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The finite-element method (FEM) is used to study the influence
of porosity and pore shape on the elastic properties of model
porous ceramics. Young’'s modulus of each model is practically
independent of the solid Poisson’s ratio. At a sufficiently high
porosity, Poisson’s ratio of the porous models converges to a
fixed value independent of the solid Poisson’s ratio. Young's
modulus of the models is in good agreement with experimental
data. We provide simple formulas that can be used to predict
the elastic properties of ceramics and allow the accurate
interpretation of empirical property—porosity relations in
terms of pore shape and structure.

I. Introduction

THE elastic properties of two-phase (solid—pore) porous mate-

rials depend on the geometrical nature of the pore space and

solid phase as well as the value of porosit§ Relevant aspects of

porous materials may include pore shape and size as well as th
size and type of the interconnections between solid regions. Thes
features, which generally lack precise definition, comprise the
microstructure of the material. To predict properties or properly

interpret experimental property—porosity relationships, it is neces-
sary to have an accurate method of relating elastic properties to
porosity and microstructure. In this paper we use the finite-element

method (FEM) to derive simple formulas that relate Young's
modulus and Poisson’s ratio to porosity and microstructure for
three different models of microstructure.

There have been several different methods to deriving property—
porosity relations for porous materials. Formulas derived using the

micromechanicsmethod@~" are essentially various methods of
approximately extending exact results for small fractions of

spherical or ellipsoidal pores to higher porosities. This includes the

differentiaf and self-consistent methoti$? as well as the com-
monly used semiempirical correction to the dilute result made by
Coble and Kingeryto explain the properties of porous alumina. A

e
[S)

the MSA predictions is not exactly known. Semiempirical rela-
tions® generally provide a reasonable means of describing dat:
extrapolating results, and comparing data among materials. Hov
ever, because they lack a rigorous connection with microstructuri
these results offer neither predictive nor interpretive power
Theoretical bounds'* exist for the elastic properties, but the
vanishing of the lower bound for porous materials lessens thei
predictive power when the upper bound does not provide a goo
estimate. There are other approaches, including the generaliz
method of cell$"®

Another method is to computationally solve the equations of
elasticity for digital models of microstructut&:*®In principle this
can be done exactly. However, large statistical variations an
insufficient resolution have limited the accuracy of results ob-
tained to date. Only recently have computers been able to hand
the large three-dimensional models and number of computatior
needed to obtain reasonable results. As input to the method, we u
three different microstructural models that broadly cover the type:
of morphology observed in porous ceramics. The models are bas
on randomly placed spherical pores, solid spheres, and ellipsoid
pores*® The centers of the pores or solid particles are uncorrelatec
which leads to realistic microstructures in which both the pore anc
solid phase are interconnected. The results, which can be e
pressed simply by two- (or sometimes three-) parameter relation
correspond to a particular microstructure and explicitly show how
the properties depend on the nature of the porosity. Therefore, tt
results can be used as a predictive tool for cases where tt
microstructure of the ceramic is similar to one of the models anc
as an interpretive tool if the microstructure is unknown. The
numerically exact FEM results are compared with various well-
known micromechanics and MSA results to determine how clos
an approximation a particular formula provides for each model. Ir
the FEM, we can freely vary the properties of the solid phase
allowing us to determine the dependence of Young’s modulus an
Poisson’s ratio on the solid Poisson’s ratio as well as on the

porosity. This question has attracted recent interest in the cerami
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drawback of this approach is that the microstructure corresponding literature

to a particular formula is not precisely known; hence, agreement or
disagreement with data can neither confirm nor reject a particular
model. Another problem is that these types of models provide no
predictions for the case where the microstructure is comprised of
incompletely sintered grains, which is a common morphology in
porous ceramics. Another methio usesminimum solid area
(MSA) models. In this method purely geometrical reasoning is
used to predict the elastic moduli based on the weakest points
within the structure. Again, the microstructure that corresponds to

Il.  Computational Results

A microstructure made up of a digital image is already naturally
discretized and, therefore, lends itself to numerical computation c
many quantities. FEM uses a variational formulation of the lineal
elastic equations and finds the solution by minimizing the elastic
energy via a fast conjugate gradient method. The digital image i
assumed to have periodic boundary conditions. Details of th
theory and programs used are reported in the papers of Garboc
and Day® and Garboczf?®

To obtain accurate results using FEM on models of randon
porous materials, it is absolutely necessary to estimate an
minimize three sources of error: finite size effects, discretizatior
errors, and statistical fluctuations. This generally has not bee
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speed. FEM results for random microstructures do not have muc
meaning without such an error analysis.
The various sources of error are defined in the following way.

The length scale of the microstructure is fixed, usually by fixing
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the size of a typical pore (e.g., the spherical pore radius). The sizesamples at each resolution and porosity, except at 0.5, where

of the system is then controlled by the side length of the cubic
sample, denoted. The size of T compared to the pore size
controls how many pores appear in the computational cell. A real

large statistical variations imply that more samples are necessa
(i.e., Ng = 10). Thus, 30 different realizations of the models are
considered, each at three different discretizations, for a total of 9

material has many thousands or more such pores. Errors can ocCumodels.

in using a smaller number in a periodic cell to simulate a much
larger number. We vary to map this effect.

Once a value of is chosen that minimizes finite size errors but
is computationally possible, we next must consider the discretiza-
tion error, which comes about because we are using discrete pixel
to represent continuum objects. The number of pixels along each
edge of the cubical unit cell 1, giving a resolution of & = T/M
(in units of micrometers per pixel, i is in micrometers). For the
chosen value of, a value oM is chosen that also gives acceptable
discretization errors, usually on the order of a few percent.

Finally, when computing the properties of random materials,
either computationally or experimentally, we must carefully
choose the number of samplé¢. over which the results need to

S

The statistical variations in Young’s modulus and Poisson’s
ratio for the case, = 0.2 are shown in Table I. The error bars
shown in Table | are equal to twice the standard error (SE
o/NZ2, with o the standard deviation). Therefore, there is a 95%
chance that the “true” result lies between the indicated error bar:
The results are accurate to within 20% &t= 0.5; the error
decreases with porosity tec10% for & = 0.3. The expected
Gaussian distribution of the measured averages implies that tt
results are actually more accurate than this. For example, th
anticipated relative errors are halved if a 68% likelihood thresholc
is used (i.e.* one standard error).

In addition to the above results, we also have computed th

be averaged to produce acceptable uncertainties. This value iselastic moduli of the 90 model microstructures at solid Poisson’:

again chosen, within computational constraints, to keep statistical
fluctuations within a few percent.

(1) Overlapping Solid Spheres

Realizations of the overlapping solid-sphere mbtigt are
generated by placing solid spheres at random points in the unit cell.
This produces a set of overlapping grains that mimic the micro-

ratios of 0.1, 0.3, and 0.4. The statistical variation is not signifi-
cantly different from the case, = 0.2. Combined with the data for
vg = 0.2, this covers most commonly occurring solids. The scalec
Young's modulus for each value of is plotted against porosity in
Fig. 2. Remarkably, the scaled Young’'s modulus of the porou:
material appears to be practically independent,oT his result has
been proved to be exact in two dimensigh&*and appears to hold

structure of sintered ceramic composites (see Fig. 1(a)). The spacd0 a very good approximation in three dimensions. We have foun

outside the solid grains is the pore space, with porasitfhe pore
phase is macroscopically connected wiieis greater than-0.03,

and the solid phase remains connected §oless than~0.7*
When ¢ > 0.7, the solid phase is composed of isolated solid
particles. Therefore, betwedn= 0.03 andp = 0.7, the overlap-
ping solid-sphere model is bicontinuous. In ceramics, generally,
¢ < 0.4 in this bicontinuous regime. Therefore, we consider the
elastic properties for 0.& ¢ = 0.5, where the solid Poisson’s
ratio (vy) varies over the range 0% v, < 0.4.

To generate the microstructure, we choose solid spheres of
radiusr = 1 um. The elastic properties are length-scale invariant;
therefore, the results apply to spheres of any radius for which the
continuum assumption holds. A preliminary study has shown that
finite size errors are acceptably small for cubic samples With
12 wm. To study the discretization errors we have generated one
realization of the model witkh = 0.5 atM = 48-128. The elastic
properties depend quite strongly on resolution. We have found that
the variation of Young’s modulus with can be described by the
relatiorf?

Erem(M) = Eo + aM™* )

whereE, is the continuum value (corresponding to infinitely large
M). The same is true for Poisson’s ratio. Evenhat= 128 the
finite-element code overestimates the “exact” result for Young's
modulus by 30%. Therefore, for the overlapping sphere model, it

is necessary to measure the elastic moduli at three different values

of M and extrapolate the results kd — «. We chooseN; = 5

that Young’s modulus data are well described by an equation c
¢

the form
1 -
(1-a)

wheren = 2.23, ¢, = 0.652, and 0= ¢ = 0.5.n and ¢, are
empirical correlation parameters and should not be interpreted ¢
the percolation exponent and threshold, respectively. Percolatic
concepts are generally valid closer to the threshiglds 0.7 (for
this model), and a higher value ofs expected. The computational
cost of accurately measuring the elastic properties increase
greatly as the percolation threshold is approached.

Poisson’s ratio of the porous material is shown in Fig. 3 as ¢
function of ¢ and v, Figure 3 appears to be a flow diagrédm,
where Poisson’s ratio asymptotically approaches a fixed point
independently of the value of the solid Poisson’s ratio. This flow
diagram has been analytically proved to hold in two dimensions
when a percolation threshold exists at which Young's modulus
goes to zerg>?* This flow diagram also appears to be valid in
three dimensions as well, within numerical uncertainty. Poisson’:
ratio data shown in Fig. 3 can be roughly described by the simpl
linear relation,

E_

)

S
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v =vg+

®)

i(vo—vs)=vo+<l—
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Fig. 1. Pieces of the various models studied: (a) overlapping solid spheres, (b) overlapping spherical pores, and (c) overlapping ellipsoidal pc
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Table I.

Elastic Properties of Model Porous Ceramics

Elastic Properties of the Three Models ¢, = 0.2)
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Fig. 2. Young’'s modulus of the three microstructure models ((—)
empirical fits to the equatioB/E, = (1 — ¢/dg)"). Data are shown for)
overlapping solid spheres € 2.23,¢, = 0.652), (J) spherical pores(=
1.65, ¢, = 0.818), and 4) ellipsoidal poresr{ = 2.25, ¢, = 0.798) for
vg= —0.1, ..., 0.4Eis practically independent of the solid Poisson’s ratio
in each case (the various values Bfv) at each porosity are almost
indistinguishable).
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Fig. 3. Poisson’s ratio of the overlapping solid-sphere model as a 1

function of porosity forvg = 0.1-0.4 ((— ——) empirical fit to Eq. (3), (—)
three-parameter relation given in Eq. (4), with the value of all parameters

given in the text). Intercepts of the lines at zero porosity correspond to the

solid Poisson’s ratio.

with two fitting parameters, = 0.140 andd, = 0.472. A more
accurate fit is obtained with the three-parameter relation,

v =1v,+ (17%)”‘(%7 Vo)

with v, = 0.140,, = 0.500, andmn = 1.22.

(4)

(2) Overlapping Spherical Pores
The overlapping spherical pore (or swiss cheese) mbdéls

the overlapping solid-sphere model (see Fig. 1(b)). The morphol
ogy corresponds to isolated spherical pores at low porosity, witl
the pores becoming macroscopically interconnected a¢ 0.3.
The solid phase remains connected upbte= 0.97. This type of
morphology can occur in ceramics generated with a particulat
filler* or where bubbles form in a molten st&faWe consider solid
Poisson’s ratios in the range0.1 < v, = 0.4.

We have determined that statistical errors are acceptable for
computational cube of siZ€ = 12 wm with pores off = 1 um.
When we usé/l = 80 pixels, the discretization errors ar&8% for
¢ = 0.5 and<2% for & = 0.3. Therefore, it is not considered
necessary to generate samples at different discretizat\énar(d
extrapolate the results. As for solid spheres, Young’s modulus i
independent of the solid Poisson’s ratio to a very good approxi
mation. Young's modulus can be described by Eq. (2) wits
1.65 and$, = 0.818 (Fig. 2). Poisson’s ratio of the porous
material is shown in Fig. 4 and is simply described by the linear
relation given in Eq. (3) with, = 0.221 andp, = 0.840. Again,

a flow diagram is observed.

(3) Overlapping Ellipsoidal Pores

A common method of analyzing the effect of pore shape or
elastic properties is to study ellipsoidal pores. In analytic formulas
it is possible to treat the limiting cases of needles and platelet:
although the difficulty of resolving these fine structures prohibits
these limits from being treated with FEM. However, the percola-
tion properties of these limiting cases can be computationall
studied®® To gauge the effect of deviations from spherical-shapec
pores, we considered isotropically oriented overlapping oblat
ellipsoidal pores bounded by the surfaceal®> + (y/b)®> +
(Zc)> = 1 witha = b = 1 um andc = 0.25um (see Fig. 1(c)).
For this case, the pore phase becomes connected-=at0.22°
Statistical errors have been found to be acceptable for a compt
tational cube of siz& = 10 p.m. WhenM = 96 pixels is used, the
discretization errors are 3% fdr = 0.5 and 2% forp = 0.3. As

0.4

|
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o

Poisson’s ratio
e
\\\

-0.1 T T

0.2 0.4
Porosity

0.6

Fig. 4. Poisson’s ratio of the overlapping spherical pore model as &
function of the solid Poisson’s ratio and porosity. Lines are an empirical fit
to the relatiorv = vg + (db/dg)(vo — vg), with vy = 0.221 andp, = 0.840.

Intercepts of the lines at zero porosity correspond to the solid Poisson’

generated by interchanging the roles of the solid and pore phase ofratio.
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for the case of spherical pores, these errors are considered K =K, + ¢,P™(K; — K,,) (5)
sufficiently small; therefore, the added computational burden of )
the extrapolation technique can be again avoided. G =G, + Q™G — Gyp) (6)

Again Young’s modulus has been found to be independent of

the solid Poisson’s ratio to a very good approximation. The results, WNere
shown in Fig. 2, can be_ accurately described by I_Eq. (2) with 3K, + 4G,
2.25 andp, = 0.798. Poisson’s ratio (Fig. ®an be fitted roughly = 3K+ 4G
using Eqg. (3) withv, = 0.166 andd, = 0.604. A better fit is i m (7
obtained using Eg. (4) witm= 1.91,v, = 0.161, andp, = 0.959. G.+F
A flow diagram similar to that shown before is obtained. Q=" _"
The central processing unit (CPU) time and memory required G+ Fu
for these computations are an important “experimental” detail. The G. 9K + 8G
memory requirement for a given model is 280bytes, wherev "= —mZzm_ —-m
is the edge length in pixels of a cubic unit cell. Therefore, for the 6 Kn+2G,

largest computations conductdd, = 128, the memory require-
ment is ~500 Mbytes. The amount of CPU time consumed is
~3000 h, divided among different modern workstations.

wherec; denotes the concentration (volume fraction) of inclusions
and the subscripts i and m on the bulk moduKisand shear
modulus G denote the properties of the inclusion and matrix,
respectively. The result is attributed to numerous authdrst a
lll.  Comparison with Micromechanical and MSA Formulas porous matrixK; = G; = 0, andd = ¢;. The result is strictly valid
for small concentrations of inclusiorls << 1 (in practice¢ <

In this section we compare a selection of well-known theoretical 0.1). Expressed in terms of the engineering constants for porot
results with the “numerically exact” data computed in the previous inclusions this result becomes
section. These results include analytically exact results (bounds, )
expansions, dilute limits, and composite sphere assemblage) and E-E — § bE 9 — 4vy — Svp + O(d?) ®)
approximate results (effective medium theories and minimum mo2rTT"  7—5u,
solid area models).

There are several types of exact bounds that have been derived _ 3 (5vm— 1)(1—v}) )
for elastic materialS:** These are equations involving the various =vm b 7 - 5v, + 0(¢%) ©)
phase moduli, the volume fractions of the various phases, and
various correlation functions that define the geometry of the _ Our prior statemeit of Eq. (8) inadvertently omitted the factor
composite. The upper bound gives the maximum possible com- 3, although the correct result has been used in the paper. A nonze
posite elastic moduli, and the lower bound gives the minimum guadratic term can be added (as an empirical correction) to ensu
possible composite elastic moduli. The bounds used in this paperthatE = 0 at$ = 1. This is suggested by Coble and Kingefgr
are three-point bounds, which have been written out explicitly for MacKenzie's® result for spherical pores, which is equivalent to
overlapping solid spheres and overlapping spherical pdrgsthe Egs. (5)—(7) withK; = G; = 0.
case where one phase has zero elastic moduli, as is true in this To adapt the dilute formulas to the case of finite porosity,
paper, the lower bound becomes zero as well, and, therefore, onlyseveral proposals have been made. The approximate equations t
the upper bound is meaningful. result are usually called effective medium theories. The mos

An exact perturbation expansion also exists, where the elasticcommon approximation is the so-called self-consistent metho
moduli of a two-phase material are expanded in terms of param- (SCM) of Hill® and Budiansky? In this model the equations of
eters involving the individual elastic moduli of each phase and elasticity are solved for a spherical inclusion embedded in :
geometrical quantitie3’*® This expansion has been performed to medium of unknown effective moduli. The effective modkland
three terms explicitly, and it is this truncated form to which we G are then derived. In the dilute case the embedding medium |
compare our numerical data. The result is expected to be accurateonly the matrix. The Hill-Budiansky result can be statetfas
when the void phase is not interconnected.

i _ m _ —
Another exact result, which is used later in this section to build CP*(Ki = Ki) + cnP* ™K — Ky) = 0 (20)
the various effective medium theories, is the case of dilute » o
spherical pores, for which the exact effective moduli are given by cQ*'(G — Gy) + ¢Q*™(Gy — G4) =0 (11)

whereK, andG, denote the effective moduli arfek™ and Q*™
are given in Eq. (7). The equations cannot be explicitly solved, an
numerical methods are necessary (see®Hitid Berrymat¥ for
details). In the case of porous inclusions, the moduli vanigh-at
:_le which is a property not shared with most composites (e.g., thi
overlapping sphere model). To derive a more realistic result
Christensen and 13 have generalized the SCM (GSCM) to the
case of a spherical shell embedded in a matrix of unknown modul
The result is complicated and not reproduced here.

The differential method (reviewed by McLaugHi)nprovides
an alternative model using a similar philosophy. Suppose that th
effective moduli of a composite medium are known tokheand
G,.. If a small additional concentration of inclusions is added, the
change irK, andG, is approximated to be that which would result
if a dilute concentration of inclusions was added to a uniform,
homogeneous matrix with modi, andG,. This leads to a pair

0.4

0.3

0.2

Poisson’s ratio

-0.1 T ]

0.0 0.2 . 0.4 0.6 of coupled differential equations:
Porosity
Fig. 5. Poisson’s ratio of the overlapping ellipsoidal pore model as a dKs _ p*iu Ki(ci=0) =K, (12)
function of the solid Poisson’s ratio and porosity ((—) empirical fit to Eq. dc; 1-g¢
(4), and (——-) linear fit to Eq. (3), witly, = 0.166 andd, = 0.604). dG G -G
Intercepts of the lines at zero porosity correspond to the solid Poisson’s * = Q¢ [ . 3 G,(c;=0) = G, (13)

ratio. dc; 1-g¢
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The dilute result, the self-consistent resdignd the differential 1.0
method can be extended to the case of spheroidal inclusions. The
general results for P™ andQ™ have been given by Berrymdn.
In addition to these results, Wtihas derived a variant of the
self-consistent method, whelkg andG,, the effective moduli, are .
found by implicitly solving the equations N
= pxi L= 7] . \S
Ky = Ky + ¢P*(K; — K,,) (14) w05 \\\
o ~
G, = G + ¢Q*(G ~ Gy) (15) X
-2 ~
A different type of microstructure is provided by the HashiA o =
model of space-filling polydisperse hollow spheres (composite- -
sphere assemblage). Although a simple formula exists for the bulk “ ]
modulus over the full porosity rang@,exact results for Young’s 0.0 o
moduli are not available. Ramakrishnan and Arunach&tam ) ! '
cently derived the approximation 0.0 0.2 - 0.4 0.6
Porosity
E _ (1-¢)° (16) Fig. 6. Comparison of rigorous bounds and expansions to the FEM dat:
E. (1+ 2 — 3vd) for (O) overlapping spherical pores arid)overlapping solid spheres ((—)
truncated expansion and (— — —) three-point upper bound are shown for tt
(4vs+ 3d — Tvd) spherical-pore case; only the-() three-point bound is shown for the
v = a7 solid-sphere case; three-point lower bound is zero for porous materials

T A1+ 26 - 3vd)

However, the derivation is not rigorous. In particular, the exact
result for the bulk modulus of the modélis about twice that
predicted by Egs. (16) and (17) & = 0.5. Because Eq. (16)

Poisson’s ratio is 0.2 for all the results.

In Fig. 7, we compare the FEM date,(= 0.2) for overlapping

provides reasonable agreement with experimental data for porousspherical pores with dilute and effective medium theory analytic
ceramics-” we compare its predictions to our FEM data below.  results. At this Poisson’s ratio, the SCM and dilute results reduc
The final class of results we consider is provided by the MSA to E/Eg = 1 — 2¢, whereas the differential and dilute results with
model$* (which have been recently reviewed by Rid¢d. This the Coble—Kingery correction reducefE, = (1 — ¢)°. Because
approach is based on the assumption that the ratio of the effectivethe analytic results are based on the case of dilute spherical pore
moduli to the solid moduli is directly proportional to the minimum  they all match the FEM data & = 0.1. The dilute and SCM
ratio of solid contact area to the total cross-sectional area of results underestimate the FEM data at higher porosities because of 1
periodic structures. The approximation derived depends on the aphysical percolation threshold &t = ~. The generalized SCM
particular model considered. We consider two basic models mostoverestimates the data, whereas the differential method perforn
closely aligned with our FEM data: simple cubic arrays of solid reasonably well over the entire porosity range. The latter observ
and porous spheres. The latter case provides a particularly simpletion might have been anticipated given the close associatio
example of the type of result that can be derived. Suppose thebetween the definition of the spherical-pore model and the as
repeat distance of the lattice i$h 2nd the sphere radius is sumption of the differential method. At increasing porosities we
Young's modulus is assumed to be proportional to the area are simply adding additional spherical pores to a porous matrix
fraction, giving The data for overlapping solid spheres are also shown in Fig. 7
and seem to be quite different from any of the available results
E_(2h)?—ar® m ([ 6)%° 23 This demonstrates that microstructure (the geometrical nature
E. 2n? T a\m ¢ the porosity) is an important factor besides the actual value of th
porosity.

(18)

because = = m(r/h)3. The form of the result changes for> h (or
¢ > w/6 = 0.52) as the spheres begin to coalesce. Riwes
reported that the moduli of many different periodic structures can
be approximated by the fornE/E, = e °* over a range of
porosities: for exampldy ~ 5 for the solid-sphere model, aihd~
3 for the porous-sphere model. It is argued that, for a given set of
data,b can be compared with known values to assess the type of N
porosity. Often fractions of different types of porosity are assumed
to match experimental data, making the method an interpretive N
rather than a predictive tool. Because we have meashréat w? AN
microstructures based on solid-sphere contacts and porous spheresy 0.5 4 S N
we should be able to ascertain the accuracy of the MSA formulas S
for these cases. AN o™~
Figure 6 shows the comparison between the exact three-point o ~ ~
bounds* for the overlapping solid-sphere and spherical pore cases, N o
the truncated expansiéh®® for the overlapping spherical pore CERN
case, and the numerical results. Clearly, the expansion does better N

1.0

than the three-point bound for the overlapping spherical pore case,
although both formulas are fairly close to the numerical results.
The bound lies far above the overlapping solid-sphere numerical

results, however. For this case, the truncated expansion does no

exist. Only thev, = 0.2 data are shown. Using the truncated
expansion, it can be shown that, in three dimensions, Young's

paper.

0.0

0.0

T
0.2

Porosity

0.6

I:ig. 7. Comparison of various theories to the FEM data &) (
overlapping spherical pores. Lines correspond to the dilute (- - -) result an
! > - ! | self-consistent meth8d® (or SCM), (—) differential methddand dilute
modulus is not exactly independent of the solid Poisson’s ratio but resyit with Coble—Kingery correction, and (— —-) the generalized LM

is, rather, a very good approximation, as was shown earlier in this Data for the {J) overlapping solid-sphere model (for which no rigorous

theories exist) are also shown.



3046 Journal of the American Ceramic Society—Roberts and Garboczi Vol. 83, No. 12

In Fig. 8, the MSA models and the Ramakrishnan and 1.0
Arunachalam resulté are compared with the data. The MSA
model for spherical pores performs reasonably well, although
underestimating the FEM data for overlapping random spherical
pores at low porosities¢{ < 0.3). The MSA model for solid
spheres considerably underestimates these dath for0.3. The
Ramakrishnan and Arunachal&fapproximation falls between @
the FEM data fokp > 0.1, indicating that it corresponds to neither W g5
of the microstructures. For purposes of comparison, we also report w
numerical results obtained using the computational generalized
method of cell$. For a periodic spherical pore, the results
significantly underestimate the FEM data for overlapping spherical
pores at low porosities (and, hence, the exact dilute result). It is not
clear if this is due to the assumptions or the particular implemen-
tation of the method. 0.0

The FEM data for overlapping oblate ellipsoidal pores is )
compared with the available theories in Fig. 9. The SCM results of
Wut and Berrymaf? underestimate the porosity as a result of
underestimating the physical percolation threshold. The Berryman Fig. 9. Comparison of various theories to the FEM data fap) (
result performs significantly better than does the Wu result. As for overlapping oblate ellipsoidal pores. Lines correspond to the (—) differ-
the case of spheres, the differential method matches the data quiténtial metho and the self-consistent methods of (~——) Wand ¢ - )
closely because of the similarity between the assumptions of the Berryman:
theory and the definition of the model.

We have also compared Poisson’s ratio predicted by the various
self-consistent and differential methods to the FEM data for 1.0
overlapping spherical and ellipsoidal pores. The theoretical results
converge to different fixed points (e.g., Fig. 3) in qualitative
agreement with the data. However, only the differential method
provides reasonable agreement with the FEM data (with absolute
error <0.02 forp = 0.4 and 0.1= v, = 0.4).

0.0 0.2 0.4 0.6
Porosity

Luw
~ 054

IV. Comparison with Experiment w

We now use the FEM results to analyze experimental measure-
ments of the elastic properties of porous ceramic materials. The
dependence of the elastic moduli on porosity has been the subject
of many studie$>*"*®Data for porous alumina from numerous
studie$® are shown in Fig. 10The Coble—Kingery material is
markedly stiffer than other materials, which is in very good 0.0 I !
agreement with the FEM results for the overlapping spherical pore 0.0 0.2 . 0.4 0.6
model. The pores in the alumina matrix are actually created by the Porosity
the definition of the model microstructure. The remaining data and by (J) Coble-Kingery (E; = 386 GPa). Lines correspond to the FEM
closely follow the overlapping solid-sphere FEM result for< theories computed in this paper: (—) overlapping spherical pores) (
0.25, indicating that the solid alumina phase has the sintered overlapping oblate ellipsoidal pores, and (- —-) overlapping solid sphere:

1.0 granular morphology exhibited by the model microstructure (Fig.
1(a)). However, Knudsen reports that several of the sample
summarized were also created using particulate fillers. At highe
porosities, the solid-sphere result underestimates the data. O
reason for this might be that the model contains isolated soli
spheres that artificially decrease the actual porosity. This has be
checked and found not to be the case for the porosities studie
Therefore, the solid connections in these samples of porou
alumina are likely stiffer than those found in the solid-sphere
model atd > 0.25. Overlapping spheres can create very sharj
“valleys” between a pair of overlapping solid spheres (see Fig
1(a)), which would be rounded off in the sintering process,
presumably strengthening the solid—solid connection.

Hunter and co-workef§ —3°have studied Young's modulus of
0.0 T I several oxides. In all cases, the porous material has been created

0.0 0.2 0.4 0.6 sintering a powder of the pure oxide. The results for Young’s

Porosity modulus are reproduced in Fig. 11. For low porositiés<( 0.1),

all of the data follow the FEM results for overlapping spherical
pores. For GgO5, the FEM result continues to provide excellent

0.5+

Fig. 8. Comparison of the MSA modélsto the FEM data for @)
overlapping spherical pores andJ) solid spheres. The (—) MSA : .
solid-s%rt)we?e mrz)del and F()———) MSAXporous sShere model (ir(1 si)mple cubic f”‘gr_ee“ﬁe“t up to th? maximum Po“?S'FV measuréd=( 0.4),
packings) underestimate the data for low porositiés < 0.3); - -) indicating that the microstructure is similar to that of the model
formula of Ramakrishnan and Arunachaf&/E, = (1 — &)2/(1 + 1.4d) (overlapping pores). In contrast, the data for the other three oxide
and (— -) results of the generalized method of cells for a periodic spherical decrease toward the result for overlapping solid spheres, indicatir
poré are also shown. a more granular character.
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Fig. 11. Data for various oxides measured by Hurgeal *6~*°compared Fig. 13. Data for MgALO,.*° Value used wa&, = 41.2x 10° psi (284
with the FEM theories for (—) overlapping spherical pores and (——-) GPa) indicated on Fig. 3(A) of the reference, rather than the reported valu
overlapping solid spheres®f Sm,05,3¢ E; = 145 GPa; {) Lu,0,,%" E, = of Eg = 43.4 X 10° psi, which appears to be a misprint ((—) corresponds
193 GPa; ©) Gd,0,,%¢ E, = 150 GPa; and{) Hf0O,,3° E; = 246 GPa). to the FEM theory for overlapping solid spheres).

clear. Therefore, agreement or disagreement with a particul

The data of Walslet al2® for porous glass is compared with the  analytic theory neither confirms nor rejects a particular physica
FEM results for overlapping spherical pores in Fig. 12. The model. For the MSA models, the microstructure is exactly known
agreement is good for small to moderate porosities<(0.3), but but the approximation involved in making Young’'s modulus
the FEM results underestimate the data at higher porosities. Walshdirectly proportional to the contact area leads to a similar conclu
et al. report that the pores in the glass are actually not intercon- sion. We have found that the MSA models do not provide
nected (unlike the overlapping pores of the model). This accounts quantitative agreement with the moduli of the random microstruc
for the increased stiffness. FEM results begin to deviate from the tures studied. We have found that the differential method (Eqs
experimental data at the threshold, where the pores become(12) and (13)) provides results in reasonable agreement wit
macroscopically connectedd( = 0.3). Data for sintered computed data for the cases of overlapping spherical and ellipsc
MgAI,0,*° powder are shown in Fig. 13and they are well dal pores, probably because of the similarities between th
modeled by the FEM results for overlapping solid spheres. assumptions of the model and the definitions of the microstructure
Micrographs of the ceramic indicate a granular structure similar to Results for the granular model of overlapping solid spheres hav
that of the model microstructure (although the grains appear asnot been well modeled by any of the analytic theories, demonstra
polyhedra, not spheres). ing the importance of FEM techniques in this case of greal

physical interest.
] ) ) We have also generated data that show the dependence

V. Discussion and Conclusions Poisson’s ratio on porosity and the solid Poisson’s ratio. It is
difficult to study this question experimentally because of the
inability to vary Poisson’s ratio of the solid independently and the
well-known difficulties of accurately measuring Poisson’s ratio at
moderate to high porositié§. At sufficiently high porosities,
Poisson’s ratio converges to a fixed non-zero valyg, (rrespee
tive of the solid Poisson’s ratio. For overlapping solid spheres
vo = 0.14; spherical pores, = 0.22; and oblate ellipsoidal pores,
v, = 0.16. This behavior is exact in two dimensiéh$* and is
exhibited by many of the analytic theories in three dimensions. A
present the available experimental data cannot confirm this qua
itative behavior:® We have shown that Poisson’s ratio does not
1.0 vanish at high porosities, as has been recently argtied.

It is not simple to attribute our results to features of the
solid-pore morphology—such as the size, shape, distribution, an
o connectivity of pores or solid grains—because these features ha
no obvious definition for complex bicontinuous random micro-
structures. A few general observations can be made and interpret
in terms of interrelated geometrical and mechanical features of th
X 0.5 ) models. For a given porosity, the sintered grain structure of th
=~ o ; ; ! ) :
v o overlapping solid-sphere model is relatively weak. The small solic
Qo contacts between spheres and the highly interconnected porosi

o (which becomes macroscopically connected at 0.03) lead to a
° weak structure. We also assume that the valleys that occur betwe
grains provide sites of large stress concentrations and, cons
quently, large deformations. In contrast, spherical pores provid
0.0 high (near optimal) stiffness at a given porosity. The disperse
: ! ! ! nature of the porosity (which is macroscopically disconnected fo
0.0 0.2 0.4 0.6 0.8 ¢ < 0.3) corresponds to a well-connected solid matrix. Ellipsoidal
Porosity pores tend to weaken a structure more than spherical pores beca
Fig. 12. Data for porous glass (K, = 46 GPa,vs = 0.23) ((—) FEM of a combination of a less-well-connected solid phase (the pore
theory for overlapping spherical pores). become macroscopically connected &t = 0.2) and greater

We have derived empirical theories for the dependence of
Young’s modulus on porosity for three distinct models of porous
ceramics, based on careful FEM computations. An advantage of
these results over many conventional theories is that they corre-
spond toa priori known microstructures. The dilute result (ex-
tended by Coble—Kingery to all porosities), the differential
method, and the self-consistent methods have a built-in micro-
structure, but, apart from the dilute case, the microstructure is not
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stresses and deformations near the high-curvature regions of the *®. Poutet, D. Manzoni, F. Hage-Chehade, C. G. Jacquin, M. J. Bouteca, J. |

ellipsoid.
We have compared our FEM results with several sets of

previously published experimental data. In cases where the micro-

structure of the porous ceramics roughly matches that of the

Thovert, and P. M. Adler, “The Effective Mechanical Properties of Random Porous
Media,” J. Mech. Phys. Soliggl4, 1587—-620 (1996).

17N. Ramakrishnan and V. S. Arunachalam, “Effective Elastic Moduli of Ceramic
Materials,”J. Am. Ceram. Soc76 [11] 2745-52 (1993).

187 R. Boccaccini, “Comment on ‘Effective Elastic Moduli of Ceramic Materi

models, the agreement is very good. Because the FEM resultsaIS’;J-Am- Ceram. Soc76 [10] 2745-52 (1994).

correspond to a known microstructure, it is possible to explain
deviations in terms of specific microstructural features. Thus,
comparison of experimental data with the three computational
results provides a useful interpretive tool. A given elastic modulus

does not correspond to a particular microstructure. Therefore, it is

important to corroborate microstructural interpretations obtained
from the elastic moduli with information about the particular

material (such as a micrograph). In the future, it would be useful
to extend this work to higher porosities and to other relevant

R. W. Rice, “Comment on ‘Effective Elastic Moduli of Porous Ceramic
Materials’,” J. Am. Ceram. Soc78 [6] 1711 (1995).

2%E. J. Garboczi, Internal Rept. No. 6269, National Institute of Standards anc
Technology, Gaithersburg, MD, 1998; Ch. 2 (available at http://ciks.cbt.nist.gov/
garboczi/).

214, L. Weissberg, “Effective Diffusion Coefficient in Porous Medial,’ Appl.
Phys, 34, 2636-39 (1963).

22A. P. Roberts and M. Teubner, “Transport Properties of Heterogeneous Material
Derived from Gaussian Random Fields: Bounds and Simulat®hys. Rev. EStat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Tdfl, 4141-54 (1995).

23A. R. Day, K. A. Snyder, E. J. Garboczi, and M. F. Thorpe, “The Elastic Moduli

models (such as nonoverlapping porous spheres). It is also possiblef Sheet Containing Spherical Holesl’ Mech. Phys. Solidl0, 1031-51 (1992).

to use statistical microstructural information obtained from two-
dimensional micrographs to generate motfisat actually mimic
physical microstructures.
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