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The finite-element method (FEM) is used to study the influence
of porosity and pore shape on the elastic properties of model
porous ceramics. Young’s modulus of each model is practically
independent of the solid Poisson’s ratio. At a sufficiently high
porosity, Poisson’s ratio of the porous models converges to a
fixed value independent of the solid Poisson’s ratio. Young’s
modulus of the models is in good agreement with experimental
data. We provide simple formulas that can be used to predict
the elastic properties of ceramics and allow the accurate
interpretation of empirical property–porosity relations in
terms of pore shape and structure.

I. Introduction

THE elastic properties of two-phase (solid–pore) porous mate-
rials depend on the geometrical nature of the pore space and

solid phase as well as the value of porosity.1–4Relevant aspects of
porous materials may include pore shape and size as well as the
size and type of the interconnections between solid regions. These
features, which generally lack precise definition, comprise the
microstructure of the material. To predict properties or properly
interpret experimental property–porosity relationships, it is neces-
sary to have an accurate method of relating elastic properties to
porosity and microstructure. In this paper we use the finite-element
method (FEM) to derive simple formulas that relate Young’s
modulus and Poisson’s ratio to porosity and microstructure for
three different models of microstructure.

There have been several different methods to deriving property–
porosity relations for porous materials. Formulas derived using the
micromechanicsmethod5–7 are essentially various methods of
approximately extending exact results for small fractions of
spherical or ellipsoidal pores to higher porosities. This includes the
differential8 and self-consistent methods9–12 as well as the com-
monly used semiempirical correction to the dilute result made by
Coble and Kingery1 to explain the properties of porous alumina. A
drawback of this approach is that the microstructure corresponding
to a particular formula is not precisely known; hence, agreement or
disagreement with data can neither confirm nor reject a particular
model. Another problem is that these types of models provide no
predictions for the case where the microstructure is comprised of
incompletely sintered grains, which is a common morphology in
porous ceramics. Another method3,13 usesminimum solid area
(MSA) models. In this method purely geometrical reasoning is
used to predict the elastic moduli based on the weakest points
within the structure. Again, the microstructure that corresponds to

the MSA predictions is not exactly known. Semiempirical rela-
tions2 generally provide a reasonable means of describing data,
extrapolating results, and comparing data among materials. How-
ever, because they lack a rigorous connection with microstructure,
these results offer neither predictive nor interpretive power.
Theoretical bounds5,14 exist for the elastic properties, but the
vanishing of the lower bound for porous materials lessens their
predictive power when the upper bound does not provide a good
estimate. There are other approaches, including the generalized
method of cells.4,6

Another method is to computationally solve the equations of
elasticity for digital models of microstructure.15,16In principle this
can be done exactly. However, large statistical variations and
insufficient resolution have limited the accuracy of results ob-
tained to date. Only recently have computers been able to handle
the large three-dimensional models and number of computations
needed to obtain reasonable results. As input to the method, we use
three different microstructural models that broadly cover the types
of morphology observed in porous ceramics. The models are based
on randomly placed spherical pores, solid spheres, and ellipsoidal
pores.14 The centers of the pores or solid particles are uncorrelated,
which leads to realistic microstructures in which both the pore and
solid phase are interconnected. The results, which can be ex-
pressed simply by two- (or sometimes three-) parameter relations,
correspond to a particular microstructure and explicitly show how
the properties depend on the nature of the porosity. Therefore, the
results can be used as a predictive tool for cases where the
microstructure of the ceramic is similar to one of the models and
as an interpretive tool if the microstructure is unknown. The
numerically exact FEM results are compared with various well-
known micromechanics and MSA results to determine how close
an approximation a particular formula provides for each model. In
the FEM, we can freely vary the properties of the solid phase,
allowing us to determine the dependence of Young’s modulus and
Poisson’s ratio on the solid Poisson’s ratio as well as on the
porosity. This question has attracted recent interest in the ceramics
literature.17–19

II. Computational Results

A microstructure made up of a digital image is already naturally
discretized and, therefore, lends itself to numerical computation of
many quantities. FEM uses a variational formulation of the linear
elastic equations and finds the solution by minimizing the elastic
energy via a fast conjugate gradient method. The digital image is
assumed to have periodic boundary conditions. Details of the
theory and programs used are reported in the papers of Garboczi
and Day15 and Garboczi.20

To obtain accurate results using FEM on models of random
porous materials, it is absolutely necessary to estimate and
minimize three sources of error: finite size effects, discretization
errors, and statistical fluctuations. This generally has not been
done in the past because of limitations in computer memory and
speed. FEM results for random microstructures do not have much
meaning without such an error analysis.

The various sources of error are defined in the following way.
The length scale of the microstructure is fixed, usually by fixing
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the size of a typical pore (e.g., the spherical pore radius). The size
of the system is then controlled by the side length of the cubic
sample, denotedT. The size ofT compared to the pore size
controls how many pores appear in the computational cell. A real
material has many thousands or more such pores. Errors can occur
in using a smaller number in a periodic cell to simulate a much
larger number. We varyT to map this effect.

Once a value ofT is chosen that minimizes finite size errors but
is computationally possible, we next must consider the discretiza-
tion error, which comes about because we are using discrete pixels
to represent continuum objects. The number of pixels along each
edge of the cubical unit cell isM, giving a resolution of dx 5 T/M
(in units of micrometers per pixel, ifT is in micrometers). For the
chosen value ofT, a value ofM is chosen that also gives acceptable
discretization errors, usually on the order of a few percent.

Finally, when computing the properties of random materials,
either computationally or experimentally, we must carefully
choose the number of samples (Ns) over which the results need to
be averaged to produce acceptable uncertainties. This value is
again chosen, within computational constraints, to keep statistical
fluctuations within a few percent.

(1) Overlapping Solid Spheres
Realizations of the overlapping solid-sphere model14,21 are

generated by placing solid spheres at random points in the unit cell.
This produces a set of overlapping grains that mimic the micro-
structure of sintered ceramic composites (see Fig. 1(a)). The space
outside the solid grains is the pore space, with porosityf. The pore
phase is macroscopically connected whenf is greater than;0.03,
and the solid phase remains connected forf less than;0.7.14

When f . 0.7, the solid phase is composed of isolated solid
particles. Therefore, betweenf 5 0.03 andf 5 0.7, the overlap-
ping solid-sphere model is bicontinuous. In ceramics, generally,
f , 0.4 in this bicontinuous regime. Therefore, we consider the
elastic properties for 0.1# f # 0.5, where the solid Poisson’s
ratio (ns) varies over the range 0.1# ns # 0.4.

To generate the microstructure, we choose solid spheres of
radiusr 5 1 mm. The elastic properties are length-scale invariant;
therefore, the results apply to spheres of any radius for which the
continuum assumption holds. A preliminary study has shown that
finite size errors are acceptably small for cubic samples withT 5
12 mm. To study the discretization errors we have generated one
realization of the model withf 5 0.5 atM 5 48–128. The elastic
properties depend quite strongly on resolution. We have found that
the variation of Young’s modulus withM can be described by the
relation22

EFEM~M! < E0 1 aM21 (1)

whereE0 is the continuum value (corresponding to infinitely large
M). The same is true for Poisson’s ratio. Even atM 5 128 the
finite-element code overestimates the “exact” result for Young’s
modulus by 30%. Therefore, for the overlapping sphere model, it
is necessary to measure the elastic moduli at three different values
of M and extrapolate the results toM 3 `. We chooseNs 5 5

samples at each resolution and porosity, except atf 5 0.5, where
large statistical variations imply that more samples are necessary
(i.e., Ns 5 10). Thus, 30 different realizations of the models are
considered, each at three different discretizations, for a total of 90
models.

The statistical variations in Young’s modulus and Poisson’s
ratio for the casens 5 0.2 are shown in Table I. The error bars
shown in Table I are equal to twice the standard error (SE5
s/Ns

1/2, with s the standard deviation). Therefore, there is a 95%
chance that the “true” result lies between the indicated error bars.
The results are accurate to within 20% atf 5 0.5; the error
decreases with porosity to,10% for f # 0.3. The expected
Gaussian distribution of the measured averages implies that the
results are actually more accurate than this. For example, the
anticipated relative errors are halved if a 68% likelihood threshold
is used (i.e.,6 one standard error).

In addition to the above results, we also have computed the
elastic moduli of the 90 model microstructures at solid Poisson’s
ratios of 0.1, 0.3, and 0.4. The statistical variation is not signifi-
cantly different from the casens 5 0.2. Combined with the data for
ns 5 0.2, this covers most commonly occurring solids. The scaled
Young’s modulus for each value ofns is plotted against porosity in
Fig. 2. Remarkably, the scaled Young’s modulus of the porous
material appears to be practically independent ofns. This result has
been proved to be exact in two dimensions23,24and appears to hold
to a very good approximation in three dimensions. We have found
that Young’s modulus data are well described by an equation of
the form

E

Es
5 S1 2

f

f0
D n

(2)

wheren 5 2.23, f0 5 0.652, and 0# f # 0.5. n and f0 are
empirical correlation parameters and should not be interpreted as
the percolation exponent and threshold, respectively. Percolation
concepts are generally valid closer to the thresholdfc ' 0.7 (for
this model), and a higher value ofn is expected. The computational
cost of accurately measuring the elastic properties increases
greatly as the percolation threshold is approached.

Poisson’s ratio of the porous material is shown in Fig. 3 as a
function of f and ns. Figure 3 appears to be a flow diagram,23

where Poisson’s ratio asymptotically approaches a fixed point,
independently of the value of the solid Poisson’s ratio. This flow
diagram has been analytically proved to hold in two dimensions,
when a percolation threshold exists at which Young’s modulus
goes to zero.23,24 This flow diagram also appears to be valid in
three dimensions as well, within numerical uncertainty. Poisson’s
ratio data shown in Fig. 3 can be roughly described by the simple
linear relation,

n 5 ns 1
f

f0
~n0 2 ns! 5 n0 1 S1 2

f

f0
D ~ns 2 n0! (3)

Fig. 1. Pieces of the various models studied: (a) overlapping solid spheres, (b) overlapping spherical pores, and (c) overlapping ellipsoidal pores.
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with two fitting parametersn0 5 0.140 andf0 5 0.472. A more
accurate fit is obtained with the three-parameter relation,

n 5 n0 1 S1 2
f

f0
Dm

~ns 2 n0! (4)

with n0 5 0.140,f0 5 0.500, andm 5 1.22.

(2) Overlapping Spherical Pores
The overlapping spherical pore (or swiss cheese) model14,21 is

generated by interchanging the roles of the solid and pore phase of

the overlapping solid-sphere model (see Fig. 1(b)). The morphol-
ogy corresponds to isolated spherical pores at low porosity, with
the pores becoming macroscopically interconnected atf ' 0.3.
The solid phase remains connected up tof ' 0.97. This type of
morphology can occur in ceramics generated with a particulate
filler1 or where bubbles form in a molten state.25 We consider solid
Poisson’s ratios in the range20.1 # ns # 0.4.

We have determined that statistical errors are acceptable for a
computational cube of sizeT 5 12 mm with pores ofr 5 1 mm.
When we useM 5 80 pixels, the discretization errors are,3% for
f 5 0.5 and,2% for f 5 0.3. Therefore, it is not considered
necessary to generate samples at different discretizations (M) and
extrapolate the results. As for solid spheres, Young’s modulus is
independent of the solid Poisson’s ratio to a very good approxi-
mation. Young’s modulus can be described by Eq. (2) withn 5
1.65 andf0 5 0.818 (Fig. 2). Poisson’s ratio of the porous
material is shown in Fig. 4 and is simply described by the linear
relation given in Eq. (3) withn0 5 0.221 andf0 5 0.840. Again,
a flow diagram is observed.

(3) Overlapping Ellipsoidal Pores
A common method of analyzing the effect of pore shape on

elastic properties is to study ellipsoidal pores. In analytic formulas,
it is possible to treat the limiting cases of needles and platelets,
although the difficulty of resolving these fine structures prohibits
these limits from being treated with FEM. However, the percola-
tion properties of these limiting cases can be computationally
studied.26 To gauge the effect of deviations from spherical-shaped
pores, we considered isotropically oriented overlapping oblate
ellipsoidal pores bounded by the surface (x/a)2 1 (y/b)2 1
(z/c)2 5 1 with a 5 b 5 1 mm andc 5 0.25mm (see Fig. 1(c)).
For this case, the pore phase becomes connected atf 5 0.2.26

Statistical errors have been found to be acceptable for a compu-
tational cube of sizeT 5 10 mm. WhenM 5 96 pixels is used, the
discretization errors are 3% forf 5 0.5 and 2% forf 5 0.3. As

Table I. Elastic Properties of the Three Models (ns 5 0.2)

f

Overlapping solid spheres Overlapping spherical pores Overlapping ellipsoidal pores

E/Es n E/Es n E/Es n

0.1 0.71 6 1% 0.196 1% 0.806 1% 0.206 1% 0.736 2% 0.196 3%
0.2 0.47 6 2% 0.186 4% 0.626 2% 0.206 2% 0.526 3% 0.186 4%
0.3 0.25 6 6% 0.176 9% 0.466 3% 0.216 3% 0.346 4% 0.186 6%
0.4 0.12 6 13% 0.156 25% 0.336 4% 0.216 4% 0.206 3% 0.186 4%
0.5 0.0396 22% 0.156 21% 0.216 8% 0.226 9% 0.116 4% 0.186 6%

Fig. 2. Young’s modulus of the three microstructure models ((—)
empirical fits to the equationE/Es 5 (1 2 f/f0)

n). Data are shown for (E)
overlapping solid spheres (n 5 2.23,f0 5 0.652), (h) spherical pores (n 5
1.65,f0 5 0.818), and (‚) ellipsoidal pores (n 5 2.25,f0 5 0.798) for
ns 5 20.1, . . ., 0.4.E is practically independent of the solid Poisson’s ratio
in each case (the various values ofE(ns) at each porosity are almost
indistinguishable).

Fig. 3. Poisson’s ratio of the overlapping solid-sphere model as a
function of porosity forns 5 0.1–0.4 ((– – –) empirical fit to Eq. (3), (—)
three-parameter relation given in Eq. (4), with the value of all parameters
given in the text). Intercepts of the lines at zero porosity correspond to the
solid Poisson’s ratio.

Fig. 4. Poisson’s ratio of the overlapping spherical pore model as a
function of the solid Poisson’s ratio and porosity. Lines are an empirical fit
to the relationn 5 ns 1 (f/f0)(n0 2 ns), with n0 5 0.221 andf0 5 0.840.
Intercepts of the lines at zero porosity correspond to the solid Poisson’s
ratio.
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for the case of spherical pores, these errors are considered
sufficiently small; therefore, the added computational burden of
the extrapolation technique can be again avoided.

Again Young’s modulus has been found to be independent of
the solid Poisson’s ratio to a very good approximation. The results,
shown in Fig. 2, can be accurately described by Eq. (2) withn 5
2.25 andf0 5 0.798. Poisson’s ratio (Fig. 5)can be fitted roughly
using Eq. (3) withn0 5 0.166 andf0 5 0.604. A better fit is
obtained using Eq. (4) withm5 1.91,n0 5 0.161, andf0 5 0.959.
A flow diagram similar to that shown before is obtained.

The central processing unit (CPU) time and memory required
for these computations are an important “experimental” detail. The
memory requirement for a given model is 230M3 bytes, whereM
is the edge length in pixels of a cubic unit cell. Therefore, for the
largest computations conducted,M 5 128, the memory require-
ment is ;500 Mbytes. The amount of CPU time consumed is
;3000 h, divided among different modern workstations.

III. Comparison with Micromechanical and MSA Formulas

In this section we compare a selection of well-known theoretical
results with the “numerically exact” data computed in the previous
section. These results include analytically exact results (bounds,
expansions, dilute limits, and composite sphere assemblage) and
approximate results (effective medium theories and minimum
solid area models).

There are several types of exact bounds that have been derived
for elastic materials.5,14 These are equations involving the various
phase moduli, the volume fractions of the various phases, and
various correlation functions that define the geometry of the
composite. The upper bound gives the maximum possible com-
posite elastic moduli, and the lower bound gives the minimum
possible composite elastic moduli. The bounds used in this paper
are three-point bounds, which have been written out explicitly for
overlapping solid spheres and overlapping spherical pores.14 In the
case where one phase has zero elastic moduli, as is true in this
paper, the lower bound becomes zero as well, and, therefore, only
the upper bound is meaningful.

An exact perturbation expansion also exists, where the elastic
moduli of a two-phase material are expanded in terms of param-
eters involving the individual elastic moduli of each phase and
geometrical quantities.27,28This expansion has been performed to
three terms explicitly, and it is this truncated form to which we
compare our numerical data. The result is expected to be accurate
when the void phase is not interconnected.

Another exact result, which is used later in this section to build
the various effective medium theories, is the case of dilute
spherical pores, for which the exact effective moduli are given by

K 5 Km 1 ciP
mi~K i 2 Km! (5)

G 5 Gm 1 ciQ
mi~Gi 2 Gm! (6)

where

Pmi 5
3Km 1 4Gm

3K i 1 4Gm (7)

Qmi 5
Gm 1 Fm

Gi 1 Fm

Fm 5
Gm

6

9Km 1 8Gm

Km 1 2Gm

whereci denotes the concentration (volume fraction) of inclusions
and the subscripts i and m on the bulk modulusK and shear
modulus G denote the properties of the inclusion and matrix,
respectively. The result is attributed to numerous authors.5 For a
porous matrix,Ki 5 Gi 5 0, andf 5 ci. The result is strictly valid
for small concentrations of inclusionsf ,, 1 (in practicef ,
0.1). Expressed in terms of the engineering constants for porous
inclusions this result becomes

E 5 Em 2
3

2
fEm

9 2 4nm 2 5nm
2

7 2 5nm
1 O~f2! (8)

n 5 nm 2
3

2
f

~5nm 2 1!~1 2 nm
2 !

7 2 5nm
1 O~f2! (9)

Our prior statement29 of Eq. (8) inadvertently omitted the factor
3

2
, although the correct result has been used in the paper. A nonzero

quadratic term can be added (as an empirical correction) to ensure
thatE 5 0 atf 5 1. This is suggested by Coble and Kingery1 for
MacKenzie’s30 result for spherical pores, which is equivalent to
Eqs. (5)–(7) withKi 5 Gi 5 0.

To adapt the dilute formulas to the case of finite porosity,
several proposals have been made. The approximate equations that
result are usually called effective medium theories. The most
common approximation is the so-called self-consistent method
(SCM) of Hill9 and Budiansky.10 In this model the equations of
elasticity are solved for a spherical inclusion embedded in a
medium of unknown effective moduli. The effective moduliK and
G are then derived. In the dilute case the embedding medium is
only the matrix. The Hill–Budiansky result can be stated as12

ciP* i~K i 2 K* ! 1 cmP* m~Km 2 K* ! 5 0 (10)

ciQ* i~Gi 2 G* ! 1 cmQ* m~Gm 2 G* ! 5 0 (11)

whereK* andG* denote the effective moduli andP*m andQ*m

are given in Eq. (7). The equations cannot be explicitly solved, and
numerical methods are necessary (see Hill9 and Berryman12 for
details). In the case of porous inclusions, the moduli vanish atf 5
1

2
, which is a property not shared with most composites (e.g., the

overlapping sphere model). To derive a more realistic result,
Christensen and Lo31 have generalized the SCM (GSCM) to the
case of a spherical shell embedded in a matrix of unknown moduli.
The result is complicated and not reproduced here.

The differential method (reviewed by McLaughlin8) provides
an alternative model using a similar philosophy. Suppose that the
effective moduli of a composite medium are known to beK* and
G* . If a small additional concentration of inclusions is added, the
change inK* andG* is approximated to be that which would result
if a dilute concentration of inclusions was added to a uniform,
homogeneous matrix with moduliK* andG* . This leads to a pair
of coupled differential equations:

dK*
dci

5 P* iK i 2 K*
1 2 ci

K* ~ci 5 0! 5 Km (12)

dG*
dci

5 Q* iGi 2 G*
1 2 ci

G* ~ci 5 0! 5 Gm (13)

Fig. 5. Poisson’s ratio of the overlapping ellipsoidal pore model as a
function of the solid Poisson’s ratio and porosity ((—) empirical fit to Eq.
(4), and (– – –) linear fit to Eq. (3), withn0 5 0.166 andf0 5 0.604).
Intercepts of the lines at zero porosity correspond to the solid Poisson’s
ratio.
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The dilute result, the self-consistent result,12 and the differential
method8 can be extended to the case of spheroidal inclusions. The
general results11 for Pmi andQmi have been given by Berryman.12

In addition to these results, Wu11 has derived a variant of the
self-consistent method, whereK* andG* , the effective moduli, are
found by implicitly solving the equations

K* 5 Km 1 ciP* i~K i 2 Km! (14)

G* 5 Gm 1 ciQ* i~Gi 2 Gm! (15)

A different type of microstructure is provided by the Hashin5,32

model of space-filling polydisperse hollow spheres (composite-
sphere assemblage). Although a simple formula exists for the bulk
modulus over the full porosity range,32 exact results for Young’s
moduli are not available. Ramakrishnan and Arunachalam33 re-
cently derived the approximation

E

Es
5

~1 2 f!2

~1 1 2f 2 3nsf!
(16)

n 5
~4ns 1 3f 2 7nsf!

4~1 1 2f 2 3nsf!
(17)

However, the derivation is not rigorous. In particular, the exact
result for the bulk modulus of the model32 is about twice that
predicted by Eqs. (16) and (17) atf 5 0.5. Because Eq. (16)
provides reasonable agreement with experimental data for porous
ceramics,17 we compare its predictions to our FEM data below.

The final class of results we consider is provided by the MSA
models34 (which have been recently reviewed by Rice3,13). This
approach is based on the assumption that the ratio of the effective
moduli to the solid moduli is directly proportional to the minimum
ratio of solid contact area to the total cross-sectional area of
periodic structures. The approximation derived depends on the
particular model considered. We consider two basic models most
closely aligned with our FEM data: simple cubic arrays of solid
and porous spheres. The latter case provides a particularly simple
example of the type of result that can be derived. Suppose the
repeat distance of the lattice is 2h and the sphere radius isr.
Young’s modulus is assumed to be proportional to the area
fraction, giving

E

Es
5

~2h!2 2 pr 2

~2h!2 5 1 2
p

4 S 6

pD
2/3

f2/3 (18)

becausef 5 1

6
p(r/h)3. The form of the result changes forr . h (or

f . p/6 5 0.52) as the spheres begin to coalesce. Rice3 has
reported that the moduli of many different periodic structures can
be approximated by the formE/Es 5 e2bf over a range of
porosities: for example,b ' 5 for the solid-sphere model, andb '
3 for the porous-sphere model. It is argued that, for a given set of
data,b can be compared with known values to assess the type of
porosity. Often fractions of different types of porosity are assumed
to match experimental data, making the method an interpretive
rather than a predictive tool. Because we have measuredE for
microstructures based on solid-sphere contacts and porous spheres,
we should be able to ascertain the accuracy of the MSA formulas
for these cases.

Figure 6 shows the comparison between the exact three-point
bounds14 for the overlapping solid-sphere and spherical pore cases,
the truncated expansion27,28 for the overlapping spherical pore
case, and the numerical results. Clearly, the expansion does better
than the three-point bound for the overlapping spherical pore case,
although both formulas are fairly close to the numerical results.
The bound lies far above the overlapping solid-sphere numerical
results, however. For this case, the truncated expansion does not
exist. Only thens 5 0.2 data are shown. Using the truncated
expansion, it can be shown that, in three dimensions, Young’s
modulus is not exactly independent of the solid Poisson’s ratio but
is, rather, a very good approximation, as was shown earlier in this
paper.

In Fig. 7, we compare the FEM data (ns 5 0.2) for overlapping
spherical pores with dilute and effective medium theory analytic
results. At this Poisson’s ratio, the SCM and dilute results reduce
to E/Es 5 1 2 2f, whereas the differential and dilute results with
the Coble–Kingery correction reduce toE/Es 5 (1 2 f)2. Because
the analytic results are based on the case of dilute spherical pores,
they all match the FEM data atf 5 0.1. The dilute and SCM
results underestimate the FEM data at higher porosities because of the
aphysical percolation threshold atf 5 1

2
. The generalized SCM

overestimates the data, whereas the differential method performs
reasonably well over the entire porosity range. The latter observa-
tion might have been anticipated given the close association
between the definition of the spherical-pore model and the as-
sumption of the differential method. At increasing porosities we
are simply adding additional spherical pores to a porous matrix.
The data for overlapping solid spheres are also shown in Fig. 7,
and seem to be quite different from any of the available results.
This demonstrates that microstructure (the geometrical nature of
the porosity) is an important factor besides the actual value of the
porosity.

Fig. 6. Comparison of rigorous bounds and expansions to the FEM data
for (E) overlapping spherical pores and (h) overlapping solid spheres ((—)
truncated expansion and (– – –) three-point upper bound are shown for the
spherical-pore case; only the (. . .) three-point bound is shown for the
solid-sphere case; three-point lower bound is zero for porous materials).
Poisson’s ratio is 0.2 for all the results.

Fig. 7. Comparison of various theories to the FEM data for (E)
overlapping spherical pores. Lines correspond to the dilute (- - -) result and
self-consistent method9,10 (or SCM), (—) differential method8 and dilute
result with Coble–Kingery correction, and (– – –) the generalized SCM31).
Data for the (h) overlapping solid-sphere model (for which no rigorous
theories exist) are also shown.
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In Fig. 8, the MSA models and the Ramakrishnan and
Arunachalam results33 are compared with the data. The MSA
model for spherical pores performs reasonably well, although
underestimating the FEM data for overlapping random spherical
pores at low porosities (f , 0.3). The MSA model for solid
spheres considerably underestimates these data forf , 0.3. The
Ramakrishnan and Arunachalam33 approximation falls between
the FEM data forf . 0.1, indicating that it corresponds to neither
of the microstructures. For purposes of comparison, we also report
numerical results obtained using the computational generalized
method of cells.4 For a periodic spherical pore, the results
significantly underestimate the FEM data for overlapping spherical
pores at low porosities (and, hence, the exact dilute result). It is not
clear if this is due to the assumptions or the particular implemen-
tation of the method.

The FEM data for overlapping oblate ellipsoidal pores is
compared with the available theories in Fig. 9. The SCM results of
Wu11 and Berryman12 underestimate the porosity as a result of
underestimating the physical percolation threshold. The Berryman
result performs significantly better than does the Wu result. As for
the case of spheres, the differential method matches the data quite
closely because of the similarity between the assumptions of the
theory and the definition of the model.

We have also compared Poisson’s ratio predicted by the various
self-consistent and differential methods to the FEM data for
overlapping spherical and ellipsoidal pores. The theoretical results
converge to different fixed points (e.g., Fig. 3) in qualitative
agreement with the data. However, only the differential method
provides reasonable agreement with the FEM data (with absolute
error ,0.02 forf # 0.4 and 0.1# ns # 0.4).

IV. Comparison with Experiment

We now use the FEM results to analyze experimental measure-
ments of the elastic properties of porous ceramic materials. The
dependence of the elastic moduli on porosity has been the subject
of many studies.13,17,18Data for porous alumina from numerous
studies35 are shown in Fig. 10.The Coble–Kingery1 material is
markedly stiffer than other materials, which is in very good
agreement with the FEM results for the overlapping spherical pore
model. The pores in the alumina matrix are actually created by the
incorporation of a particulate filler,1 which corresponds well with
the definition of the model microstructure. The remaining data
closely follow the overlapping solid-sphere FEM result forf ,
0.25, indicating that the solid alumina phase has the sintered

granular morphology exhibited by the model microstructure (Fig.
1(a)). However, Knudsen reports that several of the samples
summarized were also created using particulate fillers. At higher
porosities, the solid-sphere result underestimates the data. One
reason for this might be that the model contains isolated solid
spheres that artificially decrease the actual porosity. This has been
checked and found not to be the case for the porosities studied.
Therefore, the solid connections in these samples of porous
alumina are likely stiffer than those found in the solid-sphere
model atf . 0.25. Overlapping spheres can create very sharp
“valleys” between a pair of overlapping solid spheres (see Fig.
1(a)), which would be rounded off in the sintering process,
presumably strengthening the solid–solid connection.

Hunter and co-workers36–39have studied Young’s modulus of
several oxides. In all cases, the porous material has been created by
sintering a powder of the pure oxide. The results for Young’s
modulus are reproduced in Fig. 11. For low porosities (f , 0.1),
all of the data follow the FEM results for overlapping spherical
pores. For Gd2O3, the FEM result continues to provide excellent
agreement up to the maximum porosity measured (f 5 0.4),
indicating that the microstructure is similar to that of the model
(overlapping pores). In contrast, the data for the other three oxides
decrease toward the result for overlapping solid spheres, indicating
a more granular character.

Fig. 8. Comparison of the MSA models3 to the FEM data for (E)
overlapping spherical pores and (h) solid spheres. The (—) MSA
solid-sphere model and (– – –) MSA porous sphere model (in simple cubic
packings) underestimate the data for low porosities (f , 0.3); (. . .)
formula of Ramakrishnan and Arunachalam33 E/Es 5 (1 2 f)2/(1 1 1.4f)
and (–z –) results of the generalized method of cells for a periodic spherical
pore4 are also shown.

Fig. 9. Comparison of various theories to the FEM data for (E)
overlapping oblate ellipsoidal pores. Lines correspond to the (—) differ-
ential method8 and the self-consistent methods of (– – –) Wu11 and (. . .)
Berryman.12

Fig. 10. Data for alumina compiled by (E) Knudsen35 (Es 5 410 GPa)
and by (h) Coble–Kingery1 (Es 5 386 GPa). Lines correspond to the FEM
theories computed in this paper: (—) overlapping spherical pores, (. . .)
overlapping oblate ellipsoidal pores, and (– – –) overlapping solid spheres.
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The data of Walshet al.25 for porous glass is compared with the
FEM results for overlapping spherical pores in Fig. 12. The
agreement is good for small to moderate porosities (f , 0.3), but
the FEM results underestimate the data at higher porosities. Walsh
et al. report that the pores in the glass are actually not intercon-
nected (unlike the overlapping pores of the model). This accounts
for the increased stiffness. FEM results begin to deviate from the
experimental data at the threshold, where the pores become
macroscopically connected (f 5 0.3). Data for sintered
MgAl2O2

40 powder are shown in Fig. 13,and they are well
modeled by the FEM results for overlapping solid spheres.
Micrographs of the ceramic indicate a granular structure similar to
that of the model microstructure (although the grains appear as
polyhedra, not spheres).

V. Discussion and Conclusions

We have derived empirical theories for the dependence of
Young’s modulus on porosity for three distinct models of porous
ceramics, based on careful FEM computations. An advantage of
these results over many conventional theories is that they corre-
spond toa priori known microstructures. The dilute result (ex-
tended by Coble–Kingery to all porosities), the differential
method, and the self-consistent methods have a built-in micro-
structure, but, apart from the dilute case, the microstructure is not

clear. Therefore, agreement or disagreement with a particular
analytic theory neither confirms nor rejects a particular physical
model. For the MSA models, the microstructure is exactly known,
but the approximation involved in making Young’s modulus
directly proportional to the contact area leads to a similar conclu-
sion. We have found that the MSA models do not provide
quantitative agreement with the moduli of the random microstruc-
tures studied. We have found that the differential method (Eqs.
(12) and (13)) provides results in reasonable agreement with
computed data for the cases of overlapping spherical and ellipsoi-
dal pores, probably because of the similarities between the
assumptions of the model and the definitions of the microstructure.
Results for the granular model of overlapping solid spheres have
not been well modeled by any of the analytic theories, demonstrat-
ing the importance of FEM techniques in this case of great
physical interest.

We have also generated data that show the dependence of
Poisson’s ratio on porosity and the solid Poisson’s ratio. It is
difficult to study this question experimentally because of the
inability to vary Poisson’s ratio of the solid independently and the
well-known difficulties of accurately measuring Poisson’s ratio at
moderate to high porosities.18 At sufficiently high porosities,
Poisson’s ratio converges to a fixed non-zero value (n0), irrespec-
tive of the solid Poisson’s ratio. For overlapping solid spheres,
n0 5 0.14; spherical pores,n0 5 0.22; and oblate ellipsoidal pores,
n0 5 0.16. This behavior is exact in two dimensions23,24 and is
exhibited by many of the analytic theories in three dimensions. At
present the available experimental data cannot confirm this qual-
itative behavior.18 We have shown that Poisson’s ratio does not
vanish at high porosities, as has been recently argued.19

It is not simple to attribute our results to features of the
solid-pore morphology—such as the size, shape, distribution, and
connectivity of pores or solid grains—because these features have
no obvious definition for complex bicontinuous random micro-
structures. A few general observations can be made and interpreted
in terms of interrelated geometrical and mechanical features of the
models. For a given porosity, the sintered grain structure of the
overlapping solid-sphere model is relatively weak. The small solid
contacts between spheres and the highly interconnected porosity
(which becomes macroscopically connected atf 5 0.03) lead to a
weak structure. We also assume that the valleys that occur between
grains provide sites of large stress concentrations and, conse-
quently, large deformations. In contrast, spherical pores provide
high (near optimal) stiffness at a given porosity. The dispersed
nature of the porosity (which is macroscopically disconnected for
f , 0.3) corresponds to a well-connected solid matrix. Ellipsoidal
pores tend to weaken a structure more than spherical pores because
of a combination of a less-well-connected solid phase (the pores
become macroscopically connected atf 5 0.2) and greater

Fig. 11. Data for various oxides measured by Hunteret al.36–39compared
with the FEM theories for (—) overlapping spherical pores and (– – –)
overlapping solid spheres (({) Sm2O3,

36 Es 5 145 GPa; (‚) Lu2O3,
37 Es 5

193 GPa; (E) Gd2O3,
38 Es 5 150 GPa; and (h) HfO2,

39 Es 5 246 GPa).

Fig. 12. Data for porous glass25 (Ks 5 46 GPa,ns 5 0.23) ((—) FEM
theory for overlapping spherical pores).

Fig. 13. Data for MgAl2O4.
40 Value used wasEs 5 41.23 106 psi (284

GPa) indicated on Fig. 3(A) of the reference, rather than the reported value
of Es 5 43.43 106 psi, which appears to be a misprint ((—) corresponds
to the FEM theory for overlapping solid spheres).

December 2000 Elastic Properties of Model Porous Ceramics 3047



stresses and deformations near the high-curvature regions of the
ellipsoid.

We have compared our FEM results with several sets of
previously published experimental data. In cases where the micro-
structure of the porous ceramics roughly matches that of the
models, the agreement is very good. Because the FEM results
correspond to a known microstructure, it is possible to explain
deviations in terms of specific microstructural features. Thus,
comparison of experimental data with the three computational
results provides a useful interpretive tool. A given elastic modulus
does not correspond to a particular microstructure. Therefore, it is
important to corroborate microstructural interpretations obtained
from the elastic moduli with information about the particular
material (such as a micrograph). In the future, it would be useful
to extend this work to higher porosities and to other relevant
models (such as nonoverlapping porous spheres). It is also possible
to use statistical microstructural information obtained from two-
dimensional micrographs to generate models29 that actually mimic
physical microstructures.

References

1R. L. Coble and W. D. Kingery, “Effect of Porosity on Physical Properties of
Alumina,” J. Am. Ceram. Soc., 39 [11] 377–85 (1956).

2E. A. Dean and J. A. Lopez, “Empirical Dependence of Elastic Moduli on Porosity
for Ceramic Materials,”J. Am. Ceram. Soc., 60 [7–8] 345–49 (1977).

3R. W. Rice, “Evaluation and Extension of Physical Property–Porosity Models
Based on Minimum Solid Area,”J. Mater. Sci., 31, 102–18 (1996).

4C. T. Herakovich and S. C. Baxter, “Influence of Pore Geometry on the Effective
Response of Porous Media,”J. Mater. Sci., 31, 1595–609 (1999).

5Z. Hashin, “Analysis of Composite Materials—A Survey,”J. Appl. Mech., 50,
481–505 (1983).

6J. Aboudi, Mechanics of Composite Materials: A Unified Micromechanical
Approach; pp. 35–109. Elsevier, Amsterdam, the Netherlands, 1991.

7R. M. Christensen,Mechanics of Composite Materials; pp. 31–72. Wiley, New
York, 1979.

8R. McLaughlin, “A Study of the Differential Scheme for Composite Materials,”
Int. J. Eng. Sci., 15, 237–44 (1977).

9R. Hill, “A Self-Consistent Mechanics of Composite Materials,”J. Mech. Phys.
Solids, 13, 213–22 (1965).

10B. Budiansky, “On the Elastic Moduli of Some Heterogeneous Materials,”J.
Mech. Phys. Solids, 13, 223–27 (1965).

11T. T. Wu, “The Effect of Inclusion Shape on the Elastic Moduli of a Two-Phase
Material,” Int. J. Solids Struct., 2, 1–8 (1966).

12J. G. Berryman, “Long-Wavelength Propagation in Composite Elastic Media II.
Ellipsoidal Inclusions,”J. Acoust. Soc. Am., 68 [6] 1820–31 (1980).

13R. W. Rice, “Comparison of Physical Property–Porosity Behaviour with Mini-
mum Solid Area Models,”J. Mater. Sci., 31, 1509–28 (1996).

14S. Torquato, “Random Heterogeneous Media: Microstructure and Improved
Bounds on Effective Properties,”Appl. Mech. Rev., 44, 37–76 (1991).

15E. J. Garboczi and A. R. Day, “An Algorithm for Computing the Effective Linear
Elastic Properties of Heterogeneous Materials: Three-Dimensional Results for Com-
posites with Equal Phase Poisson Ratios,”J. Mech. Phys. Solids, 43, 1349–62 (1995).

16J. Poutet, D. Manzoni, F. Hage-Chehade, C. G. Jacquin, M. J. Bouteca, J. F.
Thovert, and P. M. Adler, “The Effective Mechanical Properties of Random Porous
Media,” J. Mech. Phys. Solids, 44, 1587–620 (1996).

17N. Ramakrishnan and V. S. Arunachalam, “Effective Elastic Moduli of Ceramic
Materials,”J. Am. Ceram. Soc., 76 [11] 2745–52 (1993).

18A. R. Boccaccini, “Comment on ‘Effective Elastic Moduli of Ceramic Materi-
als’,” J. Am. Ceram. Soc., 76 [10] 2745–52 (1994).

19R. W. Rice, “Comment on ‘Effective Elastic Moduli of Porous Ceramic
Materials’,” J. Am. Ceram. Soc., 78 [6] 1711 (1995).

20E. J. Garboczi, Internal Rept. No. 6269, National Institute of Standards and
Technology, Gaithersburg, MD, 1998; Ch. 2 (available at http://ciks.cbt.nist.gov/
garboczi/).

21H. L. Weissberg, “Effective Diffusion Coefficient in Porous Media,”J. Appl.
Phys., 34, 2636–39 (1963).

22A. P. Roberts and M. Teubner, “Transport Properties of Heterogeneous Materials
Derived from Gaussian Random Fields: Bounds and Simulation,”Phys. Rev. E: Stat.
Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 51, 4141–54 (1995).

23A. R. Day, K. A. Snyder, E. J. Garboczi, and M. F. Thorpe, “The Elastic Moduli
of Sheet Containing Spherical Holes,”J. Mech. Phys. Solids, 40, 1031–51 (1992).

24A. V. Cherkaev, K. A. Lurie, and G. W. Milton, “Invariant Properties of the
Stress in Plane Elasticity and Equivalence Classes of Composites,”Proc. R. Soc.
London, A, 438, 519–29 (1992).

25J. B. Walsh, W. F. Brace, and A. W. England, “Effect of Porosity on
Compressibility of Glass,”J. Am. Ceram. Soc., 48 [12] 605–608 (1965).

26E. Garboczi, K. Snyder, J. Douglas, and M. Thorpe, “Geometrical Percolation
Threshold of Overlapping Ellipsoids,”Phys. Rev. E: Stat. Phys., Plasmas, Fluids,
Relat. Interdiscip. Top., 52, 819–28 (1995).

27S. Torquato, “Effective Stiffness Tensor of Composite Media—I. Exact Series
Expansions,”J. Mech. Phys. Solids, 45, 1421–48 (1997).

28S. Torquato, “Effective Stiffness Tensor of Composite Media—II. Applications
to Isotropic Dispersions,”J. Mech. Phys. Solids, 46, 1411–40 (1998).

29A. P. Roberts and E. J. Garboczi, “Elastic Properties of a Tungsten–Silver
Composite by Reconstruction and Computation,”J. Mech. Phys. Solids, 47 [10]
2029–55 (1999).

30J. F. MacKenzie, “Elastic Constants of a Solid Containing Spherical Holes,”
Proc. Phys. Soc. (London), 63B [1] 2–11 (1960).

31R. M. Christensen and K. H. Lo, “Solutions for Effective Shear Properties in
Three Phase Sphere and Cylinder Models,”J. Mech. Phys. Solids, 27, 315–30 (1979).

32Z. Hashin, “The Elastic Moduli of Heterogeneous Materials,”ASME J. Appl.
Mech., 29, 143–50 (1962).

33N. Ramakrishnan and V. S. Arunachalam, “Effective Elastic Moduli of Porous
Solids,” J. Mater. Sci., 25, 3930–37 (1990).

34F. P. Knudsen, “Dependence of Mechanical Strength of Brittle Polycrystalline
Specimens on Porosity and Grain Size,”J. Am. Ceram. Soc., 42 [8] 376–87 (1959).

35F. P. Knudsen, “Effect of Porosity on Young’s Modulus of Alumina,”J. Am.
Ceram. Soc., 45 [2] 94–95 (1962).

36O. Hunter, H. J. Korklan, and R. R. Suchomel, “Elastic Properties of Polycrys-
talline Monoclinic Sm2O3,” J. Am. Ceram. Soc., 57 [6] 267–68 (1974).

37O. Hunter and G. E. Graddy, “Porosity Dependence of Elastic Properties of
Polycrystalline Lu2O3,” J. Am. Ceram. Soc., 59 [1–2] 82 (1976).

38J. A. Haglund and O. Hunter, “Elastic Properties of Polycrystalline Monoclinic
Gd2O3,” J. Am. Ceram. Soc., 56 [6] 327–30 (1973).

39S. L. Dole, O. Hunter, and F. W. Calderwood, “Elastic Properties of Stabilized
HfO2 Compositions,”J. Am. Ceram. Soc., 63 [3–4] 136–39 (1980).

40D. F. Porter, J. S. Reed, and D. Lewis, “Elastic Moduli of Refractory Spinels,”
J. Am. Ceram. Soc., 60 [7–8] 345–49 (1977). M

3048 Journal of the American Ceramic Society—Roberts and Garboczi Vol. 83, No. 12


