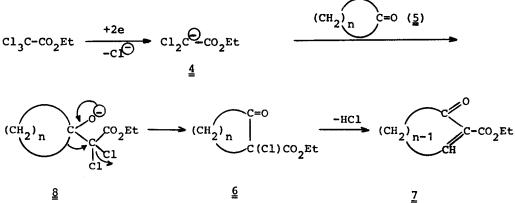
Tetrahedron Letters No. 17, pp 1521 - 1522, 1978. Pergamon Press. Printed in Great Britain.

CATHODIC ADDITION OF TETRACHLOROMETHANE AND ETHYL TRICHLOROACETATE TO CARBONYL COMPOUNDS

Friedhelm Karrenbrock und Hans J. Schäfer⁺

Organisch-Chemisches Institut der Universität, Orleansring 23, D-4400 Münster

(Received in UK 3 March 1978; accepted for publication 9 March 1978)


Deprotonation of trichloromethane yields the trichloromethyl anion (1), that can be added to carbonyl compounds. We wish to report that this addition can also be achieved cathodically. 1 can be generated at -0.75 V vs. s.c.e.² from tetrachloromethane and reacted with aldehydes and ketones to form trichloromethyl carbinols (3) (Table I).

$$cc1_4 \xrightarrow{+2e}_{-C1^-} \overline{cc1_3} \xrightarrow{+R^1R^2C=O(\underline{2})}_{R^2} c1_3c \xrightarrow{OH}_{R^2}$$

<u>Table I. Ca</u>	thodic addition o	f tetrachloromethane to	carbonyl compounds
R ¹ 2	R ²	<u>3</u> -yi *	eld a)
R	K		
Phenyl	н	70	(80)
- (CH ₂) 5-		25	(23)
	Ethyl	10	(13)
Methyl ¹ Prop	н	30	(34)
Prop	н	32	()

a) current yields; numbers in parentheses are yields achieved by phase-transfer catalyzed addition of trichloromethane.^{1a}

The ethyl dichloroacetate anion (4), cathodically generated from ethyl trichloroacetate, 3 adds to cyclic ketones 5 to yield the keto esters 6 and 7 (Table 2).

1521

Table_	II. Cathodic	addition of	etnyi	trichloroa	cetate	το	cyclic	Ketones	•
<u>5</u> n				<u>6</u> yield	<u>7</u> s a)				
		<u></u>							
3				43	-				
4				27	-				
5				7	20				

The formation of $\underline{6}$ can be conceived by a ring-expansion reaction of the adduct 8.^{4,5}

Table II. Cathodic addition of ethyl trichloroacetate to cyclic ketone	Table	II.	I. Cathodic	addition	of	ethvl	trichloroacetate	to	cvclic	ketones
--	-------	-----	-------------	----------	----	-------	------------------	----	--------	---------

a) current yields.

Ethyl 1-chloro-2-oxo-1-cyclohexanecarboxylate $\underline{6}$ (n=4): 50 mmol ethyl trichloroacetate and 50 mmol cyclopentanone are electrolyzed in a divided cell in 80 ml DMF (4.2 g LiClO₄) at a mercury cathode at O^OC and a potential of -0.9 to -1.0 V <u>vs</u>. s.c.e. until 0.07 F were consumed. The catholyte was poured into 250 ml water and extracted with ether. Bulb to bulb distillation afforded 1.98 g $\underline{6}$ (n=4); ¹H-NMR (CCl₄, ppm): 4.33 (2H, q, J=7 Hz), 2.38 (4 H,m), 1.98 (4 H,m), 1.40 (3 H,t, J=7 Hz); IR (film): 1730/cm; MS m/e (%): 168 (2), 140 (6), 95 (72), 67 (base).

- a) A. Merz and R. Tomahogh, Chem.Ber. <u>110</u>, 96 (1977); b) H. Taguchi,
 H. Yamamoto and H. Nozaki, J.Amer.Chem.Soc. <u>96</u>, 3010 (1974); earlier
 literature cited there; c) Methoden der organischen Chemie (Houben-Weyl),
 E. Müller, Ed., 4. Aufl., Band V/3, S. 981 ff., Georg Thieme Verlag,
 Stuttgart 1962.
- 2. S. Wawzonek and R.C. Duty, J. Electrochem.Soc. 108, 1135 (1961).
- Cathodically generated <u>4</u> has been added to activated double bonds: M.M. Baizer and J.L. Chruma, J.Org.Chem. <u>37</u>, 1951 (1972).
- 4. A.J. Sisti and G.M. Rusch, J.Org.Chem. 39, 1182 (1974).
- 5. This work was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.