

0040-4020(94)E0205-8

# 3H-Azepines and Related Systems. Part 5.1 Photo-induced Ring Expansions of o-Azidobenzonitriles to 3-Cyano- and 7-Cyano-3Hazepin-2(1H)-ones

Kaddour Lamara, Alan D. Redhouse, Robert K. Smalley,\* and J. Robin Thompson

Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, U.K.

Abstract: Unlike other aryl azides bearing electron-withdrawing ortho-substituents, o-azidobenzonitriles on photolysis in aqueous-tetrahydrofuran yield mixtures of the expected 3-cyano- and the unexpected 7-cyano-3*H*-azepin-2(1*H*)-ones. In one instance ring-contraction to a 2-azabicyclo[3.2.0]hept-6-ene-3-one is noted. X-Ray crystallographic data for 7-cyano- and 4-chloro-7-cyano-3*H*-azepin-2-one, and for the azabicycloheptenone, are presented.

The photo-induced ring-expansion of an aryl azide in the presence of a nucleophile is a well-established synthetic route to 2-substituted 3H-azepines.<sup>2</sup> The method is particularly efficient for aryl azides 1 bearing an electron-withdrawing *ortho*-substituent and in a 1:1 alcohol-tetrahydrofuran solution, or in 1:1 aqueous tetrahydrofuran, practicable yields of 2-alkoxy-3H-azepines<sup>3</sup> 2 and 3H-azepin-2-ones<sup>1</sup> 3 respectively, are realised.



 $X = CO_2Me$ ,  $SO_2NH_2$ ,  $CO_2H$ , CONHR

The nature of the intermediate(s) involved in these ring-expansions is still open to debate. Recent<sup>4</sup> kinetic evidence supports the intermediacy of both a benzazirine<sup>\*</sup> 5 (as proposed originally<sup>5</sup>) and a didehydroazepine 4 in the photo-induced ring-expansion of 3,4-diacylaminophenyl azides, rather than a singlet nitrene-didehydroazepine system favoured by earlier workers,<sup>6</sup> for other aryl azides under similar conditions.

In either case, the intermediate can be trapped by a nucleophile (RNH<sub>2</sub>, ROH or H<sub>2</sub>O) to yield initially a 1H-azepine 6,<sup>8</sup> which rearranges subsequently, by hydrogen shift, to the more stable 3H-isomer 7.<sup>9</sup>

<sup>\*</sup> There is convincing evidence for the participation of fused azirines in the ring-expansion of bicyclic nitrene systems.<sup>7</sup>



Two isomeric didehydroazepines 8 and 9 (or benzazirines) are possible from an *ortho*-substituted arylazide, but generally only one product, namely, the 3-substituted-3*H*-azepine 10, is obtained:



However, in rare instances, the 7-substituted 3*H*-azepines, arising from trapping of the isomeric didehydroazepine **9** (or benzazirine) have been isolated. For example, irradiation of *o*-azidoacetophenone in piperidine furnished a 1:1 mixture of the 3- and 7-acetyl-2-piperidino-3*H*-azepines (**10** and **11**;  $R = COCH_3$ ,  $Nu = C_5H_{10}N$ );<sup>10</sup> in methanol solution, 7-acetyl-2-methoxy-3*H*-azepine (identified only tentatively from its <sup>1</sup>H n.m.r. spectrum) was noted.<sup>†</sup>

In an carlier paper<sup>14</sup> we noted that o-azidobenzonitrile (1; X = CN), unlike the other ortho-substituted aryl azides (1, X = as shown) being studied, yielded a mixture (by <sup>1</sup>H n.m.r.) of the expected 3-cyano- and the unexpected 7-cyano-2-methoxy-3*H*-azepines (10 and 11; R = CN, Nu = OMe). This anomalous result prompted us to investigate further the ring-expansion of o-cyanoaryl azides. In this paper we report our work on the photolysis of some o-azidobenzonitriles in aqueous tetrahydrofuran most of which yield varying amounts of the uncommon and unexpected 7-cyano- isomer together with, in some cases, the 3-cyanocompound.

<sup>&</sup>lt;sup>†</sup> Mixtures of 3- and 7-substituted 3*H*-azepines are also formed by photolysis of 2,2-dimethylindazole in dilute sulphuric acid, <sup>11</sup> and by deoxygenation of aromatic nitro-compounds with tervalent phosphorus compounds in the presence of amines<sup>12,13</sup>

The 4- and 5-substituted 2-azidobenzonitriles 13a,b,c were prepared from the corresponding 2nitrobenzoic acids as outlined in Scheme 1.



```
13 a) R = 4-Cl; b) R = 5-Cl; c) R = 5-Me; d) R = 5-CN.
```

i) SOCl<sub>2</sub>, PhMe, reflux; ii) 0.88 NH4OH; iii) SOCl<sub>2</sub>, reflux; iv) TiCl<sub>3</sub>, acetone, H<sub>2</sub>O; v) NaNO<sub>2</sub>, HCl, 0°C; vi) NaN<sub>3</sub>, NaOAc, H<sub>2</sub>O, 0-5°C.

### Scheme 1

The dinitrile 13d was prepared likewise from the nitrodicarboxylic acid (12; R = 5-CO<sub>2</sub>H). 3-Methyl-2-azidobenzonitrile 14 was obtained from 7-methyl isatin as outlined in Scheme 2.



i) CCl<sub>3</sub>CHO, NH<sub>2</sub>OH, H<sub>2</sub>O, EtOH; ii) 98% H<sub>2</sub>SO4; iii) NaOH, H<sub>2</sub>O<sub>2</sub>; iv) NaNO<sub>2</sub>, HCl, 0°C; v) NaN<sub>3</sub>, NaOAc, H<sub>2</sub>O, 0-5°C; vi) SOCl<sub>2</sub>, PhMe reflux; vii) 0.88 NH<sub>4</sub>OH; viii) SOCl<sub>2</sub>, reflux.

#### Scheme 2

We have reported previously<sup>15</sup> the facile cyclisation of 2-azidoanilides to 2-aryl-3-chloro-2*H*-imidazoles with thionyl chloride. In this case, however (step viii, Scheme 2), as with 2-azido-*N*-alkylbenzamides, dehydration to the nitrile, rather than cyclisation, prevails.

#### Photolysis of 2-Azidobenzonitriles

Irradiation (10 h.) of 2-azidobenzonitrile in 1:1 tetrahydrofuran-water solution furnished a separable mixture of azepinones along with unreacted azide and trace amounts of *o*-aminobenzonitrile. The major product (30%), on the basis of its <sup>1</sup>H n.m.r. spectrum, was assigned as 3-cyano-3H-azepin-2(1H)-one 15a



The minor product (16%), again on the basis of its <sup>1</sup>H n.m.r. spectrum was designated as the isomeric 7cyano-3*H*-azepin-2(1*H*)-one 16a. The methylene unit at C-3 appears as a high field doublet ( $\delta$  2.99) coupled (J 6.8 Hz) to the triplet alkene proton ( $\delta$  5.93) at C-4. Unequivocal evidence for the 7-cyano-2-azepinone structure was obtained by X-ray analysis (Fig. 1).



Figure 1. Molecular structure of 7-cyano-3H-azepin-2(1H)-one (16a)

Prolonged irradiation (21 h) of 2-azidobenzonitrile in aqueous-THF resulted in a decrease in yield of the 3-cyano isomer (to 10%) and an increase in yield (to 21%) of the 7-cyano derivative. However, the possibility of photoisomerisation of the 3-cyano- compound to the 7-cyano- was discounted when it was found that irradiation of pure 3-cyano-3H-azepin-2(1H)-one in aqueous-THF produced no 7-cyano-isomer (by t.l.c.), only tarry products.

Photolysis of 2-azido-5-methyl 13c and 2-azido-4-chloro-benzonitrile 13a proceeded in a similar manner to give mixtures of the 3-cyano- 15b, 15c and 7-cyano-2-azepinones 16b, 16c in 30% and 14%, and 25% and 14% yields, respectively.

Whereas, the structures of the isomeric methyl azepinones could be assigned unambiguously on the basis of their <sup>1</sup>H n.m.r. spectra, the p.m.r. spectrum of the 7-cyano-chloroazepinone was not immediately understandable. In addition to the singlet expected for the 3-CH<sub>2</sub>-unit, there was only a 2 proton singlet resonance signal ( $\delta$  6.2) for the alkene protons at C-5 and C-6 rather than the anticipated two sets of doublets. However, this is a coincidental overlap of the two signals, since an X-ray analysis (Fig. 2) of the product confirmed its structure as the 7-cyano-3*H*-azepin-2-one 16c.



Figure 2. Molecular structure of 4-chloro-7-cyano-3H-azepin-2(1H)-one (16c)

Irradiation of 2-azido-5-chlorobenzonitrile furnished a different mixture of products. Chromatographic separation of the two major products yielded 7-cyano-5-chloro-3*H*-azepinone 17 (10%) and a minor (8%) isomeric product which, from its <sup>1</sup>H n.m.r. spectrum was not the 3-cyano-5-chloro-isomer. In particular, the characteristic doublet 3-methine signal was absent and there was only a single uncoupled alkene proton resonance. An X-ray structure determination (Fig. 3) revealed that the product is in fact the bicycle 18 formed by a  $4\pi$ -electrocyclic, disrotatory ring closure of the 7-cyano-azepin-2(1*H*)-one.



Similar ring contractions have been noted previously for 3H-azepin-2(1H)-ones,<sup>16-18</sup> and for 3H-azepines.<sup>19</sup>



Figure 3. Molecular structure of 6-chloro-1-cyano-2-azabicyclo[3.2.0]hept-6-ene-3-one

The dicyanoaryl azide 13d also failed to yield a 3-cyano-3*H*-azepin-2(1*H*)-one. In this case an approximately 50:50 mixture (by <sup>1</sup>H n.m.r. spectroscopy) of 5,7-dicyano-3*H*-azepin-2(1*H*)-one (16d; R = 5-CN) and 2,4-dicyanoaniline was obtained.

Irradiation of 2-azido-3-methylbenzonitrile, in which both *ortho* positions to the azide group are blocked by substituents, furnished 2,2'-dicyano-6,6'-dimethylazobenzene (10%) as the sole identifiable product. The inhibition of the photo-induced ring-expansion of 2,6-disubstituted phenyl azides to azepines has been noted previously.<sup>20</sup>

We offer no explanation for this anomalous behaviour of o-azidobenzonitriles. From a recent communication<sup>4</sup> on the benzazirine vs. didehydroazepine controversy, it appears that subtle steric and electronic effects are instrumental in determining the nature of the intermediate involved in these ring-expansions. However, it is not obvious to us why the nitrile group should differ so markedly from other similar electron-withdrawing groups (e.g. CO<sub>2</sub>Et) in its effect on 3*H*-azepine formation.

Attempts to bring about ring-expansion of o-azidobenzonitrile in the presence of other nucleophilic anions was unsuccessful. For example, irradiation of the azidonitrile in aqueous-THF containing potassium fluoride, bromide, or chloride, and in the presence of 18-crown-6 failed, as did photolyses in the presence of potassium phthalimide and sodium p-toluenesulphinate. Unchanged azidonitrile and/or intractable tars resulted.

## EXPERIMENTAL

Reduction of o-nitrobenzonitriles to 2-aminobenzonitriles - General method. A solution of the onitrobenzonitrile (5 mmol) in Analar acetone at room temperature, and under a nitrogen atmosphere, was treated dropwise with 15% titanous chloride solution (8 equivs.) over a period of 30 min. After completion of addition, the mixture was stirred for 30 min. then basified by careful addition of 15% sodium hydroxide, and the mixture filtered. The residue was extracted with ethyl acetate (3 x 20 ml), the extracts combined, and the solvent removed to yield the o-aminobenzonitrile.

Preparation of o-azidonitriles - General method. A solution of the o-aminobenzonitrile (25 mmol) in 5M hydrochloric acid (120 ml) was cooled to 0-5°C and diazotised by slow addition of a solution of sodium nitrite (28 mmol) in water (15 ml). The resulting diazonium chloride solution was stirred at 0-5°C for 10 min., then filtered and added slowly (5-10 min.) to a solution of sodium azide (25 mmol) and sodium acetate (0.25 mol) in water (50 ml).

[CAUTION - all operations involving NaN<sub>3</sub> must be carried out in an efficient fume-hood. The large excess of sodium acetate acts as a buffer and minimises the formation of toxic hydrazoic acid during azide production.]

The resulting solution is stirred at 0-5°C for 0.5 h, then filtered to yield the o-azidonitrile as a white solid. The azide was washed with water (3 x 100 ml) and dried at the pump. Purification was by flash chromatography on silica.

All azides so prepared were kept in the dark, and in a refrigerator (0-5°C) until ready for use. [CAUTION - all azides are potentially explosive, and should, therefore, never be heated as the solid or neat liquid. All decompositions described in this paper were carried out in dilute (1-2%) solution.]

2-Azidobenzonitrile, from 2-aminobenzonitrile (ALDRICH) was obtained (79%) as yellow needles from light petrol, m.p. 54°C (lit.<sup>21</sup>, 58°C).

2-Azido-5-chlorobenzonitrile 13b. Reduction of 5-chloro-2-nitrobenzonitrile (m.p. 88-9°C; lit.<sup>22</sup> m.p. 94°C), obtained by treatment of 5-chloro-2-nitrobenzamide (m.p. 155°C; lit.<sup>23</sup> 154°C) with thionyl chloride, yielded 2-amino-5-chlorobenzonitrile as a yellow solid m.p. 96°C (lit.<sup>24</sup>, 98°C). Diazotisation followed by azidation (see General method) gave 2-azido-5-chlorobenzonitrile, which after chromatography [SiO<sub>2</sub>: light petrol-diethyl ether (8.5:1.5) as eluant], formed pale yellow crystals, m.p. 85°C;  $v_{max}$  (nujol) 2230 (CN), 2130 (N<sub>3</sub>) cm<sup>-1</sup>;  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 7.3 (1H, d, 3H), 7.65 (1H, d, 6-H), 7.68 (1H, m, 4-H); m/z (EI) 178 (M<sup>+</sup>).

2-Azido-4-chlorobenzonitrile 13a. Reduction of 4-chloro-2-nitrobenzonitrile (m.p. 98-99": Lit.<sup>25</sup> 97°C) obtained by treating 4-chloro-2-nitrobenzamide (m.p. 172-3°C: lit.<sup>26</sup>, m.p. 172°C) with thionyl chloride, gave 2-amino-4-chlorobenzonitrile (50%) as a yellow solid which crystallised from light petrol-ethyl acetate as white needles, m.p. 158-9°C (lit.<sup>27</sup> 162°C). Diazotisation followed by azidation gave 2-azido-4-

chlorobenzonitrile (64%) as a white solid, m.p. 112-3°C;  $\nu_{max}$  (nujol) 2235 (CN), 2130 (N<sub>3</sub>) cm<sup>-1</sup>;  $\delta_{H}$  (CDCl<sub>3</sub>) 7.2 (1H, d, 5-H), 7.25 (1H, s, 3-H), 7.55 (1H, d, 6-H); m/z (EI) 178 (M<sup>+</sup>).

2-Azido-5-methylbenzonitrile 13c. Reduction of 5-methyl-2-nitrobenzonitrile (m.p. 89-90.5°C; Lit.,<sup>29</sup> 93-4°C) obtained by treating 5-methyl-2-nitrobenzamide (m.p. 169-70°C; Lit.<sup>28</sup> m.p. 176-7°C) with thionyl chloride gave 2-amino-5-methylbenzonitrile (92%) as a yellow solid m.p. 60°C (Lit.<sup>28</sup> 63°C). Diazotisation followed by azidation gave 2-azido-5-methylbenzonitrile as a white solid (52%) m.p. 61-2°C;  $v_{max}$  2227 (CN) 2129 (N<sub>3</sub>) cm<sup>-1</sup>:  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 2.4 (3H, s, Me), 7.3 (1H, d, 3-H), 7.5 (2H, m, 4-H and 6-H).

2,4-Dicyanophenylazide 13d. Reduction of 2,4-dicyanonitrobenzene (m.p. 224°C: Lit.<sup>29</sup>, 224°C), obtained by treating the diamide of 4-nitrobenzene-1,3-dicarboxylic acid [m.p. 280-90°C (decomp.);  $v_{max}$  3445, 3292, 3144 (CONH<sub>2</sub>), 1668 (broad) (CO);  $\delta_H$  (d<sup>6</sup>-DMSO) 7.9 (2H, s, CONH<sub>2</sub>), 8.35 (5H, m, 3-H, 5-H, 6-H and CONH<sub>2</sub>). m/z (EI) 209 (M<sup>+</sup>)] with thionyl chloride, furnished 2,4-dicyanoaniline (85%) as white crystals, m.p. 218°C (decomp.) Lit.<sup>30</sup> m.p. 213-4°C).

Diazotisation of the amine followed by azidation yielded 2,4-dicyanophenyl azide (52%), which crystallised from light petrol-ethyl acetate as yellow crystals m.p. 172°C (decomp.):  $v_{max}$  2223 (CN), 2133, 2093 (N<sub>3</sub>) cm<sup>-1</sup>.  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 7.45 (1H, s, 6-H), 7.95 (1H, d, 5-H), 8.0 (1H, s, 3-H); m/z (EI)169 (M<sup>+</sup>).

2-Azido-3-methylbenzonitrile 14. 3-Methylanthranilic acid (90%) m.p. 172-4°C (Lit.<sup>31</sup>, 172°C) obtained by oxidative ring-opening of 7-methylisatin (m.p. 220°C; Lit.<sup>32</sup> m.p. 267°C), was converted into 2-azido-3methylbenzoic acid by diazotisation and azidation (General method). M.p. 155°C (decomp.); v<sub>max</sub> (nujol) 2156 (N<sub>3</sub>): 1694 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (d<sup>6</sup>-DMSO) 2.35 (3H, s, Me), 7.25 (1H, m, 5-H), 7.45 (1H, dd, 4-H), 7.8 (1H, dd, 6-H), 9.55 (1H, bs, H); m/z (EI) 177 (M<sup>+</sup>). 2-Azido-3-methylbenzamide, (obtained from the acid chloride with 0.88 ammonia solution) crystallised from light petrol-ethyl acetate as white crystals, m.p. 147°C (decomp.): v<sub>max</sub> (nujol) 3367, 3185 (CONH<sub>2</sub>), 2112 (N<sub>3</sub>), 1645 (CO);  $\delta_{H}$  (d<sup>6</sup>-DMSO) 2.2 (3H, s, Me), 7.1 (2H, m, 4-H and 5-H), 7.5 (1H, d, 6-H), 8.0 (2H, bs, CONH<sub>2</sub>); m/z 176 (M<sup>+</sup>).

Dehydration of the amide, with boiling thionyl chloride gave 2-azido-3-methylbenzonitrile, as a dark brown residue, which, after chromatography on alumina (light petrol-ethyl acetate as eluant), was obtained as a pale yellow oil (96%) which solidified in the refrigerator:  $v_{max}$  2227 (CN), 2138, 2108 (N<sub>3</sub>) cm<sup>-1</sup>:  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 2.3 (3H, s, Me), 7.2 (2H, m, 4-H and 5-H), 7.6 (1H, d, 6-H); m/z (EI), 158 (M<sup>+</sup>).

Photolysis of 2-Azidobenzonitriles in Aqueous-Tetrahydrofuran. - General method: A solution of the 2azidonitrile (14 mmol) in THF (115 ml) and water (115 ml) was irradiated under nitrogen using a 400 Watt medium pressure u.v. lamp (Pyrex-filter). The irradiation was continued until most of the azide had disappeared, as indicated by examination of the photolysate by t.l.c. Removal of the solvent under reduced pressure yielded a dark oily residue which was separated and purified by flash chromatography on a silica.

2-Azidobenzonitrile, (2 g, 14 mmol), - (photolysed for 18 h.), gave after flash chromatography [light petrol-ethyl acetate (6:4 v/v) as eluant] 7-cyano-3H-azepin-2(1H)-one 16a as a white solid (0.4 g; 21%) which crystallised from light petrol-ethyl acetate as white needles, m.p. 143°C; (Found: C, 62.5; H, 4.4; N, 20.6 C7H<sub>6</sub>N<sub>2</sub>O requires C, 62.7; H, 4.5; N, 20.9%)  $\nu_{max}$  (nujol) 3175 (NH), 2210 (CN), 1600 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (CDCl<sub>3</sub>) 2.99 (2H, d, 3-CH<sub>2</sub>, J<sub>3,4</sub> 6.8 Hz); 5.95 (1H, m, 4-H, J<sub>4,5</sub> 9.5 Hz, J<sub>3,4</sub> 6.8 Hz); 6.26 (1H, dd, 5-H, J<sub>5,6</sub>

5.5 Hz, J<sub>4,5</sub> 9.5 Hz); 6.57 (1H, d, 6-H, J<sub>5,6</sub> 5.5 Hz); 8.68 (1H, bs, 1H, removed on addition of D<sub>2</sub>O): m/z (EI) 134 (M<sup>+</sup>):

Further elution with the same solvent mixture gave a brown solid which on trituration with dichloromethane and crystallisation from light petrol-ethyl acetate gave 3-cyano-3H-azepin-2(1H)-one **15a** as pale yellow crystals (0.1 g, 5%), m.p. 148-9°C [Found: C, 62.47; H, 4.7; N, 20.6. C7H<sub>6</sub>N<sub>2</sub>O requires C, 62.7; H, 4.5; N, 20.9%);  $v_{max}$  (nujol) 3179 (NH), 2250 (CN), 1660 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (d<sup>6</sup>-DMSO) 3.47 (1H, d, 3-CH, J<sub>3,4</sub> 5.8 Hz); 5.35 (1H, dd, 4-H, J<sub>4,5</sub> 9.2 Hz, J<sub>3,4</sub> 5.8 Hz), 5.65 (1H, dd, 6-H, J<sub>5,6</sub> 5.4 Hz, J<sub>6,7</sub> 8.9 Hz), 6.1 (2H, m, 7-H and 5-H), 9.82 (1H, bs, NH; removed on addition of D<sub>2</sub>O), m/z (EI) 134 (M<sup>+</sup>).

2-Azido-5-chlorobenzonitrile (2 g; 11 mmol), (photolysed for 12 h), gave after chromatography an alumina [light petrol-ethyl acetate (2:8 v/v)] as eluant, 2-amino-5-chlorobenzonitrile (< 5%), followed by an off-white solid mixture which was further purified by flash chromatography on silica [light petrol-ethyl acetate (7:3 v/v)] as eluant. 5-Chloro-7-cyano-3H-azepin-2(1H)-one 17 was obtained as a white solid (0.3 g; 16%), which crystallised from light petrol-ethyl acetate as white crystals, m.p. 170°C [Found: C, 50.1; H, 3.0; N, 16.6; C<sub>7</sub>H<sub>5</sub>ClN<sub>2</sub>O requires C, 49.9; H, 3.0; N, 16.6%); v<sub>max</sub> (nujol) 3200 (NH), 2232 (CN), 1703 (CO) cm<sup>-1</sup>;  $\delta_{\rm H}$  (CDCl<sub>3</sub>) 2.73 (2H, d, 3-CH<sub>2</sub>, J<sub>3.4</sub> 7.3 Hz) 5.78 (1H, t, 4-H, J<sub>3.4</sub> 7.6); 6.2 (1H, s, 6-H), m/z (EI) 170 (M + 2), 168 (M<sup>+</sup>).

Further elution gave 6-chloro-1-cyano-2-azabicyclic[3.2.0]hept-6-ene-3-one 18 as a white solid (0.15 g; 8%), which crystallised from light petrol-ethyl acetate as colourless crystals m.p. 207 °C [Found: C, 49.9; H, 2.9; N, 16.3; C<sub>7</sub>H<sub>5</sub>ClN<sub>2</sub>O requires C, 49.9; H, 3.0; N, 16.6%);  $v_{max}$  (nujol) 3200 (NH), 2232 (CN), 1703 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (d<sup>6</sup>-DMSO) 1.9 (1H, dd, 4-H', J<sub>4',5</sub> 3 Hz, J<sub>4,4'</sub> 18 Hz); 2.15 (1H, dd, 4-H, J<sub>4,5</sub> 10 Hz, J<sub>4,4'</sub> 18 Hz), 3.6 (1H, dd, 5-H, J<sub>4,5</sub> 10 Hz, J<sub>4',5</sub> 3 Hz); 5.93 (1H, s, 7-H); 8.5 (1H, s, NH, removed on addition of D<sub>2</sub>O), m/z (EI) 170 (M + 2)<sup>+</sup>, 168 (M<sup>+</sup>).

2-Azido-4-chlorobenzonitrile (1.5 g, 8.5 mmol), (photolysed for 7 h.), gave after flash chromatography on SiO<sub>2</sub> [light petrol-ethyl acetate (8:2) as eluant] 2-amino-4-chlorobenzonitrile (< 5%). Further elution with light petrol-ethyl acetate (7:3) furnished 4-chloro-7-cyano-3H-azepin-2(1H)-one 16c as a white solid (0.2 g, 14%) which crystallised from light petrol-ethyl acetate as white needles, m.p. 189-90°C [Found: C, 49.6; H, 2.7; N, 16.5. C<sub>7</sub>H<sub>5</sub>ClN<sub>2</sub>O requires C, 49.9; H, 3.0; N, 16.6%];  $v_{max}$  (nujol) 3242 (NH); 2260 (CN), 1705 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (d<sup>6</sup>-DMSO) 3.0 (2H, s, 3-CH<sub>2</sub>); 6.17 (2H, s, 6-H and 5-H) 10.44 (1H, bs, NH, removed on addition of D<sub>2</sub>O); m/z EI 170 (M + 2)<sup>+</sup>, 168 (M<sup>+</sup>).

Further elution with light petrol-ethyl acetate produced an impure yellow solid which was rechromatographed on [silica light petrol-ethyl acetate (6:4 v/v) as eluant], to give 6-chloro-3-cyano-3H-azepin-2(1H)-one 15c as white crystals (0.35 g; 25%), m.p. 156°C. [Found: C, 49.7; H, 2.9; N, 16.4. C<sub>7</sub>H<sub>5</sub>ClN<sub>2</sub>O requires C, 49.9; H, 3.0; N, 16.6%];  $v_{max}$  (nujol) 3242 (NH), 2260 (CN), 1705 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (CDCl<sub>3</sub>)

3.65 (1H, dd, 3-CH,  $J_{3,4}$  6 Hz,  $J_{3,5}$  1.5 Hz); 5.52 (1H, dd, 4-H,  $J_{4,5}$  9.4 Hz,  $J_{3,4}$  6 Hz); 6.18 (1H, dd, 5-H;  $J_{4,5}$  9.4 Hz,  $J_{3,5}$  1.5 Hz); 6.37 (1H, d, 7-H,  $J_{1,7}$  5.25 Hz; on addition of D<sub>2</sub>O the signal became a singlet at  $\delta$  6.37); 10.2 (1H, bs, NH-removed on addition of D<sub>2</sub>O). Double irradiation of 3H at  $\delta$  3.65 produced 6.18 (d, 5-H;  $J_{4,5}$  9.4 Hz); 5.52 (d, 4-H,  $J_{4,5}$  9.4 Hz); m/z 170 (M + 2)+ 168 (M<sup>+</sup>).

2-Azido-5-methylbenzonitrile (1.2 g; 7.6 mmol) (photolysed for 2 h), on flash chromatography on silica [light petrol-ethyl acetate (7:3 v/v) as eluant] gave, successively, unchanged azide (< 5%), 2-amino-5-methylbenzonitrile (< 10%), and a brown oil, which when triturated with light petrol furnished 7-cyano-5-

*methyl-3H-azepin-2(1H)-one* **16b** as a dark brown solid (0.16 g; 14%) which crystallised from light petrol-ethyl acetate as tan crystals, m.p. 136-7°C [Found: C, 64.9; H, 5.3; N, 18.8: C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O requires C, 64.8; H, 5.4; N, 18.9%] v<sub>max</sub> (nujol) 3181 (NH), 2221 (CN), 1674 (CO) cm<sup>-1</sup>;  $\delta_H$  (CDCl<sub>3</sub>) 1.9 (3H, s, 5-Me), 2.87 (2H, d, 3-CH<sub>2</sub>, J<sub>3,4</sub> 7 Hz), 5.66 (1H, t, 4-H, J<sub>3,4</sub> 7 Hz) 6.46 (1H, s, 6-H), 8.61 (1H, s, NH-removed on addition of D<sub>2</sub>O); m/z (EI) 148 (M<sup>+</sup>):

Further elution yielded 3-cyano-5-methyl-3H-azepin-2(1H)-one **15b** as a brown solid (0.34 g; 30%), which crystallised from light petrol-ethyl acetate as pale-yellow needles, m.p. 105°C. [Found: C, 64.5; H, 5.6; N, 18.7: C<sub>8</sub>H<sub>8</sub>N<sub>2</sub>O requires C, 64.8; H, 5.4; N, 18.9%];  $v_{max}$  (nujol) 3205 (NH), 2253 (CN), 1674 (CO) cm<sup>-1</sup>;  $\delta_{H}$  (CDCl<sub>3</sub>) 1.9 (3H, s, 5-Me); 3.68 (1H, d, 3-CH; J<sub>3,4</sub>, 5.5 Hz), 5.35 (1H, d, 4-H; J<sub>3,4</sub> 5.7 Hz); 5.82 (1H, d, 6-H, J<sub>6,7</sub> 9 Hz); 6.25 (1H, dd, 7-H, J<sub>6,7</sub> 9 Hz, J<sub>1,7</sub> 4.8 Hz, which on addition of D<sub>2</sub>O collapsed to a doublet at 6.25); 8.72 (1H, bs, NH-removed on addition of D<sub>2</sub>O); m/z (EI) 148 (M<sup>+</sup>).

2,4-Dicyanophenyl azide (0.5 g; 3 mmol), (photolysed for 4 h), gave after flash chromatography on silica (dichloromethane as eluant) a yellow, unseparated mixture of 2,4-dicyanoaniline and 5,7-dicyano-3H-azepin-2(1H)-one **16d** (0.33 g; 54%), m.p. 155-7°C; v max 3375, 3275 (NH<sub>2</sub>), 3200 (NH), 2216 (CN), 1699 (CO) cm<sup>-1</sup>  $\delta_{\rm H}$  (d<sup>6</sup>-DMSO) 2.75 (2H, d, 3-CH<sub>2</sub>; J<sub>3,4</sub> 7.4 Hz), 6.0 (2H, s, NH<sub>2</sub>); 6.2 (1H, s, 6-H), 6.35 (1H, t, 4-H, J<sub>3,4</sub> 7.4 Hz), 6.5 (1H, d, Ar 6-H), 7.08 (1H, dd, Ar 5-H), 7.27 (1H, dd, Ar 3-H), 10.77 (1H, bs, NH); m/z (EI) m/z 159 (M<sup>+</sup>), 143 (M<sup>+</sup>) ArNH<sub>2</sub>.

2-Azido-3-methylbenzonitrile (1.6 g; 10 mmol) photolysed for 16 h., gave after flash chromatography on silica, [light petrol-ethyl acetate (7:3 v/v) as eluant] 2,2'-dicyano-6,6'-dimethylazobenzene as red prisms (0.35 g; 13%) m.p. 189°C;  $v_{max}$  (nujol) 2217 (CN) cm<sup>-1</sup>.  $\delta_{H}$  (CDCl<sub>3</sub>) 2.85 (6H, s, 2 x Me); 7.44 (2H, t, 4-H and 4'-H); 7.62 (2H, d, 5-H and 5-H'), 7.64 (2H, d, 3-H and 3'-H); m/z (EI) 260 (M<sup>+</sup>).

#### REFERENCES

- 1. Part 4. Lamara, K.; Smalley, R.K. Tetrahedron, 1991, 47, 2277.
- Smalley, R.K. 'Azepines'. In Comprehensive Heterocyclic Chemistry; Lwowski, W. Pergamon Press: Oxford, 1984, Vol. 5, p. 491.
- 3. Purvis, R., Smalley, R.K., Strachan, W.A., Suschitzky, H. J. Chem. Soc., Perkin Trans. 1, 1978, 191, and references cited therein.
- 4. Younger, C.G., Bell, R.A. J. Chem. Soc., Chem. Commun., 1992, 1359.
- Huisgen, R., Vossius, D., Appl, M. Chem. Ber., 1958, 91 1; Huisgen, R., Appl, M. Chem. Ber., 1958, 91, 12.
- 6. Li, Y-Z., Kirby, J.P., George, M.W., Poliakoff, M., Schuster, G.B. J. Amer. Chem. Soc., 1988, 110, 8092.
- Donnelly, T., Dunkin, I.R., Norwood, D.S.D., Prentice, A., Shields, C.J., Thomson, P.C.P. J. Chem. Soc., Perkin Trans. 2, 1985, 307.
- 8. DeGraff, B.A., Gillespie, D.W., Sundberg, R.J. J. Amer. Chem. Soc., 1974, 96, 7491.
- For recent comments on the relative stabilities of 2H-, 3H- and 4H-azepines see Satake, K., Okuda, R., Hashimoto, M., Fujiwara, Y., Watadani, I., Okamoto, H., Kimura, M., Morosawa, S. J. Chem. Soc., Chem. Commun., 1991, 1154.
- 10. Berwick, M.A. J. Amer. Chem. Soc., 1971, 93, 5780.
- 11. Heinzelmann, W., Märky, M. Helv. Chim. Acta, 1973, 56, 1852.

- 12. Cadogan, J.I.G., Mackie, R.K. J. Chem. Soc. (C), 1969, 2819.
- 13. Curiously, in view of our results, no azepines are formed from o-nitrobenzonitrile; de Boer, T., Cadogan, J.I.G., McWilliam, H.M., Rowley, A.G. J. Chem. Soc., Perkin Trans. 2, 1975, 554.
- 14. Purvis, R., Smalley, R.K., Suschitzky, H., Alkhader, M.A. J. Chem. Soc., Perkin Trans. 1, 1984, 249.
- 15. Azadi-Ardakani, M., Smalley, R.K., Smith, R.H. Synthesis, 1979, 308.
- 16. Vogel, E., Erb, R., Lenz, G., Bothner-By, A.A. Justus Liebigs Ann. Chem., 1965, 682, 1.
- 17. Paquette, L.A. J. Amer. Chem. Soc., 1964, 86, 500.
- 18. Chapman, O.L., Hoganson, E.D. J. Amer. Chem. Soc., 1964, 86, 498.
- 19. Odum, R.A., Schmall, B., J. Chem. Soc. (D), 1969, 1299.
- 20. Dunkin, I.R., Donnelly, T., Lockhart, T.S. Tetrahedron Lett., 1985, 26, 359.
- 21. Forster, M.O., Judd, H.M. J. Chem. Soc., 1910, 97, 254.
- 22. Cullen, E., L'Écuyer, P. Can. J. Chem., 1961, 39, 862.
- 23. Holleman, M.A.F., Rec. Trav. Chim., 1901, 20, 206.
- 24. Bedford, G.R., Partridge, M.W., J. Chem. Soc., 1959, 1633.
- 25. Hunn, E.B. J. Amer. Chem. Soc., 1923, 45, 1024.
- 26. Heller, G. Ber., 1916, 49, 523.
- 27. Jubault, M., Peltier, D. Bull. Soc. Chim. Fr., 1972, 2365.
- 28. Findeklee, W. Ber., 1905, 38, 3542.
- 29. Kornblum, N., Fifolt, M.J. Tetrahedron, 1989, 45, 1311.
- 30. Kul'bitskaya, O.V., Frolov, A.N., El'tsov, A.V., J. Org. Chem. U.S.S.R., 1973, 9, 2331.
- 31. Jacobson, O. Ber., 1881, 14, 2347.
- 32. Bauer, R. Ber., 1907, , 2650.

| Compound                          | 18                  | 16c                | 16 <b>a</b>     |
|-----------------------------------|---------------------|--------------------|-----------------|
| Formula                           | C7H5CIN2O           | C_H_CIN20          | C7H6N2O         |
| Formula Weight                    | 168.6               | 168.6              | 134.1           |
| Crystal Size (mm)                 | 0.5 x 0.3 x 0.3     | 0.3 x 0.2 x 0.2    | 0.3 x 0.2 x 0.1 |
| Crystal system                    | Monoclinic          | Monoclinic         | Monoclinic      |
| Space group                       | P21/n               | P21/c              | P21/n           |
| a(A)                              | 6.870(3)            | 8.566(3)           | 8.586(1)        |
| b(A)                              | 8.445(4)            | 7.445(1)           | 7.044(1)        |
| c(A)                              | 13.245(5)           | 11.937(3)          | 11.682(1)       |
| β°                                | 104.69(4)           | 91.74(3)           | 105.94(1)       |
| Volume(A <sup>3</sup> )           | 743                 | 760.9(3)           | 679.3(2)        |
| 2                                 | 4                   | 4                  | 4               |
| μ(MoKα) mm <sup>-1</sup>          | 0.447               | 0.436              | 0.086           |
| $D_c(Mg m^{-3})$                  | 1.506               | 1.472              | 1.311           |
| F(000)                            | 344                 | 344                | 280             |
| Temperature (K)                   | 201                 | 293                | 293             |
| Index ranges h                    | -4 → 8              | $0 \rightarrow 10$ | <b>-10</b> → 10 |
| k                                 | $-1 \rightarrow 10$ | 0→8                | -8 → 8          |
| I                                 | <b>-</b> 17 → 17    | -14 → 14           | -13 → 13        |
| Total no. of reflections          | 3061                | 1574               | 4803            |
| Independent reflections           | 1701                | 1354               | 1202            |
| Rint                              | 0.03                | 0.02               | 0.02            |
| F> no(F)                          | 4                   | 4-                 | 4               |
| Observed reflections              | 1516                | 962                | 998             |
| $w^{-1} = \sigma^2(F) + gF^2$ , g | 0.0001              | 0.0014             | 0.0003          |
| No. of parameters                 | 100                 | 100                | 91              |
| R(observed data, all data)        | 0.037, 0.050        | 0.042, 0.054       | 0.037,0.043     |
| wR(observed data, all data)       | 0.042, 0.052        | 0.065, 0.062       | 0.047,0.046     |
| Goodness of Fit                   | 2.27                | 1.04               | 1.62            |
| Largest shift:esd                 | 0.001               | 0.001              | 0.001           |
| Data:parameter ratio              | 15.2:1              | 9.6:1              | 11.0:1          |
| $\Delta \rho \max(cA^{-3})$       | +0.27               | +0.17              | +0.17           |
| $\Delta \rho \min(A^{-3})$        | -0.42               | -0.25              | -0.21           |

# Summary of X-Ray Crystallographic Data

(Received in UK 31 January 1994; revised 1 March 1994; accepted 4 March 1994)