calculated for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{PO}_{3}: \mathrm{P}, 8.8 \%$. $\delta \mathrm{P} 128 \mathrm{ppm}[7]$.

Tri(p-tert-butylphenyl) Phosphite (XV). This was obtained by analogy with (XI) from 2.3 g (0.074 g -atom) $\mathrm{P}_{4}, 17.8 \mathrm{~g}$ (0.12 mole) (VI), 20.4 g (0.12 mole) p -($\left.\mathrm{t}-\mathrm{Bu}\right) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ONa}, 18.2 \mathrm{~g}$ (0.12 mole) CCl_{4}, and 16 g DMF. A total of $1.2 \mathrm{~g}(52 \%)$ unreacted P_{4} was recovered from the reaction mixture. The ${ }^{31} \mathrm{P}$ NMR spectrum of the residue showed a signal for (XV) at $\delta \mathrm{P} 132$ ppm [8]. Phosphite (XV) could not be isolated in pure form.

Tri(o-ethylphenyl) Phosphite (XIV). A sample of 11.8 g (0.08 mole) o-EtC EH_{4} ONa was added in portions to a mixture of $10 \mathrm{~g}\left(0.08\right.$ mole) (V), 12.67 g (0.08 mole) $\mathrm{CCl}_{4}, 1.6 \mathrm{~g}$ (0.05 g-atom) P_{4} and $15 \mathrm{~g}\left(0.2\right.$ mole) DMF at $70^{\circ} \mathrm{C}$ and heated for 3 h at $90^{\circ} \mathrm{C}$. A portion of the solvent was evaporated. A precipitate of NaCl and unreacted P_{4} was formed upon the addition of 200 ml acetone. The precipitate was filtered off and dissolved in water; 0.4 g (25%) P_{4} was separated. The filtrate was evaporated and the residue was fractionated to give 6 g of a fraction with bp $144-160^{\circ} \mathrm{C}(0.1 \mathrm{~mm})$, $\mathrm{n}_{\mathrm{D}}{ }^{5} 1.5591$ consisting of a mixture of (XIV), $\delta \mathrm{P} 132 \mathrm{ppm}$, and tri(o-ethylpheny1) phosphate, $\delta \mathrm{P} 16 \mathrm{ppm}$ [8] as indicated by ${ }^{31} \mathrm{P}$ NMR spectroscopy. The ratio of the integral intensities of these peaks was 4:1.

Tri(p-fluorophenyl) Phosphate (XVII). A sample of 17.3 g (0.13 mole) $\mathrm{p}-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{ONa}$ was added in portions to a mixture of 14.4 g (0.13 mole) VIII), 19.6 g (0.12 mole) CCl $\mathrm{Cl}_{4}, 2.5 \mathrm{~g}$ (0.08 g -atom) P_{4}, and $23.5 \mathrm{~g}(0.32 \mathrm{~mole}) \mathrm{DMF}$ and heated for 5 h at $70-90^{\circ} \mathrm{C}$. The reaction mixture was treated consecutively with water and ether and 1.3 g (52\%) unreacted P_{4} was separated. After the removal of P_{4}, the filtrate was treated with $1: 10$ methanol-water. The lower layer containing (XVII) was separated. Water was removed by azeotropic distillation with benzene. The residue was subjected to molecular distillation at $140-150^{\circ} \mathrm{C}$ (10 mm). The heavy vat residue crystallized. These crystals were washed with hexane to give 2 g (14\%) (XVII) relative to reacted $\mathrm{P}_{4}, \mathrm{mp} 50-52^{\circ} \mathrm{C}$. Found: C, $56.40 ; \mathrm{H}, 3.20 ; \mathrm{P}, 8.23 \%$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{PO}_{4}: \mathrm{C}, 56.80 ; \mathrm{H}, 3.15 ; \mathrm{P}, 8.15 \%$. $\delta \mathrm{P} 18 \mathrm{ppm}, \nu_{\mathrm{P}}=01290 \mathrm{~cm}^{-1}$ [8].

Tri(p-chlorophenyl) Phosphate (XVI). This was obtained by analogy with (XVII) from $2.8 \mathrm{~g}\left(0.09 \mathrm{~g}\right.$-atom) $\mathrm{P}_{4}, 18.57 \mathrm{~g}(0.14 \mathrm{~mole})(V I I), 22.1 \mathrm{~g}\left(0.14 \mathrm{~mole}^{2} \mathrm{CCl}_{4}, 26.4 \mathrm{~g}\right.$ (0.36 mole) DMF, and 21.7 (0.14 mole) $\mathrm{p}_{\mathrm{Cl}} \mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{ONa}$. A total of 1.7 g (60.7%) unreacted P_{4} was recovered from the reaction mixture. The yield of (XVI) was 1.6 g (10.5% relative to reacted P_{4}), mp $112^{\circ} \mathrm{C}$. Found: $\mathrm{P}, 7.67 \%$. Calculated for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{3} \mathrm{PO}_{4}: \mathrm{P}, 7.22 \%$, o $\mathrm{P} 17 \mathrm{ppm}, v \mathrm{p}=0$ $1300 \mathrm{~cm}^{-1}$ [8].

CONCLUSIONS

The composition and yield of the products formed upon the reaction of elemental phosphorus with phenols depends on the acidity of the phenol and the nature of the ring substituent. The phenol pk_{a} range, in which the reaction of elemental phosphorus with phenols is possible, is 9-11.

LITERATURE CITED

1. German Democratic Republic Patent No. 152,132; Chem. Abstr., 97, 324008n (1982).
2. C. Brown, R. F. Hudson, G. A. Wartew, and H. Coates, Phosphorus Sulfur, 6, 481 (1979).
3. S. I. Vol'fkovich, V. K. Kuskov, and K. F. Koroteeva, Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk, 5 (1954).
4. C. Brown R. F. Hudson, and G. A. Wartew, Phosphorus Sulfur, 5, 121 (1978).
5. M. Hiraoka, Studies in Organic Chemistry, Vol. 12: Crown Compounds. Their Characteristics and Applications, Elsevier, Amsterdam (1982).
6. F. G. Williams and P. E. Donahue, J. Org. Chem., 42, 3414 (1977).
7. G. M. Kosolapoff and L. Maier (eds.), Organic Phosphorus Compounds, Vol. 6, New York (1973), p. 410.
8. M. M. Crutchfield, C. H. Dungan, G. H. Letcher, et al., Topics in Phosphorus Chemistry, Vol. 5, Interscience Publ., New York-London-Sydney (1967), p. 263.

[^0]: A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Branch, Academy of Sciences of the USSR. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2632-2634, November, 1988. Original article submitted December 14, 1987.

