218.* INTRAMOLECULAR CYCLIZATION OF AN AMMONIUM
 SALT CONTAINING AN ALLYL SUBSTITUENT IN POSITION 1 OF THE DIENE FRAGMENT*

É. O. Chukhadzhyan, Él. O. Chukhadzhyan, K. G. Shakhatuni, L. A. Manasyan, and A. T. Babayan

It has been shown that, under basic catalytic conditions, dimethylpropargylallyl-(1-allyl-3-phenylpropargyl)- and -(l-allyl- $3-\alpha$-naphthylpropargyl)ammonium salts undergo diene synthesis type intramolecular cyclization to form condensed analogs of isoindolenium and dihydroindolenium salts with an allyl substituent at position 1 .

In the presence of catalytic amounts of base, dialkylpropargylallyl-(3-phenylpropargyl)- and -(3- α-naphthylpropargyl)ammonium salts undergo ready intramolecular diene condensation to form condensed analogs of isoindolenium and dihydroisoindolenium salts [2-5].

Study of the effect of an allyl group on the behavior of dimethylpropargyl- (or allyl-) (1-allyl-3-phenylpropargyl)- (Ia, b) and -(1-allyl-3- α-naphthylpropargyl)ammonium salts (Ic, d) in aqueous base has shown that la, like 3-phenylpropargyl salts, cyclizes exothermically [2]. The cyclic product IIa, however, is formed in 60% yield.

Stepwise addition of base in the molar ratio salt:base $2.5: 1$ is necessary for cyclization of salt Ib . In contrast to other allyl salts with 3-arylpropargyl groups [3], cyclization of this salt occurs with a modest exotherm, the reaction temperature increasing slowly from 25 to $42^{\circ} \mathrm{C}$. Cyclization of salt Ic , in contrast to 3- α-naphthylpropargyl analogs [4], needs moderate heating ($40-42^{\circ} \mathrm{C}$ for 40 min).

As with other 3 - α-naphthylpropargyl analogs [5], salt Id cyclizes upon heating at $90-92^{\circ} \mathrm{C}(1.5 \mathrm{~h})$. It was found that cyclization of the salts I was accompanied by the side products III in $10-12 \%$ yields and tertiary amines, apparently formed via nucleophilic attack of a hydroxyl group at carbon one of the isomerized 1-allyl-3-arylpropargyl fragment and subsequent reaction of the intermediate salt.

Communication 218 in the series "Investigations of amines and ammonium compounds." For Communication 217, see [1].

[^0]

From this data, it is apparent that an allyl group in position 1 of a 3-phenyl- (or 3 - α-naphthyl)propargyl fragment lowers the yield of cyclic product when compared with 3-arylpropargyl analogs [2-5].

Under severe conditions salt Ila undergoes fission to form 3-(1,3-butadienyl)-2-dimethylaminomethylnaphthalene in 55% yield. With these conditions $\sim 30 \%$ of the amine polymerizes.

The IR spectra of the cyclic salts II show the absence of absorption bands for a disubstituted acetylene bond at 2220 $2240 \mathrm{~cm}^{-1}$ seen in the starting salt I and a monosubstituted acetylene bond at $2110-2130 \mathrm{~cm}^{-1}$ seen in salts Ia, c. For salts II absorption bands at $720-780 \mathrm{~cm}^{-1}$ (ortho substitution) are seen, for salts IIa, b, a 1,2,4,5-substituted aromatic ring band at 870 and $880 \mathrm{~cm}^{-1}$, and for IIc, d, a $1,2,3,4$-substituted ring band at $810 \mathrm{~cm}^{-1}$. The UV absorption maxima for the cyclic salts

TABLE 1. Parameters for Compounds Ia-d

Compound	Empirical formula	$\begin{aligned} & \mathrm{mp}^{\circ}{ }^{\circ} \mathrm{C} \\ & \text { (from etha- } \\ & \text { nol) } \end{aligned}$	IR Spectrum, cm^{-1}	UV Spectrum, $\lambda_{\max }, \mathrm{nm}(\log \varepsilon)$
Ia	$\mathrm{C}_{17} \mathrm{H}_{2} \mathrm{OBrN}$	Hygroscopic	$\begin{aligned} & 935,970,1570, \quad 1590 \\ & 1640,2130,2240 \end{aligned}$	$225(5,15), 242(4,56)$
Ib	$\mathrm{C}_{17} \mathrm{HH}_{22} \mathrm{BrN}$	Hygroscopic	920, 940, 960, 1640, 2230	$\begin{aligned} & 228(5,3), 243(5,23) \\ & 290(3,58) \end{aligned}$
Ic	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}$	150	$\begin{aligned} & 720,770,800,1500,1640 \\ & 2110,2230 \end{aligned}$	$\begin{aligned} & 210(4,68), \quad 222(4,64), \\ & 230(4,56), \quad 290(3,85), \\ & 302(3,81), 312(3,82) \end{aligned}$
Id	$\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}$	115	$\begin{aligned} & 720,740,780,800,1500 \\ & 1590,1640,2230 \end{aligned}$	$\begin{aligned} & 228(4,92), 290(4,25) \\ & 302(4,38), 312(4,23) \end{aligned}$

TABLE 2. Parameters of Cyclic Compounds IIa-d

Compound	$\begin{aligned} & \mathrm{mp},{ }^{\circ} \mathrm{C} \\ & \text { (from } \\ & \text { water) } \end{aligned}$	R_{f}	IR Spectrum, cm^{-1}	UV Spectrum, $\lambda_{\text {max }}, \mathrm{nm}(\log \varepsilon)$	Yield, $\%$
IIa	219...220	0,53	$\begin{aligned} & 720,760,870,940,970 \\ & 1540,1605,1640 \end{aligned}$	$\begin{aligned} & 228(5,08), 270(3,71), \\ & 280(3,73), 305(2,75) \end{aligned}$	60
Ilb	222	0,58	$\begin{aligned} & 730,780,930,980,1580 \\ & 1600,1640 \end{aligned}$	$\begin{aligned} & 218(4,43), 225(4,36) \\ & 265(4,11) \end{aligned}$	66
IIC	341... 342	0,50	$750,810,870,940,960$, $995,1500,1600,1640$	$\begin{aligned} & 215(4,65), 225(4,46), \\ & 255(4,83), 300(4,11) \\ & 320(2,69), 335(2,85), \\ & 355(2,54) \end{aligned}$	75
IId	339	0,52	$750,770,810,910,940$, 980, 1510, 1540, 1610, 1640	$\begin{aligned} & 235(4,93), 320(4,26) \\ & 335(4,15) \end{aligned}$	71

IIa, b, when compared with starting satls Ia, b, show a long wavelength shift and have a lower log molar extinction coefficient ($3.73 ; 4.11$) due to the presence of the naphthalene ring $[6,7]$. As might be expected, the α-band of salt IIc had the longest wavelength and the log molar extinction coefficient has a lower value (2.54-2.85) when compared with the starting salt Ic (3.81$3.85)[6,7]$. The nearly identical values of the \log molar extinction coefficients for the α-band of salts Id and IId points to the presence of the naphthalene ring in both salts.

EXPERIMENTAL

IR spectra were recorded on a UR-20 spectrometer using KBr tablets or vaseline oil and UV spectra in ethanol solvent on a Specord UV-vis spectrophotometer. Material purities were established by TLC on Silufol UV-254 plates using the system n-butanol-ethanol-acetic acid ($8: 2: 3: 1$) or ether-hexane ($1: 3$) and on alumina plates (Brockmann activity 2 grade) using benzene. Spots were visualized using iodine vapor.
N, N-Dimethyl-N-(1-allyl-3-phenylpropargyl)-, and N, N-dimethyl- N -(1-allyl-3- α-naphthylpropargyl)amines were obtained from the dimethylallyl(3-phenylpropargyl)- and dimethylallyl(3- α-naphthylpropargyl)ammonium bromides under Stevens rearrangement conditions [8].

The starting salts I were obtained by reaction of N, N-dimethyl- N -(1-allyl-3-phenylpropargyl)- and -(3- α-naphthylpropargyl)amine, 3-(1,3-butadienyl)-2-dimethylaminomethylnaphthalene, vinylbenzalacetone IIIa, and vinylnaphthalacetone IIIb agreed with those calculated.

2,2-Dimethyl-1-allylbenz[f]isoindolenium Bromide (IIa, $\mathrm{C}_{17} \mathbf{H}_{20} \mathbf{B r N}$). A solution of $\mathrm{KOH}(2 \mathrm{ml}, 2 \mathrm{~N}, 3.4$ mmoles) was added to a homogeneous solution of salt la (20 mmoles) in water ($\sim 5 \mathrm{ml}$). The exothermic reaction raised the reaction temperature from 25 to $70^{\circ} \mathrm{C}$. The mixture was extracted with ether ($2 \times 20 \mathrm{ml}$) and filtered to give salt IIa.

2,2-Dimethyl-1-allyl-3a,4-dihydrobenz[f]isoindolenium Bromide ($11 \mathrm{~b}, \mathrm{C}_{17} \mathrm{H}_{22} \mathrm{BrN}$). A solution of KOH ($2.3 \mathrm{ml}, 2$ $\mathrm{N}, 4$ mmoles) was added to a homogeneous solution of starting salt Ib (23 mmoles) in water (6 ml). The reaction temperature increased from 25 to $42^{\circ} \mathrm{C}$. After 1 h , a further aliquot of $\mathrm{KOH}(2.3 \mathrm{ml}, 2 \mathrm{~N})$ was added and the reaction mixture heated to $40-45^{\circ} \mathrm{C}$ for 30 min . Following extraction with ether ($2 \times 30 \mathrm{ml}$), filtration gave salt Ilb.

The ether extracts, obtained from cyclization of salts l, b, were treated with hydrochloric acid. In both cases, chromatographically pure samples of vinylbenzalacetone IIIa were obtained from the ether layer in 11 and 12% yields, respectively. A 2,4-dinitrophenyl hydrazone could not be formed. Vacuum distillation caused decomposition. IR spectrum: 690, $760,1510,1580,1600,920,980,1640$ (allyl group), $1660 \mathrm{~cm}^{-1}$.
$\mathbf{N}, \mathbf{N}-$ Dimethyl-N-(1-allyl-3- α-naphthylpropargyl)amine. Several drops of methanol were added to a vigorously stirred mixture of powdered dimethylallyl(3- α-naphthylpropargyl)ammonium bromide [5] (34 mmoles) and two mole equivalents of KOH . After standing at room temperature for $\sim 1 \mathrm{~h}$, the mixture was extracted with ether ($3 \times 30 \mathrm{ml}$). The ether extract was treated with hydrochloric acid. Basification of the acid solution and extraction with ether ($3 \times 30 \mathrm{ml}$) gave the amine. The ether extract was washed with water $(2 \times 10 \mathrm{ml})$ and dried with magnesium sulfate. After removal of ether, vacuum distillation gave the product $(6.1 \mathrm{~g}, 76 \%)$ with bp $159-160^{\circ} \mathrm{C}(4 \mathrm{~mm} \mathrm{Hg})$ and $\mathrm{n}_{\mathrm{D}}^{20}=1.6020$. IR spectrum: $780,1500,1580,1640,2230 \mathrm{~cm}^{-1}$. Picrate: mp $144-145^{\circ} \mathrm{C}$.

2-2-Dimethyl-1-allylnaphth[f]isoindolenium Bromide (IIc, $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{2 2}} \mathbf{B r N}$). KOH solution ($0.3 \mathrm{ml}, 2.5 \mathrm{~N}, 5.4$ mmoles) was added to a homogeneous solution of starting salt (3.2 mmoles) in water (3 ml). The mixture was heated for 40 min at 45 $50^{\circ} \mathrm{C}$ and extracted with ether $(2 \times 15 \mathrm{ml})$. Filtration of the aqueous solution gave salt IIc.

The ether extract was treated with hydrochloric acid. Vinylnaphthalacetone IIIb was separated chromatographically pure from the ether layer in 9% yield, not forming a 2,4-dinitrophenylhydrazone. IR spectrum: 730, 930, 980, 1640 (allyl group), 1570, 1610, $1665 \mathrm{~cm}^{-1}$.

Dimethylpropargylamine (7%) was characterized as the picrate, $m p 148^{\circ} \mathrm{C}$. It did not depress the melting point of an authentic sample [9].

2,2-Dimethyl-1-allyl-3a,4-dihydronaphth[f]isoindolenium Bromide (IId, $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{BrN}$). Obtained similarly from salt Id (4.5 mmoles) in water (4 ml) and KOH solution $\left(0.4 \mathrm{ml}, 2.5 \mathrm{~N}\right.$). The mixture was heated for 1.5 h at $90-92^{\circ} \mathrm{C}$. Dimethylallylamine, yield $8 \%, \mathrm{mp} 100^{\circ} \mathrm{C}$ (picrate). It was identified by comparison with a known sample whose melting point was not depressed [10].

3-(1,3-Butadienyl)-2-dimethylaminomethylnaphthalene $\left(\mathrm{C}_{17} \mathbf{H}_{20} \mathrm{~N}\right)$. A 3 molar amount of KOH solution (25%) was added to a solution of salt IIa (4 mmoles) in water (2 ml). The fission was carried out at $120-125^{\circ} \mathrm{C}$ with steam distillation of
the product. Heating was continued for $30-40 \mathrm{~min}$ and the distillate and reaction residue were extracted with ether ($3 \times 15 \mathrm{ml}$). The ether extract was treated with hydrochloric acid. Basification of the acid layer and extraction with ether ($3 \times 20 \mathrm{ml}$) gave the amine. The ether extract was washed with water ($2 \times 5 \mathrm{ml}$) and dried with magnesium sulfate. After distillation of the ether, vacuum distillation of the residue gave $0.5 \mathrm{~g}(50 \%)$ of chromatographically pure product with bp $152^{\circ} \mathrm{C}(2 \mathrm{~mm} \mathrm{Hg})$. IR spectrum: $760,860,915,1600 \mathrm{~cm}^{-1}$. UV spectrum: $\lambda_{\max } 265,300 \mathrm{~nm}$. Polymer of the product was also separated ($0.3 \mathrm{~g}, 30 \%$) with $\mathrm{mp} 121-122^{\circ} \mathrm{C}$ (picrate).

REFERENCES

1. A. Kh. Gyul'nazaryan, N. O. Markaryan, T. A. Saakyan, F. S. Kinoyan, A. N. Evstropov, V. E. Yavorovskaya, Z. P. Khudonogova, O. V. Shaleurova, I. V. Aristov, and E. R. Nikolin, Arm. Khim. Zh., 45, 48 (1992).
2. A. T. Babayan, É. O. Chukhadzhyan, and G. T. Babayan, Zh. Org. Khim., 6, 1161 (1970).
3. A. T. Babayan, É. O. Chukhadzhyan, G. T. Babayan, Él. O. Chukhadzhyan, and F. S. Kinoyan, Arm. Khim. Zh., 23, 150 (1970).
4. É. O. Chukhadzhyan, Él. O. Chukhadzhyan, K. G. Shakhatuni, and A. T. Babayan, Khim. Geterotsikl. Soedin., No. 6, 759 (1991).
5. É. O. Chukhadzhyan, Él. O. Chukhadzhyan, K. G. Shakhatuni, and A. T. Babayan, Khim. Geterotsikl. Soedin., No. 5, 615 (1989).
6. L. A. Kazitsyna and N. B. Kupletskaya, Uses of UV, IR, NMR, and Mass Spectroscopy in Organic Chemistry [in Russian], Proceedings of Moscow State University, Moscow (1979), pp. 25, 33.
7. E. Stern and C. Timmons, Electronic Absorption Spectroscopy in Organic Chemistry [Russian translation], Mir, Moscow (1974), p. 149.
8. A. T. Babayan, É. S. Ananyan, and É. O. Chukhadzhyan, Arm. Khim. Zh., 22, 894 (1989).
9. A. T. Babayan, N. M. Davtyan, and G. T. Martirosyan, Zh. Org. Khim., 4, 556 (1968).
10. A. T. Babayan, G. T. Martirosyan, and É. A. Grigoryan, Izv. Akad. Nauk Arm. SSR., Khim. Nauki, No. 5, 449 (1963).

[^0]: Institute of Organic Chemistry, Armenian Academy of Sciences, Yerevan 375094. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 213-216, February, 1994. Original article submitted October 12, 1993.

